Comment tracer une droite représentative d'une fonction et méthode de calcul de l'équation d'une droite.



Documents pareils
a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe le nombre ax + b

Fonctions linéaires et affines. 1 Fonctions linéaires. 1.1 Vocabulaire. 1.2 Représentation graphique. 3eme

Lecture graphique. Table des matières

Chapitre 4: Dérivée d'une fonction et règles de calcul

Equations cartésiennes d une droite

I. Ensemble de définition d'une fonction

Leçon N 4 : Statistiques à deux variables

FctsAffines.nb 1. Mathématiques, 1-ère année Edition Fonctions affines

EXERCICE 4 (7 points ) (Commun à tous les candidats)

La fonction exponentielle

Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire

Etude de fonctions: procédure et exemple

Mais comment on fait pour...

Notion de fonction. Résolution graphique. Fonction affine.

Bien lire l énoncé 2 fois avant de continuer - Méthodes et/ou Explications Réponses. Antécédents d un nombre par une fonction

Commun à tous les candidats

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)

Notion de fonction. Série 1 : Tableaux de données. Série 2 : Graphiques. Série 3 : Formules. Série 4 : Synthèse

LE PROCESSUS ( la machine) la fonction f. ( On lit : «fonction f qui à x associe f (x)» )

Séquence 2. Repérage dans le plan Équations de droites. Sommaire

Fonction inverse Fonctions homographiques

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation )

Seconde Généralités sur les fonctions Exercices. Notion de fonction.

Les fonction affines

C f tracée ci- contre est la représentation graphique d une

TOUT CE QU IL FAUT SAVOIR POUR LE BREVET

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :

Dérivation CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES

Nombre dérivé et tangente

= constante et cette constante est a.

Les équations différentielles

RÉALISATION DE GRAPHIQUES AVEC OPENOFFICE.ORG 2.3

Cours 02 : Problème général de la programmation linéaire

Complément d information concernant la fiche de concordance

Structures algébriques

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée.

Exercice 3 (5 points) A(x) = 1-e -0039' e- 0,039x A '() -'-,..--,-,--,------:-- X = (l_e-0,039x)2

Chapitre 1 Régime transitoire dans les systèmes physiques

Rappels sur les suites - Algorithme

SYSTEMES LINEAIRES DU PREMIER ORDRE

BACCALAUREAT GENERAL MATHÉMATIQUES

Perrothon Sandrine UV Visible. Spectrophotométrie d'absorption moléculaire Étude et dosage de la vitamine B 6

La polarisation des transistors

IV- Equations, inéquations dans R, Systèmes d équations

O, i, ) ln x. (ln x)2

BACCALAURÉAT GÉNÉRAL SESSION 2012 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE

Fonctions homographiques

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme

Résolution d équations non linéaires

Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 %

Statistiques à deux variables

Chapitre 2 Le problème de l unicité des solutions

Chapitre 3. Les distributions à deux variables

SINE QUA NON. Découverte et Prise en main du logiciel Utilisation de bases

Représentation géométrique d un nombre complexe

Notions d asservissements et de Régulations

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Annexe commune aux séries ES, L et S : boîtes et quantiles

FONCTION EXPONENTIELLE ( ) 2 = 0.

LES DÉTERMINANTS DE MATRICES

LE PRODUIT SCALAIRE ( En première S )

Corrigés Exercices Page 1

TP 7 : oscillateur de torsion

G.P. DNS02 Septembre Réfraction...1 I.Préliminaires...1 II.Première partie...1 III.Deuxième partie...3. Réfraction

1. Introduction Création d'une requête...2

L ALGORITHMIQUE. Algorithme

BACCALAURÉAT PROFESSIONNEL SUJET

Développements limités. Notion de développement limité

Excel 2010 Module 13. Comment créer un tableau d amortissement dégressif d une immobilisation. Enseignant : Christophe Malpart

Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé.

Capes Première épreuve

modélisation solide et dessin technique

Découverte du logiciel ordinateur TI-n spire / TI-n spire CAS

Navigation dans Windows

Didier Pietquin. Timbre et fréquence : fondamentale et harmoniques

Université Paris-Dauphine DUMI2E 1ère année, Applications

Chapitre 0 Introduction à la cinématique

Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables

Raisonnement par récurrence Suites numériques

Utiliser un tableau à double entrée «Les véhicules»

Angles orientés et fonctions circulaires ( En première S )

FONCTIONS À CROISSANCE RÉGULIÈRE

1S Modèles de rédaction Enoncés

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en Énoncé.

Baccalauréat technique de la musique et de la danse Métropole septembre 2008

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé

Introduction à l étude des Corps Finis

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://

Durée de L épreuve : 2 heures. Barème : Exercice n 4 : 1 ) 1 point 2 ) 2 points 3 ) 1 point

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)

Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT

INTRODUCTION. A- Modélisation et paramétrage : CHAPITRE I : MODÉLISATION. I. Paramétrage de la position d un solide : (S1) O O1 X

Théorème du point fixe - Théorème de l inversion locale

Sur certaines séries entières particulières

Correction du baccalauréat S Liban juin 2007

chapitre 4 Nombres de Catalan

3 Approximation de solutions d équations

OLYMPIADES ACADEMIQUES DE MATHEMATIQUES. 15 mars 2006 CLASSE DE PREMIERE ES, GMF

Correction du bac blanc CFE Mercatique

Transcription:

Comment tracer une droite représentative d'une fonction et méthode de calcul de l'équation d'une droite. Introduction : Avant de commencer, il est nécessaire de prendre connaissance des trois types de fonctions principales dont leur représentation graphique est une droite : La fonction constante, de la forme f(x) = k, où k est une constante réelle. exemple : f(x) = 5 La fonction linéaire, de la forme f(x) = ax, où a est le coefficient directeur. exemple : f(x) = 3x La fonction affine, similaire à la fonction linéaire. Néanmoins, la représentation graphique de la fonction affine ne passe pas par l'origine. La fonction affine est de la forme f(x) = ax + b, où a est le coefficient directeur et b l'ordonnée à l'origine¹. exemple : f(x) = 4x 5 Les représentations graphiques dans les trois cas sont sous la forme d'une droite. Dans le cours qui va suivre, nous allons voir comment faire ces représentations graphiques pour chacun des cas. Enfin nous verrons comment déterminer son équation à partir de sa simple représentation graphique. I. Représentation graphique à partir de l'équation de la fonction a) Présentation d'un repère Lorsque l'on annonce un repère, on définit ses paramètres : Le plan P muni d'un repère orthonormal (O; i, j) O représente l'origine, c'est à dire le point d'intersection de l'axe des abscisses et de l'axe des ordonnées. i représente l'axe des abscisses (horizontal) j représente l'axe des ordonnées (vertical)

Voici un exemple de repère orthonormal ne comportant pas pour l'instant de représentation graphique : b) Représentation graphique Une fonction affine est de la forme f(x) = ax + b. Pour avoir sa représentation graphique, nous aurons besoin de construire deux points (deux points car cela suffit pour construire la droite). Ces deux points nous allons les placer sur un repère. Prenons comme exemple, la fonction affine définie par : f(x) = 2x + 3 Remarque, pour faciliter la compréhension de la représentation graphique, on peut remplacer f(x) par y. Ce qui donne ici : y = 2x + 3 Soit A et B, deux points de la droite représentative de la fonction f(x) = 2x +3 que nous nommerons D1. Libre à nous de choisir les deux valeurs de x pour les deux points. Nous prendrons ici 0 et 1.

Voici un tableau représentatif de la situation : Point A B x 0 1 y = 2x + 3 Pour remplir la dernière ligne du tableau, il suffit de résoudre l'équation pour déterminer y pour les deux points. Ainsi : - A(0, ya) ya = 2* 0 + 3 = 3 Donc le point A a pour coordonnées (0, 3) - B(1, yb) yb = 2* 1 + 3 = 6 Donc le point B a pour coordonnées (1, 6) Note : Les coordonnées d'un point se lisent de la manière suivante : A(xA, ya). xa représente sa position sur l'axe des abscisses et ya représente sa position sur l'axe des ordonnées Remplissons notre tableau : Point A B x 0 1 y = 2x + 3 3 6 Nous avons maintenant les coordonnées de nos deux points. Nous pouvons à présent tracer la droite D1 représentative de la fonction f(x) = 2x + 3 :

On trace la droite après avoir positionné les deux points A et B. Dans le cas de la fonction linéaire, on utilise la même méthode sauf que le point ayant pour abscisse 0 aura obligatoirement pour ordonnée 0. D'où le fait que la droite passe par l'origine. Dans le cas de la fonction constante, sa construction graphique est extrêmement rapide. En effet, f(x) = k où k est une valeur fixe. Par conséquent, pour n'importe quelle valeur en abscisse, l'ordonnée sera toujours égale à k. Sa représentation graphique est donc une droite parallèle à l'axe des abscisses. Voici qui suit les représentations graphiques des trois types de fonctions : Note : Si le coefficient directeur est positif, la fonction est croissante. Si le coefficient directeur est négatif, la fonction est décroissante. Ici, f(x) est une fonction croissante, h(x) est une

fonction décroissante et la fonction g(x) est une fonction constante. II. Calcul de l'équation de la fonction à partir de la représentation graphique a) Formules Imaginez que vous avez une représentation graphique d'une fonction affine (donc sous la forme de ax + b) et que l'on vous demande de déterminer son équation de sa fonction. Jusque ici, nous avons appris comment faire la représentation graphique à partir de l'équation de la fonction. Nous allons donc apprendre à faire l'inverse. Pour cela, la maîtrise de deux formules est nécessaire. L'équation de la fonction est la suivante : y = mx + p m = coefficient directeur p = ordonnée à l'origine¹ Note : Pourquoi ne pas utiliser la notation y = ax + b? Car lors de l'application des formules, on peut se tromper avec les coordonnées des points A et B

Les deux formules qui suivent permette de déterminer m et p : m = (yb ya)/(xa xb) Où : yb = ordonnée du point B ya = ordonnée du point A xb = abscisse du point B xa = abscisse du point A p = ya - m*xa Une fois les deux valeurs connues, on obtient l'équation de la fonction. Rien ne nous empêche de vérifier l'exactitude de l'équation en utilisant la méthode [ voir I)b) ] b) Application Passons à la pratique. Prenons la droite représentative suivante :

Tout d'abord, prenons deux points sur la droite, A et B : On a A(-4, 7) et B(0, -1) Remarque : Rien ne vous empêche de prendre d'autres points que ceux-ci sur la droite. Ici il ne s'agit que d'un exemple. Nous avons xa, xb, ya et yb. Nous pouvons commencer le calcul : m = (yb ya)/(xb xa) m = (-1-7))/(0 - (-4)) m = - 8 / 4 = -2 p = ya m*xa p = 7 - ((-2)*(-4)) p = 7 8

p = -1 Ainsi : y = mx + p y = -2x + (-1) y = -2x 1 La droite représenté ici a pour équation : y = -2x - 1 III. Exemples A vous maintenant! Voici deux exercices reprenant l'intégralité de la leçon. Le premier consiste à trouver la droite représentative de chaque fonction. Le second exercice demande de trouver l'équation de chaque droite représentative. Exercice 1 :

y = 2x + 3 y = -x + 4 y = 3x y = -2 y = x + 5 Quelle équation appartient à quelle droite? Exercice 2 : Quelles sont les équations de ces trois droites représentatives de fonctions affines?

IV. Conclusion Le cours est terminé, la correction des deux exercices viendra par la suite de ce cours. Voici un petit bloc de l'essentiel à retenir : Nous avons appris trois types de fonctions : Affine, sous la forme de f(x) = ax + b, avec a comme coefficient directeur et b comme ordonnée à l'origine. Linéaire, sous la forme de f(x) = ax, avec a comme coefficient directeur. La droite représentative passe par l'origine. Constante, sous la forme de f(x) = k avec k comme constante. La droite représentative est parallèle à l'axe des abscisses. Pour calculer une équation d'une droite à partir de sa simple représentation graphique: Équation : y = mx + p avec : A(xA, ya) et B(xB, yb) m = coefficient directeur = (yb-ya)/(xb xa) p = ordonnée à l'origine¹ = ya m*xa ¹ordonnée à l'origine : Pourquoi appeler cela comme ça? Car en effet, lorsque vous voulez construire une droite à partir d'une fonction affine, prenez un point situé sur 0 dans l'axe des abscisses (x) soit donc à l'origine. Vous verrez que sa position sur l'axe des ordonnées (y) correspondra à la valeur de l'ordonnée à l'origine. Regarde les précédentes équations et leur représentations graphiques pour vous donner un exemple. http://lethanovedu.wordpress.com

Just For Fun (ou pas): Quelles sont les équations pour chacune de ces courbes représentatives? Trop facile, non?