Mirifiques & miribolants moirés



Documents pareils
Fonctions de deux variables. Mai 2011

Chapitre 0 Introduction à la cinématique

TD: Cadran solaire. 1 Position du problème

Cercle trigonométrique et mesures d angles

DURÉE DU JOUR EN FONCTION DE LA DATE ET DE LA LATITUDE

Fonctions de plusieurs variables

Chapitre 4: Dérivée d'une fonction et règles de calcul

point On obtient ainsi le ou les points d inter- entre deux objets».

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

Etude de fonctions: procédure et exemple

TD1 PROPAGATION DANS UN MILIEU PRESENTANT UN GRADIENT D'INDICE

1 Définition. 2 Systèmes matériels et solides. 3 Les actions mécaniques. Le système matériel : Il peut être un ensemble.un sous-ensemble..

Vision industrielle et télédétection - Détection d ellipses. Guillaume Martinez 17 décembre 2007

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)

Oscillations libres des systèmes à deux degrés de liberté

Jean Dubuffet AUTOPORTRAIT II

Séquence 2. Repérage dans le plan Équations de droites. Sommaire

Mesure d angles et trigonométrie

Voyez la réponse à cette question dans ce chapitre.

Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé.

G.P. DNS02 Septembre Réfraction...1 I.Préliminaires...1 II.Première partie...1 III.Deuxième partie...3. Réfraction

LA PHYSIQUE DES MATERIAUX. Chapitre 1 LES RESEAUX DIRECT ET RECIPROQUE

PROGRAMME D HABILETÉS EN FAUTEUIL ROULANT (WSP-F)

6 ème. Rallye mathématique de la Sarthe 2013/ ère épreuve de qualification : Problèmes Jeudi 21 novembre 2013

EXERCICE 2 : SUIVI CINETIQUE D UNE TRANSFORMATION PAR SPECTROPHOTOMETRIE (6 points)

F411 - Courbes Paramétrées, Polaires

COMPTE-RENDU «MATHS EN JEANS» LYCEE OZENNE Groupe 1 : Comment faire une carte juste de la Terre?

Deux disques dans un carré

Adobe Illustrator Logiciel de dessin vectoriel et de Cartographie Assistée par Ordinateur

OLYMPIADES ACADEMIQUES DE MATHEMATIQUES. 15 mars 2006 CLASSE DE PREMIERE ES, GMF

Lecture graphique. Table des matières

Calcul intégral élémentaire en plusieurs variables

Comparer des surfaces suivant leur aire en utilisant leurs propriétés géométriques Découverte et manipulation

Fluorescent ou phosphorescent?

Comment tracer une droite représentative d'une fonction et méthode de calcul de l'équation d'une droite.

Fonctions linéaires et affines. 1 Fonctions linéaires. 1.1 Vocabulaire. 1.2 Représentation graphique. 3eme

Mise en scène d un modèle dans l espace 3D

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)

SINE QUA NON. Découverte et Prise en main du logiciel Utilisation de bases

VISITE DE L EXPOSITION AU THÉÂTRE DE PRIVAS :

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation )

Nom : Groupe : Date : 1. Quels sont les deux types de dessins les plus utilisés en technologie?

DOCM Solutions officielles = n 2 10.

Tp_chemins..doc. Dans la barre "arche 2" couleur claire 1/5 21/01/13

La perspective conique

Chapitre 1 Cinématique du point matériel

VOS PREMIERS PAS AVEC TRACENPOCHE

Leçon N 4 : Statistiques à deux variables

Université Paris-Dauphine DUMI2E 1ère année, Applications

DÉCOUVERTE DE CAPTURE ONE

Je découvre le diagramme de Venn

Supports. Images numériques. notions de base [1]

Notion de fonction. Résolution graphique. Fonction affine.

Savoir lire une carte, se situer et s orienter en randonnée

LPP SAINT JOSEPH BELFORT MODE OPERATOIRE ACTIVINSPIRE. Bonne utilisation à toutes et tous! UTILISATION DES TBI LE LOGICIEL ACTIVINSPIRE

Découverte du logiciel ordinateur TI-n spire / TI-n spire CAS

Nombre dérivé et tangente

Opérations de base sur ImageJ

La géométrie du triangle III IV - V Cercles remarquables - Lieux géométriques - Relations métriques

Cours Fonctions de deux variables

Voix Off: " Le noir le noir est à l'origine " Voix Off: " de toutes les formes "

Fonctions de plusieurs variables

Introduction : Cadkey

Ch.G3 : Distances et tangentes

Annexe commune aux séries ES, L et S : boîtes et quantiles

Activités numériques [13 Points]

Formats d images. 1 Introduction

LES ESCALIERS. Les mots de l escalier

Cours d Analyse. Fonctions de plusieurs variables

La fonction exponentielle

Les images numériques. 1. Le dessin vectoriel

Les Angles. I) Angles complémentaires, angles supplémentaires. 1) Angles complémentaires. 2 Angles supplémentaires. a) Définition.

TOUT CE QU IL FAUT SAVOIR POUR LE BREVET

Problèmes sur le chapitre 5

IV- Equations, inéquations dans R, Systèmes d équations

Comprendre l Univers grâce aux messages de la lumière

TP 7 : oscillateur de torsion

Chapitre 02. La lumière des étoiles. Exercices :

4. Exercices et corrigés

2 e partie de la composante majeure (8 points) Les questions prennent appui sur six documents A, B, C, D, E, F (voir pages suivantes).

Problèmes de dénombrement.

Chafa Azzedine - Faculté de Physique U.S.T.H.B 1

SUIVI CINETIQUE PAR SPECTROPHOTOMETRIE (CORRECTION)

OM 1 Outils mathématiques : fonction de plusieurs variables

a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe le nombre ax + b

ACADÉMIE D ORLÉANS-TOURS NOTE D INFORMATION n 21

LES LOIS PHYSIQUES APPLIQUÉES AUX DEUX-ROUES : 1. LA FORCE DE GUIDAGE

Dérivation CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES

2013 Pearson France Adobe Illustrator CC Adobe Press

Championnat de France de Grilles Logiques Finale 7 juin Livret d'instructions

Rallye Mathématiques de liaison 3 ème /2 nde et 3 ème /2 nde pro Epreuve finale Jeudi 21 mai 2015 Durée : 1h45

Mathématiques et petites voitures


PEUT-ON «VOIR» DANS L ESPACE À N DIMENSIONS?

Chapitre 2 : Caractéristiques du mouvement d un solide

Exercices Alternatifs. Une fonction continue mais dérivable nulle part

C est un mouvement plan dont la trajectoire est un cercle ou une portion de cercle. Le module du vecteur position OM est constant et il est égal au

Angles orientés et fonctions circulaires ( En première S )

Exercices Alternatifs. Une fonction continue mais dérivable nulle part

Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 %

Transcription:

Mirifiques & miribolants moirés En cherchant le mot MOIRÉ dans un dictionnaire, on trouve : l aspect d un tissu sur lequel, comme la soie, des ombres très mobiles se dessinent sur la trame. Et, en effet, en regardant les plis ou l ourlet d un rideau de nylon, on voit des familles de courbes qui évoluent en suivant les mouvements du rideau. Une haie formée de poteaux, éclairés par le soleil, a une ombre elle aussi formée de segments de lignes parallèles entre elles. Une nouvelle famille de lignes courbes apparaît lorsque la haie se superpose à son ombre (voir sur la figure ci-contre, les lignes courbes qui apparaissent). On peut voir des dessins de moiré sur des corbeilles à papier grillagées en les regardant dans un certain sens, ou en observant une forêt à travers les cordes d un hamac, ou un zèbre à travers les grilles d un zoo Des dessins de moiré sont Le paysage, ineffablement assoupi, avait cette moire magnifique que font sur les prairies et sur les rivières les déplacements de l ombre et de la clarté V. HUGO, Quatre-vingt-treize Devant nous, la Méditerranée n avait pas un frisson sur toute sa surface qu une grande lune calme moirait. G. de Maupassant, Contes de la bécasse aussi susceptibles d apparaître chaque fois qu on superpose une structure répétitive sur une autre structure répétitive. ACL - les éditions du Kangourou 1

À cause de la définition des images ligne à ligne, toutes sortes de moirés peuvent être observés à la télévision ; mais on essaie de les éviter. C est pourquoi, les présentateurs sont instamment priés de ne pas porter des vêtements finement rayés. Le moindre mouvement se transformerait en un gigantesque moiré formé par les rayures et les lignes de l écran. Définition du moiré Que peut-il se passer lorsque deux familles de courbes sont introduites dans le même espace? Il y a deux solutions. 1. Soit chacune d entre elles garde sa personnalité. L observateur ne peut apercevoir autre chose que deux familles pouvant avoir quelques points communs mais chacune est facilement reconnaissable. 2. Soit des liaisons se nouent entre les éléments de chaque famille. Ces relations transversales prennent finalement le pas sur les parentés originelles. Ainsi apparaît alors une nouvelle famille née de l intime combinaison des deux familles précédentes. On peut dire alors qu il y a un phénomène de moiré : la superposition de deux familles de courbes en fait apparaître visuellement une troisième. (1) (2) (3) Sur la figure ci-dessus, on voit deux familles de droites perpendiculaires (1). En faisant tourner une famille de droites, on voit d abord l autre famille clairement et séparément (2). Mais lorsque leurs directions deviennent voisines (ici presque verticales), des lignes transversales apparaissent (3) : on voit des lignes horizontales (qui sont formées par l intersection des droites des deux familles), alternativement blanches et noires. Ne portez pas de cravate rayée si vous devez passer à la télévision cravate rayée cravate rayée et télévisée 2 ACL - les éditions du Kangourou

Mathématisation du phénomène Tentons une modélisation du phénomène précédent. Partant d un simple quadrillage, faisons s incliner la famille d abord horizontale. Lorsque cette deuxième famille se verticalise, le quadrillage devient assez oblique. De sorte que les points A et B deviennent plus proches que les points U et A ou A et V. Et une nouvelle ligne transversale reliant A et B apparaît. Et l œil reliera d autant plus volontiers le point A au point B que les lignes des familles initiales ont une certaine épaisseur. C est exactement ce qui A U V B s est passé dans le premier exemple donné. Finalement, pour qu un effet de moiré apparaisse nettement, l expérience visuelle montre que les conditions suivantes doivent être satisfaites : les épaisseurs des lignes blanches et noires de chaque famille doivent être du même ordre. les épaisseurs des lignes des deux familles doivent être du même ordre. les angles entre les lignes des deux familles ne doivent pas être trop grands (si ces lignes ne sont pas des droites, il s agit des angles formés par les tangentes aux points d intersection). Premier exemple de mise en équation Choisissons un paramétrage des droites des deux familles quai équivale à un numérotage, de façon que deux droites consécutives aient des numéros consécutifs (figure ci-contre). Nous constatons que la droite blanche notée A passe par les points d intersection des droites de numéros respectifs p et q tels que : q p 1. La droite notée B passe par les points d intersection des droites de numéros p et q tels que q p 0. En fait, entre chaque ligne blanche apparaît une ligne noire, le tout formant finalement une nouvelle famille de lignes, dite de moiré. 1 23 p 4 56 7 89 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Nous voyons donc que pour étudier les lignes blanches de moiré, on est amené à étudier les points A B C 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 d intersection des courbes de numéros respectifs p et q tels que q p n, où n est un entier donné. q ACL - les éditions du Kangourou 3

Pratiquement, nous ne chercherons pas à déterminer les lignes noires, puisque celle-ci sont de même nature que les blanches. Dans la suite, nous ne préciserons donc plus la couleur de ces lignes. q = 5 q = 4 q = 3 q = 2 Voyons maintenant comment on peut déterminer des équations des lignes de moiré. Pour cela, il faut évidemment avoir des équations des courbes initiales dans un repère convenablement choisi. Pour notre exemple, prenons un repère orthonormé O, ai, aj tel que l axe O, ai soit parallèle à l une des familles de droites. Les droites de cette famille ont pour équation : y pa où p est le numéro de la droite et a la distance entre deux droites consécutives. aj A a a O ai q p = 3 q p = 2 q = 1 q = 0 q = 1 p = 9 p = 8 p = 7 p = 6 p = 5 p = 4 p = 3 p = 2 p = 1 p = 0 Appelons m le coefficient directeur commun à toutes les droites de la seconde famille (on suppose évidemment que ces droites ne sont pas parallèles à O, aj ) ; ces droites ont donc pour équation : y mx qa où q est le numéro de la droite considérée et a la distance OA (voir la figure). Soit (x, y) les coordonnées d un point appartenant à l intersection de deux droites d indices respectifs p et q tels que q p n. On a donc les égalités suivantes : y pa y mx qa q p n. Nous en déduisons : y p a et q n p donc y y mx n a a. Soit 1 a y mx na (*). a Cela signifie que les coordonnées des points d intersection des droites d indices p et q tels que q p n vérifient la relation (*) qui est une équation de droite. Lorsque n varie, ces droites forment une famille de droites parallèles (de pente fixée par m, a et a ). Finalement, la droite ayant (*) pour équation, est une ligne de moiré associée au nombre n. Et ces lignes de moiré forment ici une famille de droites parallèles. 4 ACL - les éditions du Kangourou

Regarder des droites et voir des cercles + = Attention ce phénomène est absolument extraordinaire! Mais quelques manipulations algébriques suffisent à l expliquer. Prenez deux faisceaux de droites concourantes et juxtaposer-les : on voit une famille (un faisceau ) de cercles! Pour expliquer ce phénomène, il nous faut écrire les équations des deux familles. Chaque famille est composée de droites faisant un angle avec l horizontale, variant régulièrement ; elles sont du type y (x a) tan, lorsque leur point de concours commun (x a, y 0) est situé sur l axe Ox. Décidons que les deux familles sont disposées symétriquement par rapport à l origine. Leurs équations sont alors : y (x a) tan y (x a) tan. Le moiré apparaît si a est petit! Pour trouver l équation des courbes du moiré, il faut éliminer les paramètres ( et ) en écrivant =, c est-à-dire tan ( ) tan k. Or tan tan tan ( ) 1 tan tan d où : y/(x a) y/(x a) k 1 y 2 /(x 2 a 2 ) k y(x a) y(x a) x 2 a 2 y 2. L équation de la famille de moirés, de paramètre k, est donc : k(x 2 y 2 ) 2ya ka 2 0. C est bien celle d une famille de cercles centrés sur l axe Oy a (ordonnée du centre : ) k et passant très près de l origine (car a 2 est très très petit). ACL - les éditions du Kangourou 5

Regarder des cercles et voir des droites Parmi les familles de cercles concentriques, il en est une plus étonnante que les autres ; c est celle des cercles de Fresnel (en mémoire d un physicien mathématicien qui a particulièrement étudié les phénomènes d interférences lumineuses ; Augustin Fresnel, 1788-1827). Il s agit de la famille de cercles dont les rayons sont successivement 1, 2, 3, 2, 5, 6, 7, 8, 3,, n, Les cercles de rayons successifs n déterminent des couronnes d aire n 1 2 n 2, soit (n 1) n. Les couronnes successives déterminées par ces cercles ont donc des aires égales. En coloriant alternativement en noir et blanc ces couronnes et en superposant deux tels dessins, on peut obtenir un fantastique moiré. On voit des verticales!!! Et voici l explication algébrique. Les équations des deux familles de cercles sont : (x a) 2 y 2 (x a) 2 y 2. En posant k, et s éliminent sans difficulté, et on obtient 2ax k. C est bien une famille de verticales d équations k x. 2a 6 ACL - les éditions du Kangourou

Fresnel + Fresnel = Fresnel + Fresnel + Fresnel Mais voilà qu il se passe ici une fantasmagorie supplémentaire. Si on élargit les centres des deux familles alors, après une période de confusion, ce ne sont plus des droites que l on voit, mais un faisceau de cercles de Fresnel qui ressemble aux On a beau être sidéré, on n en cherche pas moins l explication algébrique et on la trouve : les moirés obtenus sont ceux qui correspondent à la deuxième relation possible entre les paramètres et : = K. On obtient : (x a) 2 y 2 (x a) 2 y 2 K, soit K x 2 y 2 a 2. 2 C est bien un faisceau de cercles centrés à l origine. Exercice Pourriez-vous démontrer que la superposition d un faisceau de droites parallèles et d un faisceau de cercles de Fresnel fait apparaître deux faisceaux de Fresnel supplémentaires (comme ci-dessous)? + = ACL - les éditions du Kangourou 7

Essayez d autres moirés et démontrez-les. Superposition d un faisceau de droites parallèles et d une spirale. Superposition d un faisceau de cercles de Fresnel et de carrés emboîtés. Si vous possédez un logiciel de dessin vectoriel (Illustrator, Freehand, Corel Draw), la construction de moirés en sera grandement facilitée. Note : Une première étude, menée par André Deledicq, Hervé Hamon et Isabelle Tenaud, sur les moirés et leur intérêt pour les lycéens, a été éditée par l IREM de Paris 7 (Les moirés - 1978) 8 ACL - les éditions du Kangourou

Une autre technique pour obtenir des moirés La technique op-art pour obtenir des moirés est très simple même si sa réalisation demande quelques soins : tracer deux familles de courbes. quadriller les intersections obtenues avec deux couleurs. Ici les familles sont : y (une famille de droites horizontales ) x 2 y 2 2, (une famille de cercles centrés à l origine). Avec k, et en éliminant et, on obtient les équations de la famille de moiré. Cela donne : x 2 y 2 (y k) 2, soit x 2 2ky k 2 1 y ( ) x 2 k 2. 2k On trouve une famille de paraboles d axe Oy, comme on le vérifie joliment en observant le dessin obtenu. Le Kangourou sera heureux de publier sur son site www.mathkang.org les moirés que vous aurez réalisés et que vous lui aurez envoyés. ACL - les éditions du Kangourou 9