Évolution des systèmes d extinction



Documents pareils
Extinction. Choisissez votre système d extinction. Qu'est-ce qu'un système d extinction? Les principes du feu

L École nationale des pompiers du Québec. Dans le cadre de son programme de formation Pompier I

FICHE DE DONNEES DE SECURITE

LOG 8869 Residential Brochure_FR:Layout 1 6/4/08 11:53 AM Page 1. Construire vert ne devrait pas être un casse-tête

Fiche de données de sécurité

SECURITE INCENDIE. prévention des incendies et de la panique

Phénomènes dangereux et modélisation des effets

GUIDE DE BONNES PRATIQUES POUR LA COLLECTE DE PILES ET ACCUMULATEURS AU LUXEMBOURG

Ingrédients No cas % Contrôlé par SIMDUT. Propane >90 Oui Propylène <5 Oui Hydrocarbures, C <2.5 Oui

Code national de prévention des incendies Canada 2005

LES PNEUS SONT-ILS DANGEREUX POUR LA SANTÉ ET L ENVIRONNEMENT? Les pneus sont dangereux dans des piles, pas dans des Earthships.

VÉRIFICATION DES ÉQUIPEMENTS DE PROTECTION INCENDIE

Qu est ce qu un gaz comprimé?

Réduction de la pollution d un moteur diesel

Les immeubles résidentiels et commerciaux disposent

Réglementation européenne prise en application du Protocole de Montréal

IDENTIFICATION DE LA SUBSTANCE ET DE LA SOCIÉTÉ. APPLICATION ET UTILISATION: Huile en aérosol pour contact accidentel avec la nourriture (ACIA N).

Carrefour ARRAS. Expertise réalisée par : Vincent Cordonnier

Fiche de données de sécurité

Photo tirée du site

Une formation obligatoire pour les frigoristes et les mécaniciens en protection-incendie qui travaillent avec les halocarbures.

Les extincteurs d incendie portatifs, mobiles et fixes

Une introduction aux chauffe-eau solaires domestiques

CONSIGNES DE COMPORTEMENT EN CAS D URGENCE : COMMUNES DU HAUT PLATEAU

Fiche de données de sécurité Selon l Ochim (ordonn. produits chim.) du , paragr.3

SOLUTIONS CONSTRUCTIVES

Un avertisseur de monoxyde de carbone peut sauver des vies

RAID PIEGES ANTI-FOURMIS x 2 1/5 Date de création/révision: 25/10/1998 FICHE DE DONNEES DE SECURITE NON CLASSE

CHAUFFAGE RADIANT RÉCHAUFFER LA MAISON AVEC UN PLANCHER CHAUFFANT. Construction Automobile Industrie

FICHE DE SECURITE FUMESAAT 500 SC

Terminal d approvisionnement de carburant aéroportuaire à Montréal

Normes CE Equipements de Protection Individuelle

Agents extincteurs HFC-227ea et FE-13

BDL2, BDL3 Enviro Liner Part A. Dominion Sure Seal FICHE SIGNALÉTIQUE. % (p/p) Numéro CAS. TLV de l' ACGIH Non disponible

PROTECTION DEs MAINs ET DEs BRAs INfORMATIONs TEChNIquEs

Unité fonctionnelle de référence, à laquelle sont rapportés les impacts environnementaux du Chapitre 2

Le code INF et les navires spécialisés

PROFIL DE COMPÉTENCES

IRVE et Hybrides Rechargeables dans les ERP et les IGH - Cahier des Charges de la Commission Centrale de Sécurité (Ministère de l Intérieur) SOMMAIRE

La sécurité physique et environnementale

Le chauffe-eau à pompe à chaleur: fiche technique à l intention des installateurs

CHALLENGE FORMULA CLASSIC

LORS DE L UTILISATION DE LA CHAUSSEE POUR DES MANIFESTATIONS PROVISOIRES À L INTERIEUR DES LOCALITES

POUR LE MONTAGE ET L'EXPLOITATION DE TENTES ET STRUCTURES PNEUMATIQUES PROVISOIRES

Système de Pulvérisation à Chaud AccuCoat : La Solution pour les Applications d Enrobage

Note technique. Consommation électrique d'un poêle à granulés à émission directe

LES DOUCHES ET LES BASSINS OCULAIRES D URGENCE

L ÉNERGIE C EST QUOI?

allianceautopropane.com

Acides et bases. Acides et bases Page 1 sur 6

Rapport d'évaluation CCMC R IGLOO Wall Insulation

Série CLE - Chauffe-eau pour douche oculaire Solutions de chauffage d eau sans réservoir

Les solvants. Entreposage. Les solvants

Qualité des environnements intérieurs. 5. Extraction localisée. 5.1 Extraction localisée de base Condition préalable

CIRCULAIRE N 2983 DU 18/01/2010

LE FIRE SAFETY ENGINEERING VU PAR LES SRI

Fuites d ammoniac gazeux et liquéfié sous pression : Résultats préliminaires issus des essais à moyenne échelle de l INERIS

FICHE DE DONNÉES DE SÉCURITÉ conformément au Règlement (CE) nº1907/2006 REACH Nom : KR-G KR-G

AF Secteur. Titre. Comité. multimédia et récepteurs. Luminaires. nucléaires. Aspects systèmes Réseaux industriels

Whitepaper. La solution parfaite pour la mise en température d un réacteur. Système de régulation. Réacteur. de température

POLITIQUE ADMINISTRATIVE ET PROCÉDURE GESTION DES MATIÈRES DANGEREUSES

ÉJECTEURS. CanmetÉNERGIE Juillet 2009

Consommation de diesel pour les véhicules à moteurs

la climatisation automobile

Manuel de l utilisateur Dispositif d utilisation hivernale DUH À utiliser uniquement avec le modèle GSWH-1

NOTE DE SERVICE DGFAR/SDTE/SDC/N Date: 27 octobre 2005

La prévention des incendies domestiques

5 Applications. Isolation intérieure des murs de fondation. ISOFOIL est un panneau isolant rigide laminé d un pare-vapeur d aluminium réfléchissant.

DEFINITION DU DATACENTER

Prévention et sécurité dans les établissements hospitaliers et assimilés

MEMENTO SECURITE INCENDIE

Fiche de données de sécurité Selon l Ochim (ordonn. produits chim.) du , paragr.3

Prescriptions techniques et de construction pour les locaux à compteurs

1. Identification de la substance ou préparation et de la Société. 2. Composition/ informations sur les composants

OFM-TG F. Bureau du commissaire des incendies MESURES D'URGENCE EN CAS D'INCENDIE DANS LES ÉTABLISSEMENTS INDUSTRIELS C I DIRECTIVE

Eau (N CAS) Non classifié Urea (N CAS) Non classifié. Version : 1.0

Travaux en cours. Diaporama réalisé par Thierry MARBEHAN Avec la collaboration de la société SIEMENS CERBERUS

Mesure et détection de substances dangereuses : EX-OX-TOX (IS-013) Version CT-Q

Service Prévention des Risques Professionnels. 26, rue d Aubigny Lyon cedex 03 téléphone : télécopie :

I. Introduction: L énergie consommée par les appareils de nos foyers est sous forme d énergie électrique, facilement transportable.

L'ABC. Le gaz naturel

ISOLANTS EN FIBRES DE BOIS SyLvAcTIS. En isolation, le progrès c est aussi de savoir s inspirer de la nature. Entreprise certifiée

Avertisseur de monoxyde de carbone

modèle d atelier de LECTURE-ÉCRITURE

Un environnement sans fumée pour vos enfants. Comment y parvenir?

QUESTIONNAIRE PARTICULIER POUR DEMANDE D'AUTORISATION. BATIMENT SIS : Commune : Localité : Article cadastral : Rue et n : Affectation de l'ouvrage :

Fiche de données de sécurité Tuff-Temp Plus Temporary Crown and Bridge Material 1.0 Nom Commercial et Fabricant

Gestion de la prévention Planifier les mesures d urgence. étapes

Quelques dates clés s pour TYM TYM : entreprise familiale créé

NOTIONS FONDAMENTALES SUR LES ENERGIES

RÈGLEMENTS. Journal officiel de l Union européenne L 286/1. (Actes pris en application des traités CE/Euratom dont la publication est obligatoire)

MARCHE PUBLIC RELATIF A L ENTRETIEN ET AU DEPANNAGE DES CHAUFFERIES DES BATIMENTS COMMUNAUX ET DES CHAUDIERES INDIVIDUELLES DES LOGEMENTS COMMUNAUX

Le nouveau système de surveillance continue des émissions atmosphériques

Sécurité incendie dans les garages

Fiche documentaire FAIRE LES PRODUITS D USAGE DOMESTIQUE SANS DANGER POUR L AIR

Discovering Hidden Value

Fiche de données de sécurité selon 1907/2006/CE, Article 31

Chapitre 1 : Qu est ce que l air qui nous entoure?

L'ABC DES VÉHICULES ÉLECTRIQUES

Transcription:

Solution constructive n o 75 Évolution des systèmes d extinction par Andrew Kim Les systèmes d extinction servant à la protection des bâtiments ont évolué en réponse aux exigences nouvelles, aux pressions environnementales et aux progrès technologiques. Ce numéro présente un aperçu de quatre systèmes récemment mis au point, examine les résultats des travaux de recherche sur la performance de chacun, et fournit des indications sur la sélection, la conception et l utilisation de ces systèmes. Éteindre un feu en jetant de l eau sur les flammes est une méthode d extinction en usage depuis les temps anciens. Les systèmes de gicleurs automatiques ont été mis au point à la fin du XIX e siècle et visaient à permettre l extinction d incendies grâce à la projection de jets d eau automatiques. Depuis, les systèmes de gicleurs automatiques sont devenus les systèmes d extinction fixes les plus répandus pour assurer la sécurité incendie dans les bâtiments. Les gicleurs arrêtent le développement d un incendie en mouillant et refroidissant la surface combustible. Ils sont efficaces contre les incendies de matières solides (appelées combustibles solides), mais pas contre les incendies de liquides inflammables (appelés combustibles liquides), comme l essence, le carburant diesel et le carburant aviation. Il convient de garder à l esprit le vieil adage, Il existe deux méthodes de base en vue de l application d un agent extincteur : l application par saturation et l application locale. L application par saturation consiste à appliquer un agent extincteur dans une enceinte fermée tridimensionnelle de manière à parvenir à une concentration de l agent extincteur suffisante pour éteindre l incendie. Ces types de systèmes peuvent être à fonctionnement automatique ou manuel. L application locale consiste à appliquer un agent extincteur directement sur les flammes (habituellement une zone bidimensionnelle) ou dans la région tridimensionnelle entourant immédiatement la substance ou l objet en flammes. La principale différence entre l application locale et l application par saturation est l absence d obstacles physiques limitant le foyer d incendie. qui dit que «l huile et l eau ne se mélangent pas». Les systèmes d extinction pour combustibles liquides utilisent typiquement des mousses ou des poudres qui couvrent la surface combustible, limitant ainsi la rétroaction thermique vers la surface du combustible liquide et la vaporisation de ce dernier. Les incendies dans les installations électriques et électroniques nécessitent des solutions d extinction spéciales. Les systèmes au gaz carbonique (CO 2 ) sont utilisés depuis longtemps. Ils projettent de grandes quantités de CO 2 sur les flammes de manière à réduire la concentration d oxygène sous le niveau nécessaire à la combustion. Pour les systèmes d extinction par saturation, dans lesquels des bouteilles sous pression sont reliées à un système de canalisations et de buses fixes en vue de la projection du gaz dans une enceinte fermée, la concentration d oxygène peut être réduite sous le niveau requis par les occupants. Les systèmes au CO 2 sont donc typiquement limités aux espaces inoccupés. Dans les années 1940, des efforts importants ont été faits pour trouver un agent d extinction plus efficace que les agents utilisés à l époque. Ces efforts ont mené à la mise au point des halons, y compris le Halon 1301, qui était typiquement utilisé pour les applications d extinction par saturation. Les halons sont d excellents agents extincteurs, mais ils contribuent considérablement à l appauvrissement de l ozone stratosphérique. L utilisation des halons comme agents extincteurs a donc graduellement été éliminée dans les pays développés autour des années

1990, un consensus international (le Protocole de Montréal) ayant été atteint en matière d utilisation réglementée des substances appauvrissant la couche d ozone. L élimination graduelle des halons a mené à d importants travaux de recherche visant à trouver des substituts des halons qui seraient efficaces pour diverses applications sans nuire à l environnement et à la santé humaine. Plusieurs nouveaux systèmes d extinction ont été mis au point et certaines approches plus anciennes ont suscité un regain d intérêt. Ce numéro examine quatre de ces technologies : les systèmes à gaz inertes et à halocarbures gazeux, les systèmes à brouillard d eau, les systèmes à mousse à air comprimé et les générateurs de gaz solide. Un numéro subséquent portera uniquement sur les systèmes à mousse à air comprimé et sera fondé sur les travaux de recherche considérables effectués par l Institut de recherche en construction du CNRC (IRC-CNRC). Systèmes gazeux Deux types d agents gazeux peuvent être utilisés dans les systèmes d extinction par saturation : les halocarbures et les gaz inertes. Une exigence générale applicable à ces systèmes est que l enceinte doit être capable de retenir le gaz et de résister aux pressions élevées produites pendant la projection. Pour traiter des limitations et de l usage approprié des systèmes qui utilisent des agents gazeux, la National Fire Protection Association a publié la norme Figure 1. L utilisation de NFPA 2001[1], Standard on bouteilles peut créer des Clean Agent Fire Extinguishing problèmes de poids et Systems. La norme NFPA 2001 d espace n est pas un manuel de conception, mais plutôt un guide qui s adresse à ceux qui conçoivent les systèmes à agent extincteur propre afin d aider à garantir que ces systèmes fonctionneront de la façon prévue. La norme contient de l information sur l utilisation et les limitations des agents extincteurs propres, comme les propriétés physiques des halocarbures et des gaz inertes, les concentrations maximales permises et la toxicité de ces agents extincteurs. Elle traite également des composants et du matériel utilisés dans ces systèmes, ainsi que de la conception, l inspection, l entretien et la mise à l essai de ces derniers, et de la formation connexe. Halocarbures Les halocarbures sont des produits chimiques similaires aux halons à la différence qu on en a modifié la structure moléculaire de manière à réduire ou éliminer les atomes de chlore et de brome, qui sont responsables de l appauvrissement de la couche d ozone. Ces agents éteignent les incendies principalement par refroidissement. L acceptation d un halocarbure par les autorités de réglementation dépend de la toxicité de ce dernier. Deux aspects toxicologiques doivent être pris en considération. Un premier aspect est la toxicité de l agent lui-même et l autre est la toxicité des sousproduits de combustion générés par l agent sous l action des flammes. Les résultats des essais à petite échelle et à l échelle réelle ont montré que les halocarbures éteignent bien les incendies, mais pas aussi efficacement que les halons. Pour fournir le même niveau de protection incendie que les halons, des quantités plus grandes d halocarbures sont nécessaires. Ceci signifie que des bouteilles plus grandes et plus lourdes sont requises, ce qui peut créer des problèmes de poids et d espace (figure 1). Les résultats des essais montrent également que les halocarbures produisent de cinq à dix fois plus de gaz toxiques que le Halon 1301 pendant l extinction. Ces gaz toxiques incluent le fluorure d hydrogène (HF) et le difluorure de carbonyle (COF 2 ). Les niveaux produits dans des essais dépassent de façon importante toutes les limites d exposition humaine. Les niveaux de HF et de COF 2 susceptibles d être produits dans des applications réelles dépendront de nombreux facteurs, comme le type d agent et sa concentration, le type et la taille de l incendie, et les durées de projection et d extinction. Les halocarbures produisent également du monoxyde de carbone (CO) pendant l extinction, ce qui pourrait constituer un autre problème de sécurité, selon les concentrations et l utilisation de l espace. Certains halocarbures ont une longue durée de vie atmosphérique et pourraient contribuer au réchauffement planétaire. Dans l'avenir, ce point peut devenir un facteur déterminant dans le choix des agents d extinction appropriés. Gaz inertes Les gaz inertes sont utilisés comme agents d extinction par saturation. Ils éteignent les incendies en déplaçant l oxygène dans l enceinte fermée et en réduisant la concentration d oxygène sous le niveau nécessaire à la combustion. Les gaz inertes, comme l azote, l argon et l hélium, sont des gaz propres d origine naturelle, présentent un potentiel d appauvrissement de la couche d ozone nul et un potentiel de réchauffement planétaire nul. Ils ne sont soumis à 2

aucune décomposition thermique sous l action des flammes et ne génèrent donc pas de produits de combustion. Un des désavantages de l utilisation des systèmes à gaz inertes est qu un large volume de gaz est nécessaire pour éteindre un incendie. En outre, les gaz inertes ne peuvent pas être liquéfiés et doivent être stockés dans des bouteilles sous forme de gaz haute pression, ce qui a des implications sur l espace et le poids. Les gaz inertes requièrent aussi un système de projection suffisamment robuste pour résister aux pressions élevées nécessaires. Le déplacement rapide de l oxygène, les niveaux élevés de bruit et le refroidissement rapide font également problème si le gaz doit être projeté dans un espace occupé. Brouillard d eau L expression «brouillard d eau» s applique à une pulvérisation fine d eau dans laquelle 99 % du volume est pulvérisé sous la forme de gouttelettes de moins de 1000 microns de diamètre. La norme NFPA 750[2], Standard on Water Mist Fire Protection Systems, a été élaborée par la NFPA pour les systèmes à brouillard d eau. La norme précise les exigences minimales applicables à la conception, l installation, l entretien et la mise à l essai des systèmes de protection incendie à brouillard d eau. Elle ne fournit pas de critères de performance définitifs ni d indications sur la façon de concevoir un système. L extinction par brouillard d eau est principalement assurée par des mécanismes physiques. Elle ne fait appel à aucun effet chimique important. Si des études antérieures ont déterminé que le refroidissement des flammes et le déplacement de l oxygène étaient les principaux effets relevés, des études récentes suggèrent l existence de mécanismes additionnels. Le principal est l atténuation du rayonnement, qui peut arrêter la propagation des flammes à la surface d un combustible non enflammé et réduit la vaporisation à la surface du combustible. Des essais menés à l IRC-CNRC ont montré que le transfert du flux thermique rayonnant aux murs du compartiment d essai était réduit de plus de 70 %. Les autres mécanismes d extinction secondaires incluent la dilution des vapeurs inflammables dégagées par les objets enflammés, et le mouillage et le refroidissement de ces objets par incidence directe. Le brouillard d eau ne se comporte pas comme un véritable agent gazeux. Les essais en compartiment menés par l IRC-CNRC ont montré que la taille de l incendie, le degré d obstruction, la hauteur de plafond et les conditions de ventilation influent substantiellement sur son efficacité. Les caractéristiques du brouillard d eau, comme la variété des tailles de gouttelettes et la vitesse du jet, ont un effet direct sur l efficacité. Pour éteindre efficacement un incendie, un système à brouillard d eau doit générer et livrer des gouttelettes d une taille optimale en concentration adéquate. La sélection de la taille optimale des gouttelettes, en vue de la conception du système, est tributaire de la taille possible de l incendie, des propriétés des matières combustibles, et du degré d obstruction et de ventilation dans le compartiment. Il n existe pas une distribution de la taille des gouttelettes qui soit appropriée pour tous les scénarios d incendie. Plusieurs systèmes à brouillard d eau sont disponibles dans le commerce. Certains font appel à des pressions d eau élevées ou intermédiaires traversant les petits orifices d une buse pour produire le brouillard, tandis que d autres utilisent des buses doubles (projetant eau et air). Les systèmes à brouillard d eau ont fait la preuve d un certain nombre d avantages, dont une bonne capacité d extinction, l absence de répercussions sur l environnement et l absence de toxicité. Ils ont en conséquence été pris en considération pour de nombreuses applications. La protection des compartiments machines des navires est une de ces applications possibles. Les systèmes à brouillard d eau peuvent éteindre une grande variété d incendies en présence de ventilation naturelle, par exemple lorsque des portes et des écoutilles sont ouvertes, conditions dans lesquelles les agents gazeux ne sont pas efficaces. Les systèmes à brouillard d eau réduisent en outre rapidement la température du compartiment et améliorent la visibilité de façon marquée. Ces avantages permettent l accessibilité au compartiment pendant l extinction. La protection d équipement électronique est une autre application où le brouillard d eau peut être une solution de rechange efficace en remplacement des halons. L industrie des télécommunications et les services publics ont généralement été hésitants à utiliser de l eau comme agent extincteur en raison des possibilités d endommagement de l équipement électrique et électronique. Une étude préliminaire de l IRC-CNRC sur la faisabilité de l utilisation d un système à brouillard d eau contre les feux d équipement électronique dans des armoires a montré que le système était efficace sans causer de courts-circuits ou de dommages à l équipement. Une étude récente de l IRC-CNRC [3] menée dans un compartiment d essai a montré que la performance du brouillard d eau 3

comme agent extincteur peut être améliorée par l utilisation d une projection cyclique assurée par alternance des modes marche et arrêt des buses. Dans le cas d un incendie mineur, l extinction a été facile et la contribution apportée par une projection cyclique a été peu importante. Dans le cas de scéna - rios d incendie plus difficiles, toutefois, comme en présence de ventilation, la projection cyclique a réduit considérablement les durées d extinction et les besoins en eau. Plus de vapeur d eau et de produits de combustion ont été produits, ce qui a augmenté la vitesse de raréfaction de l oxygène. De plus, le mélange dynamique récurrent créé par une projection cyclique dilue l oxygène et la vapeur de combustible susceptibles d alimenter l incendie. Température (C) Mousse à air comprimé Pendant des décennies, les systèmes à mousse ont servi à la protection contre les incendies dans les industries chimique et pétrolière, ainsi que dans les installations militaires. L efficacité générale des systèmes à mousse à canalisations fixes actuels, qui incluent des buses ventilées et des générateurs de mousse de type soufflante, est limitée car ces systèmes ne peuvent pas fournir des vitesses d injection élevées. Également, la mousse produite au moyen des systèmes classiques n est pas stable et uniforme, et les ratios d expansion ne sont pas aussi élevés qu on le voudrait pour certaines applications parce que l air servant à produire la mousse à la buse, provenant de la zone de l incendie, peut être contaminé. Lorsque de l air comprimé est utilisé pour la génération de la mousse, toutefois, cette dernière présente une qualité supérieure et Inflammation CAF Classe A Essai 2 Brouillard d eau Essai 1 Activation du sytème d extinction Extinction par CAF Temps (s) Extinction par brouillard d eau Figure 3. Extinction par mousse à air comprimé versus extinction par brouillard d eau Figure 2. Schéma d un système de mousse à air comprimé une vitesse d injection substantielle, en plus d exiger une quantité d eau et de concentrés de mousse beaucoup plus petite. La mousse à air comprimé est générée par injection d air sous pression dans un flux de solution de mousse (figure 2). Le processus de déplacement du mélange de solution et d air dans le tuyau ou la canalisation, s il est exécuté correctement, produit une mousse. L énergie nécessaire à la production de la mousse à air comprimé provient de la vitesse combinée de la solution de mousse et de l air. La vitesse accrue de la mousse est un avantage important de ces systèmes. Elle permet à la mousse de pénétrer les flammes et d atteindre la surface du combustible. Un autre avantage de la mousse à air comprimé est qu elle possède une plus grande stabilité de drainage (la mousse ne s affaisse pas facilement) que les mousses à air aspiré parce qu elle se caractérise par une distribution restreinte de la taille des bulles. Les premières tentatives pour adapter la mousse à air comprimé aux installations fixes ont échoué en raison de deux difficultés techniques fondamentales : en premier lieu, les buses classiques de type à extincteur automatique ne peuvent pas distribuer la mousse sans qu elle s affaisse, et deuxièmement, la mousse elle-même dégénère dans des canalisations fixes. L IRC-CNRC a récemment vaincu ces difficultés et a mis au point un moyen de produire de la mousse à air 4

Figure 4. Extinction d'un feu de transformateur par mousse à air comprimé comprimé dans un système à canalisations fixes à partir de concentrés de mousse de classe A et de classe B. Ce moyen consiste à utiliser une nouvelle buse de distribution novatrice. La décomposition de la mousse, qui empêchait le développement de cette technologie dans le passé, a été évitée grâce à une conception attentive de la buse et du système de canalisations. L IRC-CNRC a mené des essais au feu à échelle réelle en vue d évaluer la performance d un prototype de système à mousse à air comprimé (figure 3). Les essais ont démontré la performance d extinction supérieure du système tant pour les feux de combustibles liquides que les feux de caissons de bois avec une petite quantité d eau. Également, la mousse à air comprimé requiert une faible quantité de concentré de mousse pour assurer une extinction efficace, comparativement aux systèmes à buses à air aspiré. Dans les essais de l IRC-CNRC, moins de la moitié de la quantité de solution de mousse de classe A et de classe B normalement recommandée (pour les systèmes à air aspiré) a été utilisée sans compromettre l efficacité extinctrice des mousses à air comprimé [4]. L IRC-CNRC a récemment mis au point un prototype de système à mousse à air comprimé en vue de la protection de très grandes structures, comme les hangars d aviation et les transformateurs. Les expériences en échelle réelle effectuées au moyen du prototype ont montré la performance supérieure des mousses à air comprimé pour l extinction de feux de déversement simulé de carburant et de feux de transformateurs (figure 4). Des systèmes à mousse à air comprimé industrialisés sont actuellement en cours de mise au point pour une variété d applications commerciales. Générateurs de gaz À partir de la technologie développée pour les coussins de sécurité des automobiles, des générateurs de gaz ont été mis au point en vue de l extinction des incendies. Les générateurs de gaz peuvent produire une grande quantité de gaz (principalement du N 2, du CO 2 et de la vapeur d eau) par combustion d accélérateurs à poudre. Ces derniers se composent de comburants et d ingrédients combustibles, et peuvent brûler sans air ambiant. Les générateurs de gaz peuvent être très compacts et peuvent assurer une projection très rapide (en quelques millisecondes). Deux types de générateurs de gaz sont actuellement disponibles : les générateurs classiques et les générateurs hybrides. Les générateurs classiques contiennent un comburant et un initiateur électrique. Lorsque le générateur reçoit un signal d un détecteur/ contrôleur, l initiateur électrique enflamme une charge afin d amorcer un processus de combustion dans le comburant. La combustion rapide du comburant génère de grandes quantités de N 2, de CO 2 et de vapeur d eau, ce qui fait augmenter rapidement la pression interne. Un joint hermétique est rompu et les produits gazeux sont projetés dans l espace protégé en quelques millisecondes. L extinction est assurée par déplacement de l oxygène et projection de gaz (effet de soufflage). Un générateur hybride se compose d un initiateur électrique, d une chambre de propul - seur solide et d une chambre d agent extincteur (figure 5). La chaleur et la pression Initiateur Propulseur à poudre Agent extincteur liquéfié Figure 5. Générateur de gaz hybride 5

générées par la combustion du propulseur servent à chauffer et expulser l agent extincteur liquéfié. L utilisation des générateurs de gaz est limitée aux espaces inoccupés en raison de la température et de la vitesse de projection élevées qui leur sont propres. Indications à l intention des utilisateurs Chacun des systèmes d extinction dont nous avons traité ici est efficace, et présente certains avantages et désavantages selon l application envisagée. Ces avantages et désavantages sont résumés ci-dessous. Les systèmes gazeux doivent être utilisés dans des enceintes fermées. Si le local comporte de nombreuses ouvertures, un système gazeux peut ne pas être en mesure de maintenir sa concentration théorique et ne pas réussir à éteindre le feu. Également, parce que les halocarbures produisent des gaz toxiques, des mesures doivent être prises pour minimiser la production de gaz et l exposition à ces derniers. Les systèmes à brouillard d eau sont efficaces contre les feux importants dans une enceinte raisonnablement fermée, comme un local dont les portes et les fenêtres sont ouvertes. Si les flammes sont cachées ou à l abri du brouillard d eau, le système risque de ne pas réussir à éteindre le feu. L efficacité extinctrice dépend de nombreux facteurs, comme la géométrie du local, l emplacement du feu par rapport à la buse et les obstructions. Un système à brouillard d eau peut remplacer un système à extincteurs automatiques lorsqu il est important de réduire les dommages causés par l eau, dans les musées et les galeries d art par exemple. Les systèmes à mousse à air comprimé sont d une efficacité maximale contre les feux de combustibles liquides. Ils peuvent éteindre les feux dans des aires ouvertes et n exigent pas d enceintes. Ils requièrent également beaucoup moins d eau que les systèmes à eau classiques. Un système à mousse à air comprimé aura toutefois de la difficulté à éteindre les incendies tridimensionnels, comme les feux de liquides pulvérisés. Les générateurs de gaz sont efficaces dans les compartiments relativement petits et étanches. Ils sont typiquement utilisés lorsque la pose de canalisations pour des systèmes d extinction classiques est difficile ou lorsqu une extinction rapide est nécessaire. Ils peuvent seulement être utilisés dans des endroits inoccupés, comme des compartiments moteurs ou des locaux de stockage. Conclusions Depuis l élimination graduelle des halons, les efforts majeurs de développement de nouveaux systèmes avancés d extinction ont mené à plusieurs options efficaces. Ces options incluent les systèmes à halocarbure ou à gaz inerte, les systèmes à brouillard d eau, les systèmes à mousse à air comprimé et les générateurs de gaz. Tous ces systèmes éteignent les incendies lorsqu ils sont utilisés dans les conditions prescrites. Aucun ne peut toutefois constituer le meilleur système pour toutes les applications. Certains procurent une meilleure performance que d autres pour une application spécifique. Tous ont des limites et soulèvent des préoccupations qui doivent être prises en considération. Il est important de tenir compte de tous les avantages et les désavantages de chaque système d extinction par rapport aux exigences spécifiques, de manière à choisir le meilleur système pour l application considérée. Bibliographie [1] NFPA 2001 (2000), «Standard on Clean Agent Fire Extinguishing Systems», National Fire Protection Association, Quincy, MA, U.S.A., 2000 Edition, p. 1-104. [2] NFPA 750 (2010), «Standard on Water Mist Fire Protection Systems», National Fire Protection Association, Quincy, MA, U.S.A., 2010 Edition, p. 1-69. [3] Kim, A.K., Liu, Z. et Su, J.Z. (1999), «Water Mist Fire Suppression using Cycling Discharges», Proceedings of Interflam 99, Édimbourg, R.-U., p. 1349. [4] Kim, A.K. et Dlugogorski, B.Z. (1997), «Multipurpose Overhead Compressed Air Foam System and its Fire Suppression Performance», Journal of Fire Protection Engineering, Vol. 8, No 3, p. 133. M. A.K. Kim, Ph.D., est agent de recherche supérieur au sein du programme Recherche en incendie, à l Institut de recherche en construction du Conseil national de recherches du Canada. 2011 Conseil national de recherches du Canada Mars 2011 ISSN 1206-1239 «Solutions constructives» est une collection d articles techniques renfermant de l information pratique issue de récents travaux de recherche en construction. Pour obtenir de plus amples renseignements, communiquer avec l Institut de recherche en construction, Conseil national de recherches du Canada, Ottawa K1A 0R6. Téléphone : (613) 993-2607 Télécopieur : (613) 952-7673 Internet : http://www.nrc-cnrc.gc.ca/irc