axe par rapport auquel on calcule les moments des efforts appliqués au système



Documents pareils
Mathématiques et petites voitures

ECHAFAUDAGE MULTIDIRECTIONNEL. «Multisystem»

P M L R O G W. sylomer. Gamme de Sylomer Standard. Propriétés Méthode de test Commentaires. Polyuréthane (PUR) Cellulaire mixte

Vis à billes de précision à filets rectifiés

Instructions de montage et d utilisation

DISQUE DUR. Figure 1 Disque dur ouvert

BACCALAURÉAT GÉNÉRAL SÉRIE SCIENTIFIQUE

Généralités. Aperçu. Introduction. Précision. Instruction de montage. Lubrification. Conception. Produits. Guides à brides FNS. Guides standards GNS

Problèmes sur le chapitre 5

Quick Tower. Blocs verticaux nus Page 123. Quick Point. Plaques pour Quick Tower Page 124. Präge Fix. Makro Grip. Quick Point. Quick Tower.

TSTI 2D CH X : Exemples de lois à densité 1

Vis à béton FBS et FSS

PROTECTIONS COLLECTIVES

TP 7 : oscillateur de torsion

Indicateur d accélération numérique. Mode d emploi

Série 2600/2700. Détermination du n de longueur de l axe de fermeture en cas d utilisation de réceptacle: Type 1 + 3* G = P + F

Oscillations libres des systèmes à deux degrés de liberté

MACHINES DE SCIAGE ET TRONCONNAGE MACHINES SPECIALES R 80 CN. Machine à commande numérique destinée au tronçonnage des dés.

LES LOIS PHYSIQUES APPLIQUÉES AUX DEUX-ROUES : 1. LA FORCE DE GUIDAGE

ANNEXE J POTEAUX TESTÉS SELON UN CHARGEMENT STATIQUE ET TESTÉS SELON UN CHARGEMENT CYCLIQUE ET STATIQUE

Le maçon à son poste de travail

Banc d études des structures Etude de résistances de matériaux (RDM) et structures mécaniques

SUIVEUR SOLAIRE : Informations complémentaires

1 Définition. 2 Systèmes matériels et solides. 3 Les actions mécaniques. Le système matériel : Il peut être un ensemble.un sous-ensemble..

supports métalliques basse fréquence gamme "Polycal-Ressort" standard définition R P

La fonction exponentielle

Glissière linéaire à rouleaux

Statistiques Descriptives à une dimension

LE NOUVEAU SYSTEME DE BRAS PORTEUR

Voyez la réponse à cette question dans ce chapitre.

Nombre dérivé et tangente

Q6 : Comment calcule t-on l intensité sonore à partir du niveau d intensité?

Erratum de MÉCANIQUE, 6ème édition. Introduction Page xxi (milieu de page) G = 6, m 3 kg 1 s 2

ITAS Escaliers industriels et plate-formes de travail

Les correcteurs accorderont une importance particulière à la rigueur des raisonnements et aux représentations graphiques demandées.

Dimensionnement d une roue autonome pour une implantation sur un fauteuil roulant

Caractéristiques des ondes

Electroserrures à larder 282, 00

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé

TEST ET RÉGLAGE DES SUSPENSIONS

Chapitre 0 Introduction à la cinématique

C f tracée ci- contre est la représentation graphique d une

Essais de charge sur plaque

Plaques vibrantes. Modèles unidirectionnels ou reversibles.

ventilation Caisson de ventilation : MV

Filtres pour gaz et air. GF/1: Rp 1/2 - Rp 2 GF/3: DN 40 GF/4: DN 50 - DN 100 GF: DN DN 200

Manuel de validation Fascicule v4.25 : Thermique transitoire des structures volumiques

la force et la qualité

Précision d un résultat et calculs d incertitudes

LA PUISSANCE DES MOTEURS. Avez-vous déjà feuilleté le catalogue d un grand constructeur automobile?

MESURE ET PRECISION. Il est clair que si le voltmètre mesure bien la tension U aux bornes de R, l ampèremètre, lui, mesure. R mes. mes. .

Jean-Marc Schaffner Ateliers SCHAFFNER. Laure Delaporte ConstruirAcier. Jérémy Trouart Union des Métalliers

Mesure de la dépense énergétique

ÉTUDE DE L EFFICACITÉ DE GÉOGRILLES POUR PRÉVENIR L EFFONDREMENT LOCAL D UNE CHAUSSÉE

PENDANTS à PLAFOND Pour USI/Anesthésie

MOTO ELECTRIQUE. CPGE / Sciences Industrielles pour l Ingénieur TD06_08 Moto électrique DIAGRAMME DES INTER-ACTEURS UTILISATEUR ENVIRONNEMENT HUMAIN

Force de serrage 123 N N. Pince de préhension parallèle à 2 doigts PGN-plus 160 avec doigts de préhension spécifiques à la pièce à manipuler

Ces deux systèmes offraient bien sur un choix, mais il était limité à deux extrêmes.

Douille expansibleécarteur

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)

Observer TP Ondes CELERITE DES ONDES SONORES

BAIES RESEAUX 19" SÉRIE OPTIMAL ::ROF

Schalung & Gerüst. Echafaudage de façade

RAPPORT DE CLASSEMENT. RAPPORT DE CLASSEMENT n EFR

Test : principe fondamental de la dynamique et aspect énergétique

Système de bridage rapide main-robot «QL»

Les coûts en ligne de compte

La présente fiche technique décrit les exigences auxquelles doit répondre le Système Barofor Round.

Variotec 150/GV. La ferrure. Domaine d'utilisation. Données spécifiques HAWA-Variotec 150/GV. Exemples de construction. Entailles du verre.

WM fr. Système de serrage point zéro SPEEDY airtec 1

NOTE SUR LA MODELISATION DU RISQUE D INFLATION

Grilles acoustiques. Type NL 6/6/F/2

Annexe A. Annexe A. Tableaux et données relatifs à la vérification par Eurocode 3 A.3

F210. Automate de vision hautes fonctionnalités. Caractèristiques. Algorithmes vectoriels

Machine engineering. MACHINES HORIZONTALES A DECOUPER LES CONTOURS OFS 222 OFS-HE 3 OFS-H TWINCUT FSM I

CABLECAM de HYMATOM. Figure 1 : Schéma du système câblecam et détail du moufle vu de dessus.

Infos. Indicateurs analogiques encastrables pour installation à courants forts. Série M W/P/ LSP BWQ BGQ TP TG WQ /0S WQ /2S FQ /2 W BI BIW DFQ

WILLCO Aventi - Directives d application

Analyse statique d une pièce

Les Supports UC d ordinateur

Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé

DÉVERSEMENT ÉLASTIQUE D UNE POUTRE À SECTION BI-SYMÉTRIQUE SOUMISE À DES MOMENTS D EXTRÉMITÉ ET UNE CHARGE RÉPARTIE OU CONCENTRÉE

DERAILLEUR AVANT SR / R / CH - GAMME ACTUELLE

APS 2. Système de poudrage Automatique

Ceinture Home Dépôt. Orthèse lombaire et abdominale. Mother-to-be (Medicus)

Plus courts chemins, programmation dynamique

Concours EPITA 2009 Epreuve de Sciences Industrielles pour l ingénieur La suspension anti-plongée de la motocyclette BMW K1200S

Notice de montage de la sellette 150SP

Sujet. calculatrice: autorisée durée: 4 heures

PROTECTIONS COLLECTIVES

SOCIETE NATIONALE DES CHEMINS DE FER BELGES SPECIFICATION TECHNIQUE

Roulements à une rangée de billes de génération C. Information Technique Produit

Relais d'arrêt d'urgence, protecteurs mobiles

Exercices Alternatifs. Une fonction continue mais dérivable nulle part

Exercices Alternatifs. Une fonction continue mais dérivable nulle part

DISPOSITIF DE CONTROLE MULTIFONCTIONNEL POUR APPAREILS A GAZ

Les moments de force. Ci-contre, un schéma du submersible MIR où l on voit les bras articulés pour la récolte d échantillons [ 1 ]

FAG Detector II le collecteur et l analyseur de données portatif. Information Technique Produit

Opérations de base sur ImageJ

TUTORIAL 1 ETUDE D UN MODELE SIMPLIFIE DE PORTIQUE PLAN ARTICULE

Transcription:

1. Calcul du chargement en fatigue de la vis de fixation du robot Afin de calculer la charge sur chaque fixation, on calcule le moment des différentes forces appliquées au système ( + socle), en négligeant celle liée aux fixations qui travaillent en compression. On choisit comme axe celui qui passe par le centre du socle, horizontalement, en diagonale (configuration pour laquelle le moment est maximal sur les deux fixations les plus éloignées) (Figure 1.) On considère une configuration la plus défavorable possible : le étant complètement déplié ( de levier au bout du : 1m), ce qui nous ramène à un problème plan. Afin de rendre le calcul conservatif, on prend également la valeur maximale de la vitesse de rotation (195 /s) ainsi que la masse maximale de pièce rapportée pour ce robot (19 kg). Dans cette première partie, on calcule les contraintes comme si la vis était une pièce cylindrique lisse. C est dans la partie suivante qu on tiendra compte de la concentration des contraintes dans le lieu de rupture, à savoir le fond de filet. dmin dmax axe par rapport auquel on calcule les moments des efforts appliqués au système Figure 1 : Géométrie (simplifiée) de la pièce et axe par rapport auquel on calcule les moments. On suppose la pièce d épaisseur très faible devant sa longueur et sa largeur. On distingue quatre contributions au chargement mécanique : e poids propre du a mise en mouvement du (accélération) e poids propre de la pièce a mise en mouvement de la pièce (accélération). On rappelle les principales données nécessaires au calcul dans les Tableaux 1 et. On prendra pour l accélération de la pesanteur : g 9,81 m.s -. Comme on travaille en élasticité et en petites déformations, on utilise le théorème de superposition et on calcule chaque contribution séparément. Comme les vis sont en principe bien serrées (c est en tout cas l hypothèse que l on fait dans ce calcul), les efforts de cisaillement ne sont pas pris en compte ; seuls les efforts de traction (verticaux) sont considérés dans le calcul. 1

z xy d min d max R ext S vis m ω t Ν DDV mm mm mm mm mm mm mm² kg /s s pièces/an années 5 6 63 47 1 85 45 15 195,3 à 1 15. 1 à 15 Tableau 1 : Données numériques du robot nécessaires au calcul. N est le nombre de pièces produites par an sur la ligne (et manutentionnées une seule fois chacune par le robot), DDV est la durée de vie rapportée par la documentation du robot. Rp, Rm A rupture σ D (8%) σ D (1%) K f A d min d max Pa Pa % Pa Pa - - mm mm 1134 16 8 5,5 39, 1 à 1,7 63 47 Tableau : Données numériques «matériau» nécessaires au calcul. A est l amplification de la limite de fatigue (endurance illimitée) liée au fait que les filets sont roulés. 1.1. Contribution du poids propre du On note S la section du et pour calculer le moment masse_ du poids du, on fait une intégrale par tranches le long de ce. e étant horizontal, le moment d une tranche située à une distance x de l axe est égal à la masse de cette tranche multipliée par x, ce qui donne : masse _ xs( x) ρ gdx ρs g ρ xdx S g gm masse _ 9,81 15 1 735,7 N.m. 1.. Contribution de la mise en mouvement du Pour calculer la force, à une abscisse x, d une tranche de section S et d épaisseur dx, il faut connaître l accélération de cette tranche. On utilise pour cela la vitesse angulaire que l on multiplie par x pour obtenir la vitesse linéaire. On estime l accélération en l assimilant au quotient de cette vitesse linéaire par l intervalle de temps t utilisé pour passer d une vitesse angulaire nulle à la vitesse angulaire ω. On aboutit à l équation suivante : 3 S m ρ ω ω x dx t t 3 t 3 t ω x ω xs( x) ρ dx ρ S Μ 15 1 18 3,3 15 1 18 3,5 567, N.m pour t,3 s 34,3 N.m pour t,5 s 15 1 17, N.m pour t 1 s. 18 3 1

1.3. Contribution du poids de la pièce transportée e moment de la masse de la pièce transportée ne peut, en toute rigueur, être calculé que si l on connaît la position géométrique de tous les points matériels de la pièce dans l espace. Faute de cette information, on suppose que l ensemble de la pièce est un point matériel situé à une distance z du bout du et on espère que le raisonnement est conservatif. Il donnera, en tout cas, une estimation indispensable de la contribution de la masse de la pièce transportée à la charge exercée sur les fixations. e moment du poids d un point matériel de masse m pièce 19 kg situé à une distance ( + z ) de l axe est égal à : g m + 9,81*19* 1+, 5 39,9 N.m. masse _ pièce pièce ( ) ( ) z 1.4. Contribution de la mise en mouvement de la pièce transportée On fait le même raisonnement que pour le, en supposant comme précédemment que toute la masse de la pièce est située en son centre de gravité. On obtient l équation suivante : ω accél. _ pièce m pièce ( + z ) t pièce 19* ( 1+,5) 3367,9 N.m pour t,3 s 18*,3 pièce 19* 18*,5 ( 1+,5),8 N.m pour t,5 s pièce 19* ( 1+,5) 11,4 N.m pour t 1 s. 18*1 Conclusion : oment total des efforts imposés par le poids et la mise en mouvement de la pièce et du + + total masse _ masse _ pièce + accél. _ pièce elle est résumée dans le Tableau 3 en fonction de la valeur de t. On en déduit la valeur de l effort maximal exercé sur chaque fixation, F max, en fonction de la valeur de t. es valeurs sont également reportées dans le Tableau 3. En divisant cet effort par la section nominale de la vis (45mm²) on obtient les valeurs de contrainte nominale maximale, σ max, également reportées dans le Tableau 3. t,3 s,5 s 1 s masse_ (N.m) 735,7 735,7 735,7 masse_pièce (N.m) 39,9 39,9 39,9 (N.m) 567, 34,3 17, pièce (N.m) 3367,9,8 11,4 total (N.m) 7, 546, 445,7 F max (N) 7415,5 5748,1 4497,6 σ max (Pa) 3,7 3,46 18,36 Tableau 3 : oment total sur l axe en fonction de la valeur de t. Force maximale et contrainte maximale nominale associées sur chaque fixation. 3

On obtient donc des valeurs de la contrainte très inférieures à la limite d endurance du matériau, ce qui est normal : il reste à tenir compte de l effet d entaille et à calculer l amplitude du cycle de fatigue.. Calcul de la durée de vie en fatigue des deux fixations.1. Calcul de l amplitude des cycles de fatigue Il reste deux facteurs à prendre en compte pour le calcul de la durée de vie de la fixation en fatigue : la concentration de contrainte au premier filet (qui est la plus sévère pour le type de vis utilisé) et le mode de fabrication de la vis (filets roulés : c est obligatoire lorsqu une vis peut être sollicitée en traction). e facteur de concentration de contrainte vaut K t pour un chargement monotone (3 à 4 pour le premier filet) et K f pour un chargement en fatigue (1 à pour le premier filet). Comme on calcule la durée de vie en fatigue et qu on considère le calcul le plus conservatif possible, on calcule la contrainte au premier filet, σ max, comme le produit de σ max par K f max f max σ K σ, dont la valeur dépend de t. Pour obtenir l amplitude du cycle de fatigue, on considère que la vis est chargée entre la contrainte de serrage, σ serrage, et σ serrage + σ max (lors des phases de décélération et de déchargement, le fait que la fixation soit serrée évite d ajouter un chargement en compression). amplitude (ou de mi-étendue) du chargement, σ a, vaut donc la moitié deσ max. es valeurs numériques sont reportées dans le Tableau 4. t,3 s,5 s 1 s σ max (Pa) 3,7 3,46 18,36 σ max (Pa) 6,54 46,9 36,7 σ a (Pa) 3,7 3,46 18,36 Tableau 4 : Amplitude de contrainte associée à la sollicitation en service... Calcul de la durée de vie «nominale» en fatigue e robot a une durée de vie typique, selon la documentation, de 1 à 15 ans. Sachant que 15. véhicules sortent de la ligne de production chaque année, et que le robot assure la manutention d une pièce par véhicule, 15. cycles de fatigue sont appliqués au robot chaque année. Pour la durée de vie nominale, le robot subit donc entre 1,5 et,5 millions de cycles de fatigue. Il faut donc vérifier que l amplitude de contrainte sa est en-dessous de la contrainte «à,5 millions de cycles»..3. Comparaison entre durée de vie calculée et durée de vie souhaitée On utilise la courbe de Wöhler associée à un serrage à 8% de la limite d élasticité. On choixit de se placer dans le cas le plus sévère, avec une accélération de ) 195 /s en,3 seconde. a Figure illustre l utilisation de la courbe de Wöhler dans ce cas précis, avec une amplitude de contrainte de 3,3 Pa. On a simplement multiplié la limite de fatigue par le coefficient A lié au fait que les filets sont roulés on obtient une limite de fatigue de 66,6 Pa si le serrage est à 1% de la limite d élasticité et de 89, Pa si le serrage est à 8% de la limite d élasticité. a comparaison montre que l amplitude de contrainte imposée est inférieure à la limite de fatigue de la vis. a fixation n aurait donc pas dû céder par fatigue du fait de la seule sollicitation imposée par les conditions de service connues. 4

Note : un serrage à 1% de la limite d élasticité d une vis à filets usinés (et non roulés) aurait conduit à une durée de vie inférieure à la durée de vie souhaitée. Courbe de Wöhler acier 4CD4 (Thèse J. assol) 1 Contrainte alternée (Pa) 11 1 9 8 7 6 5 Serrage à 8% de la limite d élasticité Serrage à 1% de la limite d élasticité σ D (8%)*1,7 89, Pa σ D (1%)*1,7 66,6 Pa 4 sollicitation en service : 3,3 Pa 3 1 1 1 1 Nombre de cycles à rupture Figure : Utilisation de la courbe de Wöhler pour l estimation de la durée de vie en fatigue des fixations du robot. 3. Conclusions e calcul montre que dans les conditions de service connues (serrage à au moins 8% de la limite d élasticité, filets roulés, masse de 19 kg accélérée en,3 s à 195 /s), la vis n aurait pas dû céder par fatigue. Une de ces conditions n a donc pas été remplie : soit une masse excessive a été accrochée, soit les conditions d accélérations n ont pas été respectées, soit le serrage n a pas été suffisant. Un serrage insuffisant est la première piste à explorer : il devrait en principe se voir car un repérage de peinture doit être effectué, au moment du montage, pour détecter tout desserrage. Une vis desserrée subit en effet un cycle de fatigue d amplitude beaucoup plus élevée que celle calculée ici, ce qui aurait pu conduire à une rupture par fatigue. 5