ETUDE D UN THERMOELEMENT



Documents pareils
MESURE DE LA TEMPERATURE

GENERALITES SUR LA MESURE DE TEMPERATURE

Cours d électricité. Circuits électriques en courant constant. Mathieu Bardoux. 1 re année

L ÉLECTROCUTION Intensité Durée Perception des effets 0,5 à 1 ma. Seuil de perception suivant l'état de la peau 8 ma

Circuits RL et RC. Chapitre Inductance

LYCEE TECHNIQUE PIERRE EMILE MARTIN BOURGES ETUDE D UN TRAITEMENT DE SURFACE

Chapitre 11 Bilans thermiques

CHAPITRE IX. Modèle de Thévenin & modèle de Norton. Les exercices EXERCICE N 1 R 1 R 2

ELEC2753 Electrotechnique examen du 11/06/2012

CORRECTION TP Multimètres - Mesures de résistances - I. Mesure directe de résistors avec ohmmètre - comparaison de deux instruments de mesure

Eléments constitutifs et synthèse des convertisseurs statiques. Convertisseur statique CVS. K à séquences convenables. Source d'entrée S1

Chapitre 7. Circuits Magnétiques et Inductance. 7.1 Introduction Production d un champ magnétique

1 ère partie : tous CAP sauf hôtellerie et alimentation CHIMIE ETRE CAPABLE DE. PROGRAMME - Atomes : structure, étude de quelques exemples.

Convertisseurs statiques d'énergie électrique

Electricité Générale

Les puissances La notion de puissance La puissance c est l énergie pendant une seconde CHAPITRE

kst ag Module thermoactif klima system technologie klima system technologie

La température du filament mesurée et mémorisée par ce thermomètre Infra-Rouge(IR) est de 285 C. EST-CE POSSIBLE?

Série 77 - Relais statiques modulaires 5A. Caractéristiques. Relais temporisés et relais de contrôle

4.14 Influence de la température sur les résistances

2.0. Ballon de stockage : Marque : Modèle : Capacité : L. Lien vers la documentation technique :

LA PUISSANCE DES MOTEURS. Avez-vous déjà feuilleté le catalogue d un grand constructeur automobile?

Influence de la géométrie du conducteur sur la température dans un poste sous enveloppe métallique

7200S FRA. Contacteur Statique. Manuel Utilisateur. Contrôle 2 phases

Chapitre 02. La lumière des étoiles. Exercices :

Les transistors à effet de champ.

CHAÎNES ÉNERGÉTIQUES I CHAÎNES ÉNERGÉTIQUES. II PUISSANCE ET ÉNERGIE

Introduction à l électronique de puissance Synthèse des convertisseurs statiques. Lycée Richelieu TSI 1 Année scolaire Sébastien GERGADIER

Chapitre 7: Énergie et puissance électrique. Lequel de vous deux est le plus puissant? L'énergie dépensée par les deux est-elle différente?

CARACTERISTIQUE D UNE DIODE ET POINT DE FONCTIONNEMENT

Thermodynamique (Échange thermique)

ALFÉA HYBRID DUO FIOUL BAS NOX

1 000 W ; W ; W ; W. La chambre que je dois équiper a pour dimensions : longueur : 6 m largeur : 4 m hauteur : 2,50 m.

SOMMAIRE. B5.1 Première approche

Semi-conducteurs. 1 Montage expérimental. Expérience n 29

Electricité : caractéristiques et point de fonctionnement d un circuit

Cours d électricité. Introduction. Mathieu Bardoux. 1 re année. IUT Saint-Omer / Dunkerque Département Génie Thermique et Énergie

Sciences physiques Stage n

Premier principe de la thermodynamique - conservation de l énergie

STI2D : Enseignements Technologiques Transversaux

Le triac en commutation : Commande des relais statiques : Princ ipe électronique

J TB/TW Limiteur de température, contrôleur de température avec afficheur LCD, montage sur rail oméga 35 mm

Capacité Métal-Isolant-Semiconducteur (MIS)

Économie d énergie dans les centrales frigorifiques : La haute pression flottante

Chapitre 1 Régime transitoire dans les systèmes physiques

Production d eau chaude sanitaire thermodynamique, que dois-je savoir?

Correction ex feuille Etoiles-Spectres.

Premier principe : bilans d énergie

Le transistor bipolaire

CHAPITRE IX : Les appareils de mesures électriques

Mesures et incertitudes

Module d Electricité. 2 ème partie : Electrostatique. Fabrice Sincère (version 3.0.1)

Charges électriques - Courant électrique

Module 3 : L électricité

Electrotechnique. Fabrice Sincère ; version

Mesure de la dépense énergétique

Chapitre 6 La lumière des étoiles Physique

Sciences et Technologies de l Industrie et du Développement Durable ENERGIE THERMIQUE ENERGIE THERMIQUE

Application à l astrophysique ACTIVITE

Comprendre l Univers grâce aux messages de la lumière

Transmission d informations sur le réseau électrique

CH 11: PUIssance et Énergie électrique

Précision d un résultat et calculs d incertitudes

Relais statiques SOLITRON, 1 ou 2 pôles Avec dissipateur intégré

U-31 CHIMIE-PHYSIQUE INDUSTRIELLES

M HAMED EL GADDAB & MONGI SLIM

Cours 9. Régimes du transistor MOS

MESURE DE LA PUISSANCE

Les résistances de point neutre

SUIVI CINETIQUE PAR SPECTROPHOTOMETRIE (CORRECTION)

Mesures calorimétriques

Gestion et entretien des Installations Electriques BT

Exercice 1. Exercice n 1 : Déséquilibre mécanique

ACCREDITATION CERTIFICATE. N rév. 1. Satisfait aux exigences de la norme NF EN ISO/CEI : 2005 Fulfils the requirements of the standard

Distribué par Lamoot Dari GTS-L 5 / 10 / 15 DONNEES TECHNIQUES

Aide à l'application Preuve du besoin de réfrigération et/ou d humidification de l air Edition mai 2003

Fiche explicative pour la saisie des équipements du génie climatique dans la RT2012

RELAIS STATIQUE. Tension commutée

TD1 Signaux, énergie et puissance, signaux aléatoires

Méthodes de Caractérisation des Matériaux. Cours, annales

Keysight Technologies Identification rapide des caractéristiques thermiques d un prototype. Inspection thermographique des bâtiments.

TD 9 Problème à deux corps

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation )

TP : Suivi d'une réaction par spectrophotométrie

L énergie sous toutes ses formes : définitions

Physique, chapitre 8 : La tension alternative

OFPPT ROYAUME DU MAROC RESUME THEORIQUE & GUIDE DE TRAVAUX PRATIQUES ANALYSE DE CIRCUITS A COURANT CONTINU MODULE N : 5 ELECTROTECHNIQUE SECTEUR :

NOTICE DOUBLE DIPLÔME

Présentation Module logique Zelio Logic 0 Interface de communication

Les Mesures Électriques

TP 7 : oscillateur de torsion

Pose avec volet roulant

Fonctions de deux variables. Mai 2011

Installateur chauffage-sanitaire

La charge électrique C6. La charge électrique

Réalisation d un dispositif de mesure de la conductibilité thermique des solides à basses températures

COMMANDER la puissance par MODULATION COMMUNIQUER

LES CARACTERISTIQUES DES SUPPORTS DE TRANSMISSION

VI Basse consommation inverter

LES APPAREILS A DEVIATION EN COURANT CONTINU ( LES APPREILS MAGNETOELECTRIQUES)

Transcription:

TP - L3 Physique - Plate-forme TTE - C.E.S.I.R.E. - Université Joseph Fourier - Grenoble ETUDE D UN THERMOELEMENT BUT DU T.P. Mettre en évidence et comprendre les effets thermoélectriques. On cherchera en particulier à souligner les applications courantes en physique expérimentale. Les mesures sur ce TP sont particulièrement longues car il faut, à chaque point, attendre la mise en équilibre thermique. L indication ( doc) signifie «Allez consultez le document annexe : topo sur le transfert de chaleur et/ou documents techniques sur la table du TP». 1. LES EFFETS THERMOÉLECTRIQUES Les phénomènes de transport de chaleur et d électricité dans les conducteurs donnent lieu à différentes manifestations connues sous le nom d effets thermoélectriques. Ces effets, que l on distingue pour la commodité de l étude, n ont en fait pas d existence séparée et sont la résultante de deux phénomènes de transport (chaleur et électricité) se produisant simultanément. L effet Joule (effet irréversible) n est pas considéré comme un effet thermoélectrique. Il est néanmoins présent dans tout conducteur résistif parcouru par un courant, indépendamment des effets thermoélectriques pouvant se manifester. Trois effets thermoélectriques ont été établis expérimentalement : l effet Seebeck (1821), l effet Peltier (1834) et l effet Thomson (1847). Nous allons rappeler les définitions ainsi que les relations établies par Thomson entre ces différents effets. 1.1. Effet Seebeck. Considérons une chaîne de conducteurs M 1 M 2 M 1, constituée de deux matériaux différents. Soit un conducteur (par exemple M 2 ) soumis à un gradient de tempérture. Les électrons du côté chaud ont une vitesse instantanée statistiquement plus grande et un libre parcours moyen plus faible que du côé froid. Ces deux effets induisent une répartition spatiale non homogène stationnaire des électrons, et donc une différence de potentiel (ddp) aux bornes du matériau. La ddp peut aller dans le sens du gradient de température ou dans le sens inverse, car les deux effets sont antagonistes et leur prépondérance dépend du matériau étudié. Au premier ordre, on peut modéliser cet effet par une relation linéaire entre les différences de température et de potentiel aux bornes du matériau, avec un coefficient de proportionnalité a, dit coefficient de Seebeck ou pouvoir thermoélectrique absolu du matériau. En pratique, on peut mesurer cet effet que si on relie le matériau aux instruments de mesures électrique par des conducteurs de nature différente, M 1 dans le cas de la figure (sinon la ddp à mesurer serait annulée par la ddp inverse due au gradient de température opposé!!). On va donc en pratique manipuler des coefficients de Seebeck à une jonction entre deux matériaux, qui ne sont rien d autre que les différences des coefficients Seebeck des deux matériaux en contact.. D un point de vue plus formel, cet effet est caractérisé par le coefficient de Seebeck que l on définit comme le rapport de la( tension à l écart de température lorsque ce dernier est infiniment petit : a 12 (T ) = lim V ) T 0 T L unité pratique est le µv K 1 ; par exemple, pour une jonction Cuivre/Constantan a 12 (273K) = 39µV K 1. 1

Remarque : ce terme n apparaît pas directement dans l établissement des équations sur les puissances échangées, en revanche il ne faut pas l oublier dans la caractéristique courant-tension. A l équilibre on posera que la contribution Seebeck s écrit : U Seebeck = A T où A est le coefficient Seebeck total. 1.2. Effet Peltier. Si l on fait passer un courant électrique à travers une jonction formée de deux conducteurs différents à la même température, on observe à l interface une absorption ou un dégagement de chaleur par unité de temps P P proportionnels à l intensité qui traverse la jonction : P P = π 12 (T )I Le coefficient de proportionnalité π 12 (T ) est le coefficient de Peltier de la jonction. Il dépend de la nature des matériaux et de la température de la jonction. L unité pratique est le mv ; à 273 K, on a par exemple pour une jonction Bi/Cu : π 12 = 21mV et pour une jonction Fe/Cu : π 12 = 3mV. Lorsque l on inverse le sens du courant, l effet thermique (absorption ou dégagement de chaleur) est lui-même inversé. L effet Peltier est un effet réversible au sens thermodynamique du terme. Le signe du coefficient de Peltier Π 12, entre deux matériaux M 1 et M 2, est pris positif lorsqu un courant électrique, circulant dans le sens de M 1 vers M 2, entraîne une absorption de chaleur à la jonction. On notera l analogie avec un changement de phase. Le passage des molécules d alcool (par exemple) de l état liquide à l état gazeux (évaporation) s accompagne d une absorption de chaleur qui refroidit le doigt sur lequel l alcool est déposé. L effet est inverse dans le cas de la condensation 1.3. Effet Thomson. Un conducteur unique, soumis à un gradient de température et parcouru par un courant électrique, échange de la chaleur (absorption ou dégagement) avec le milieu extérieur. Si T est la différence de température entre deux points distants d une unité de longueur, la puissance échangée P T par unité de longueur, lorsque le conducteur est parcouru par un courant I, est : P T = τ T.I τ est le coefficient de Thomson. Il est cette fois caractéristique du seul conducteur considéré. L effet Thomson est réversible comme l effet Peltier : une inversion de courant par rapport au sens du gradient de température inverse le sens des effets thermiques. Le signe du coefficient de Thomson est pris positif si le conducteur absorbe de la chaleur lorsque les gradients de température et de tension sont dans le même sens (le courant circule de l extrémité chaude vers l extrémité froide). L unité pratique est le µv K 1 ; par exemple pour le Cuivre, on a τ = 2.2µV K 1 et pour le Fer τ = 8.4µV K 1. 1.4. Relations thermodynamiques de Thomson. Les trois coefficients (de Seebeck, de Peltier et de Thomson) dépendent de la température. Il est possible d établir entre eux un certain nombre de relations. Nous nous contenterons de les rappeler sans démonstration. Première relation de Thomson a 12 (T ) = π 12(T ) T Deuxième relation de Thomson da 12(T ) dt = τ 1 τ 2 T La deuxième relation de Thomson peut s écrire sous la forme : a 12 (T ) = T τ 1 0 T dt T τ 2 0 T dt Dès lors, le coefficient d effet Seebeck apparaît comme la différence de deux quantités S(T ) ne dépendant chacune que de la nature d un seul conducteur. S(T ) = T τ 0 T dt est le pouvoir thermoélectrique absolu du matériau et l on a la relation 2

a 12 (T ) = S 1 (T ) S 2 (T ) 2. APPLICATIONS DES EFFETS THERMOÉLECTRIQUES Très longtemps, l application unique a été la mesure de la température par thermocouples (utilisation de l effet Seebeck). Les applications pratiques utilisant les autres effets sont : - les générateurs thermoélectriques (conversion directe de la chaleur en électricité). - la réfrigération ou le chauffage thermoélectrique. Encore faut-il que les performances des jonctions utilisées permettent de telles réalisations avec des rendements raisonnables. Ces applications n ont pu être envisagées qu avec le développement des semiconducteurs qui ont des coefficients thermoélectriques beaucoup plus importants que les conducteurs métalliques. Les couples thermoélectriques formés de semiconducteurs permettent d atteindre des valeurs de rendements de conversion énergétique plus élevées. Par contre, ils n ont pas la stabilité des couples métalliques ni la même aptitude à être reproduits avec des caractéristiques très voisines. On utilise donc les thermocouples métalliques pour la mesure des températures et les jonctions à base de semiconducteurs pour la production directe d énergie électrique et pour la réfrigération. 2.1. La mesure des températures (thermocouples métalliques). Considérons une chaîne de conducteurs M 1 M 2 M 1 dont les deux extrémités sont à la même température T et les jonctions respectivement à T 1 et T 2. La propriété importante est que la tension aux bornes de cette chaîne ne dépend que des températures T 1 et T 2 des jonctions M 1 M 2. En particulier, elle ne dépend ni de T ni de la répartition des températures le long des conducteurs. Si l on maintient l une des jonctions à une température fixe choisie comme référence, la tension mesurée ne dépend que de la température de l autre jonction : nous avons fabriqué un thermomètre. Les deux lois suivantes s appliquent à la mesure des températures par thermocouples : - Loi des températures intermédiaires La tension mesurée lorsque les jonctions sont aux températures T 0 et T 2 est égale à la somme des tensions mesurées lorsque le thermocouple "travaille" respectivement entre T 0 et T 1 et entre T 1 et T 2. En d autres termes : E(T 0, T 2 ) = E(T 0, T 1 ) + E(T 1, T 2 ) La conséquence pratique d une telle loi est qu elle nous permet de calculer la température T 2 de la jonction chaude connaissant : - la température T 1 de la soudure froide - la f.e.m. E(T 1, T 2 ) - la table d étalonnage du thermocouple établie à partir d une température de référence T 0 qui est en général 0 C. - Loi des métaux intermédiaires L insertion dans n importe quelle partie du circuit initial d un troisième métal homogène ne modifie pas la tension à condition que les raccordements soient à la même température. Ceci entraîne que les deux dispositions suivantes sont équivalentes ; elles sont effectivement adoptées pour la mesure des températures. L intérêt des thermocouples est de fournir des thermomètres robustes, peu encombrants et relativement bon marché. Différents types de thermocouples sont utilisés couramment tant au laboratoire que dans l industrie : 3

Type Constituants Gamme Sensibilité à 0 C K Chromel/Alumel 0 à 1100 C 39µV// C T Cuivre/Constantan -185 à 300 C 39µV// C J Fer/Constantan 20 à 700 C 50µV// C S Platine rhodié 10% Platine 0 à 1600 C 5µV// C W Tungstène/Rhénium 5%/26% 0 à 2300 C 10µV// C 2.2. La réfrigération par effet Peltier (Thermocouples semiconducteurs, Thermoéléments). Nous avons vu qu une chaîne de conducteurs M 1 M 2 M 1 parcourue par un courant est le siège d un dégagement de chaleur à l une des jonctions et d une absorption de chaleur à l autre. Pour fabriquer l analogue d une machine thermique, il suffit de mettre chacune des jonctions en contact avec une source de chaleur et de faire circuler du courant dans la chaîne de conducteurs : il y aura alors absorption de chaleur à une source ("source froide") et dégagement à l autre ("source chaude"), l énergie mécanique que l on fournit à une machine thermique étant ici remplacée par l énergie électrique fournie par le générateur. Suivant la source considérée, on a un fonctionnement en "pompe à chaleur" ou en "machine frigorifique". C est ce dernier mode de fonctionnement que nous allons étudier avec le Thermoélément. Pour augmenter l efficacité du système, on utilise des matériaux semiconducteurs et l on dispose plusieurs thermocouples en série. Les semiconducteurs constituant une jonction sont l un dopé n (matériau M n ) et l autre dopé p (matériau M P ). En pratique, les semiconducteurs n et p ne sont pas directement en contact l un avec l autre, la jonction entre les matériaux M n et M P étant assurée par un conducteur en cuivre. Le conducteur en cuivre est lui-même en contact avec l une des sources par l intermédiaire d une plaque en matériau relativement bon conducteur thermique et bon isolant électrique (céramique). Le but du dopage est d obtenir des matériaux ayant des pouvoirs thermoélectriques absolus de signe différent et par suite des couples M n Cu et M P Cu ayant des signes opposés pour les coefficients de Seebeck et de Peltier. La disposition adoptée est la suivante : Remarquons à nouveau l analogie avec un changement de phase. Dans le semi-conducteur, qu il soit p ou n, les porteurs, dilués, constituent un gaz avec une grande entropie par porteur. Sur le schéma, on voit qu ils s évaporent d une face avec absorption de chaleur, pour se recondenser sur l autre face avec dégagement de chaleur. 3. ETUDE D UN THERMOÉLÉMENT (TE) 3.1. Fonctionnement en machine frigorifique (rappels). Suivant le deuxième principe, une machine thermique nécessite deux sources de chaleur. Elle sera frigorifique si elle prélève une quantité de chaleur à la source froide et en restitue à la source chaude tout en consommant du travail. Remarquons que les appellations "source froide" et "source chaude" peuvent prêter à confusion, puisque, dans le montage du TP, la "source froide", suivant les conditions de fonctionnement, peut se trouver à une température plus élevée que celle la "source chaude". En fonctionnement en machine frigorifique, on isole le mieux possible la source froide. La température de cette source va diminuer jusqu à atteindre une valeur limite lorsque l énergie enlevée par la machine sera égale aux pertes thermiques sur la source froide. Les quantités intéressantes dans ce type de fonctionnement sont d une part l énergie consommée et d autre part la quantité de chaleur prélevée à la source froide. Pour tester les performances d une machine frigorifique, on dissipe une certaine quantité d énergie dans la source froide ( on dit alors que l on applique une certaine charge thermique à la machine ) et l on mesure par exemple l énergie consommée pour maintenir la source froide à une certaine température. 4

3.2. Description du montage. Le système que vous allez étudier se trouve enfermé dans un caisson isolant, et par conséquent est invisible... Suivez donc soigneusement la description qui suit. Le thermoélément étudié provient du commerce( doc). La face inférieure est en contact thermique avec un bloc d alliage d aluminium dans lequel est noyée une résistance de chauffage qui permettra d appliquer une charge thermique P variable. Elle constitue donc la source froide. L étude de l élément Peltier consistera donc à quantifier les processus mis en jeu pour évacuer cette charge, imposée par nous. La face supérieure est en contact thermique avec un échangeur à eau destiné à évacuer l énergie libérée. Elle constitue donc la source chaude. Deux thermomètres à résistance de platine permettent de mesurer les températures T sup = T C et T inf = T f des faces supérieure et inférieure. Deux thermocouples, montés en différentiel, permettent de mesurer la différence de température de l eau entre l entrée T e et la sortie T S de l échangeur. On mesure également le débit d eau avec un débitmètre et la puissance électrique fournie à la résistance de chauffage avec un wattmètre. Si l on respecte la polarité de l alimentation (+ de l alimentation au + du TE), lorsque le TE est parcouru par un courant I sous la tension U, il y a, dans le montage à votre disposition, absorption d énergie à la face inférieure et dégagement à la face supérieure. 3.3. Etude théorique - Bilan thermique. Etude à réaliser impérativement avant la séance même si vous n arrivez pas au bon résultat 3.3.1. Bilans thermiques ( doc au besoin). Etablir le bilan thermique au niveau des faces supérieure et inférieure du TE. Il suffit pour cela de considérer les diverses puissances absorbées ou dégagées au niveau d une face (ou source) et d écrire, qu une fois à l équilibre thermique, la somme de ces puissances est nulle (sans oublier la convention de signe). Pour la compréhension des divers phénomènes, on pourra raisonner au niveau d une chaîne (ou pont) M n Cu M P qui est l élément constitutif de base du TE. Chaque pont est composé d un bloc de matériau M n, d une barette de cuivre et d un bloc de matériau M p. Cependant l écriture des bilans thermiques se fera au niveau global du TE. Pour écrire ces bilans thermiques, on tiendra compte de tous les phénomènes mis en jeu lorsqu un courant parcourt le TE, et qui sont : Charge thermique P appliquée à la face inférieure. Effet Peltier. Effet Thomson. Effet Joule dans les matériaux constituant le TE. (il s agit d un effet global on prendra comme contribution à l effet Joule 1 2 RI2 par face). Conduction entre les deux faces du TE. Convection entre les deux faces du TE. Rayonnement entre les deux faces du TE. Puissance P S évacuée dans l eau à la face supérieure. 5

Pertes vers l extérieur. Pour simplifier l écriture de ces bilans, on supposera le coefficient d effet Seebeck A est indépendant de la température dans la zone de température étudiée, ce qui conduit à négliger leffet Thomson. On notera - R la résistance électrique totale - A le coefficient de Seebeck total - Π le coefficient de Peltier pour la face supérieure - Π le coefficient de Peltier pour la face inférieure - Λ la conductance thermique totale du TE Certains de ces phénomènes sont soit sans effet global, soit à négliger. Essayer de justifier vos réponses. 3.3.2. Tension aux bornes du TE. Etablir la relation donnant la tension U aux bornes du TE lorsqu il est parcouru par un courant I. Ne pas oublier que la tension aux bornes du TE est la somme de deux termes : l un dû à l effet Seebeck lorsqu il y a une différence de température entre les faces, et l autre dû à la loi d Ohm. 3.3.3. Relation entre coefficients globaux et propriétés des matériaux. Etablir les relations qui lient la résistance totale R à la résistivité (supposée identique) des matériaux M n et M p (résistances électriques en série) la conductance thermique globale Λ à la conductivité thermique λ (supposée identique) des matériaux M n et M p (résistances thermiques en parallèle) Faire vérifier vos résultats par l enseignant avant d utiliser ces relations. Elles vous serviront tout au long du TP. 4. MANIPULATION - EXPLOITATION DES RÉSULTATS Attention : la température de la face supérieure ne doit pas dépasser 50 C. En utilisant les relations établies précédemment et pour des expériences judicieusement choisies, nous allons déterminer expérimentalement chacune des caractéristiques du thermoélément. Remarque : Les coefficients thermoélectriques dépendent de la température et des matériaux utilisés. Les quantités mesurées ne seront donc que des valeurs moyennes à une certaine température ; cependant la connaissance de ces valeurs moyennes est suffisante pour l utilisateur d un thermoélément. Avant tout branchement, ouvrir la circulation d eau (débit entre 6 et 8 l/h). De même, en fin de manipulation, la circulation d eau sera fermée après arrêt de tous les appareils. Faire vérifier vos montages par l enseignant avant toute mise sous tension! Réaliser les montages suivants. Côté thermoélément Côté charge thermique : le schéma du branchement du wattmètre est volontairement schématique. Réfléchissez à ce que mesure un wattmètre et (ou) consulter attentivement la notice du wattmètre avant le branchement. On vérifiera soigneusement le bon "zéro" du wattmètre avant toute mesure. 6

4.1. Mesures à courant nul. Regardez les équations et déterminer quelles quantités peuvent être mesurées correctement. Effectuer les mesures avec P = 2 ; 4 ; 6 et 8 W. Pour chaque valeur de P, relevez les quantités qui vous semble pertinentes (faire un tableau). 4.1.1. Conductivité thermique λ. Tracer le graphe adéquat et en déduire la conductance Λ puis la conductivité thermique λ du matériau constituant le TE. Précision. 4.1.2. Coefficient de Seebeck A. Tracer le graphe adéquat et en déduire la valeur du coefficient de Seebeck A. Ces points de mesure doivent-ils être relevés à l équilibre? Précision sur A. 4.1.3. Coefficient de Peltier Π. Déduire de A une valeur approximative du coefficient de Peltier Π à 20 C. Incertitude. 4.2. Mesures à puissance constante. 4.2.1. Relation Ps = f(i). Pour une charge thermique de 8 W, vérifier expérimentalement la relation P s = f(i) établie précédemment. Pour cela, on fera varier I de 0 à Imax ( doc) par pas de 1 Ampère, en attendant la stabilisation des températures à chaque point (la température de l une des faces (T c ou T f ) peut être enregistrée sur une table traçante, ce qui vous permet de savoir quand l équilibre est atteint). Pour chaque point de mesure relevez les quantitées qui vous semble pertinentes (présenter les mesures dans un tableau clair!). Commentaires sur la courbe P s = f(i) obtenue. 4.2.2. Effets thermiques. Sur un autre graphique, et à partir des mesures précédentes, tracer les caractéristiques T f = f(i), T c = f(i) et T c T f = f(i) (prendre les mêmes échelles pour les 3 courbes). Justifier l allure des courbes obtenues. 4.3. Mesures à T = 0. Regardez les équations et déterminer quelles quantités peuvent être mesurées correctement. Effectuer la mesure pour P = 4 ; 8 ; 12 et 16 W. Pour chaque valeur de P, on relèvera U, I et T f = T c (faire un tableau). 4.3.1. Résistance R et résistivité ρ. Tracer le graphe adéquat et en déduire la résistance R puis la résistivité ρ. Précision. Quel est, au vu de vos résultats, le type de matériau constituant le TE ( doc)? N.B. Il peut être utile de refaire proprement le point de mesure à P = 8 W. 4.3.2. Coefficient de Peltier Π. Proposer un graphe permettant de déterminer Π à laide des quantités mesurées? Effectuer ce tracé et en déduire une mesure de Π. Précision. 4.4. Conclusion. Vérifier, pour un ou deux points, le bilan thermique théorique à l aide de vos valeurs de R, Λ, A et Π. Quels sont les avantages ou inconvénients que vous voyez à l utilisation d un TE pour refroidir un objet? 7