Leçon n 4 : Loi d Ohm et de Joule

Documents pareils
Electricité Générale

MESURE DE LA TEMPERATURE

Les puissances La notion de puissance La puissance c est l énergie pendant une seconde CHAPITRE

4.14 Influence de la température sur les résistances

Chap 1: Toujours plus vite... Introduction: Comment déterminer la vitesse d une voiture?

Cours d électricité. Introduction. Mathieu Bardoux. 1 re année. IUT Saint-Omer / Dunkerque Département Génie Thermique et Énergie

Cours d électricité. Circuits électriques en courant constant. Mathieu Bardoux. 1 re année

Séquence 14 : puissance et énergie électrique Cours niveau troisième

Premier principe de la thermodynamique - conservation de l énergie

Chapitre 11 Bilans thermiques

Sciences physiques Stage n

Méthodes de Caractérisation des Matériaux. Cours, annales

Sciences physiques Stage n

Chapitre 1 - Les circuits électriques

Module d Electricité. 2 ème partie : Electrostatique. Fabrice Sincère (version 3.0.1)

Module 3 : L électricité

Chapitre 7: Énergie et puissance électrique. Lequel de vous deux est le plus puissant? L'énergie dépensée par les deux est-elle différente?

1 ère partie : tous CAP sauf hôtellerie et alimentation CHIMIE ETRE CAPABLE DE. PROGRAMME - Atomes : structure, étude de quelques exemples.

L ÉLECTROCUTION Intensité Durée Perception des effets 0,5 à 1 ma. Seuil de perception suivant l'état de la peau 8 ma

Le circuit électrique

Chapitre 6 ÉNERGIE PUISSANCE - RENDEMENT. W = F * d. Sommaire

MATIE RE DU COURS DE PHYSIQUE

DYNAMIQUE DE FORMATION DES ÉTOILES

Mesure de Salinité Réalisation d'un conductimètre

Chapitre 7. Circuits Magnétiques et Inductance. 7.1 Introduction Production d un champ magnétique

sciences sup Cours et exercices corrigés IUT Licence électricité générale Analyse et synthèse des circuits 2 e édition Tahar Neffati

Exercice n 1: La lampe ci-dessous comporte 2 indications: Exercice n 2: ( compléter les réponses sans espaces)

CHAPITRE VIII : Les circuits avec résistances ohmiques

1 000 W ; W ; W ; W. La chambre que je dois équiper a pour dimensions : longueur : 6 m largeur : 4 m hauteur : 2,50 m.

U-31 CHIMIE-PHYSIQUE INDUSTRIELLES

Champ électromagnétique?

document proposé sur le site «Sciences Physiques en BTS» : BTS AVA 2015

Chapitre 02. La lumière des étoiles. Exercices :

Quantité de mouvement et moment cinétique

CH 11: PUIssance et Énergie électrique

PRODUCTION DE L ENERGIE ELECTRIQUE

À propos d ITER. 1- Principe de la fusion thermonucléaire

THEME 2. LE SPORT CHAP 1. MESURER LA MATIERE: LA MOLE

LA PUISSANCE DES MOTEURS. Avez-vous déjà feuilleté le catalogue d un grand constructeur automobile?

Cours 1. Bases physiques de l électronique

Chap 8 - TEMPS & RELATIVITE RESTREINTE

LAMPES FLUORESCENTES BASSE CONSOMMATION A CATHODE FROIDE CCFL

A retenir : A Z m n. m noyau MASSE ET ÉNERGIE RÉACTIONS NUCLÉAIRES I) EQUIVALENCE MASSE-ÉNERGIE

Les tensions 3 CHAPITRE

LES APPAREILS A DEVIATION EN COURANT CONTINU ( LES APPREILS MAGNETOELECTRIQUES)

Interactions des rayonnements avec la matière

PHYSIQUE Discipline fondamentale

GENERALITES SUR LA MESURE DE TEMPERATURE

Exercice 1. Exercice n 1 : Déséquilibre mécanique

TD 9 Problème à deux corps

CHAÎNES ÉNERGÉTIQUES I CHAÎNES ÉNERGÉTIQUES. II PUISSANCE ET ÉNERGIE

Travaux dirigés de magnétisme

Physique, chapitre 8 : La tension alternative

Capacité Métal-Isolant-Semiconducteur (MIS)

TS1 TS2 02/02/2010 Enseignement obligatoire. DST N 4 - Durée 3h30 - Calculatrice autorisée

Acquisition et conditionnement de l information Les capteurs

La charge électrique C6. La charge électrique

Electricité. Electrostatique

Défi 1 Qu est-ce que l électricité statique?

Chapitre 9 : Applications des lois de Newton et Kepler à l'étude du mouvement des planètes et des satellites

CHAPITRE IX : Les appareils de mesures électriques

PUISSANCE ET ÉNERGIE ÉLECTRIQUE

Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire

Vous avez dit... LED??? DOCLED V2 Page 1 / 14

Notions de base sur l énergie solaire photovoltaïque

SOMMAIRE. B5.1 Première approche

Choix multiples : Inscrire la lettre correspondant à la bonne réponse sur le tiret. (10 pts)

L énergie sous toutes ses formes : définitions

EXERCICE 2 : SUIVI CINETIQUE D UNE TRANSFORMATION PAR SPECTROPHOTOMETRIE (6 points)

Chapitre 7 : CHARGES, COURANT, TENSION S 3 F

Chapitre 5 : Noyaux, masse et énergie

Thermodynamique (Échange thermique)

Le triac en commutation : Commande des relais statiques : Princ ipe électronique

Influence de la géométrie du conducteur sur la température dans un poste sous enveloppe métallique

Rencontre des savoirs. L énergie électrique est-elle bien adaptée à une mobilité durable?

mm 1695 mm. 990 mm Porte-à-faux avant. Modèle de cabine / équipage Small, simple / 3. Codage

Semi-conducteurs. 1 Montage expérimental. Expérience n 29

Circuits intégrés micro-ondes

Eléments constitutifs et synthèse des convertisseurs statiques. Convertisseur statique CVS. K à séquences convenables. Source d'entrée S1

Les rayons X. Olivier Ernst

Unités: m 3. 1,3 kg m 3 * V = πr 2 h.

M HAMED EL GADDAB & MONGI SLIM

PHYSIQUE-CHIMIE. Partie I - Spectrophotomètre à réseau

Circuits RL et RC. Chapitre Inductance

' Département de Chimie Analytique, Académie de Médecine, 38 rue Szewska,

Electrotechnique. Fabrice Sincère ; version

Mesures et incertitudes

Puissances d un nombre relatif

ELEC2753 Electrotechnique examen du 11/06/2012

Mesure de la dépense énergétique

TSTI 2D CH X : Exemples de lois à densité 1

Lecture recommandée (en anglais) Activité d écriture facultative. Références

A. Énergie nucléaire 1. Fission nucléaire 2. Fusion nucléaire 3. La centrale nucléaire

L énergie durable Pas que du vent!

Manuel d'utilisation de la maquette

TS Physique Satellite à la recherche de sa planète Exercice résolu

Grandeurs et mesures. Grandeurs et mesures. - Mathématiques - Niveau 3 ème

ELECTRICITE. Introduction

C est un mouvement plan dont la trajectoire est un cercle ou une portion de cercle. Le module du vecteur position OM est constant et il est égal au

CHAPITRE XIII : Les circuits à courant alternatif : déphasage, représentation de Fresnel, phaseurs et réactance.

Transcription:

ELECTROMAGNETSME Electrocinétique Page sur Leçon n 4 : Loi d Ohm et de Joule. ntroduction Le terme courant électrique plus communément désigné par "courant" permet de décrire le déplacement de toute charge électrique traversant une région donnée. La plupart des applications pratiques de l électricité utilisent les courants électriques. Le déplacement de la charge s effectue généralement à travers un conducteur tel qu un fil de cuivre ou un liquide (par exemple électrolyte). Cependant des courants peuvent exister sans conducteur, c est le cas d un faisceau d électrons circulant dans un tube électronique (ancien téléviseur). La pile est un système capable de fournir un courant. Celui ci peut alimenter le filament d une lampe de poche et produire de la lumière.. Le courant électrique Chaque fois qu il se produit un déplacement de charges, on dit qu un courant passe. Le courant représente le débit de charge à travers une surface S. Si Q est la charge nette traversant S durant un intervalle de temps t, l intensité du courant est donné par la relation : Q = t Si ce débit de charges varie dans le temps, varie également dans le temps et on exprime à l instant t par : = dq dt [4. ] L ampère est l unité d intensité, qui correspond à la charge de Coulomb (C) traversant la surface S en seconde A = C s = C s. Par convention, le sens du courant est le même que le sens de déplacement des charges positives. Dans un conducteur métallique, le courant résulte du mouvement des électrons portant une charge négative : le sens du courant est donc opposé au déplacement des électrons.

ELECTROMAGNETSME Electrocinétique Page sur Soit un conducteur de section S uniforme. Le volume correspondant à un élément du conducteur de longueur l est V = S l. Si n désigne le nombre de charges mobiles par unité de volume, alors V contient n V = n S l charges. Appelons q la charge de chaque porteur de charge. La valeur totale des charges mobiles est donc donnée par : Q = ( n S l ) q. Si on suppose que ces charges se déplacent à la vitesse v, la distance parcourue par ces charges sera donc l s en suit que : = v l t d où = ( v ) Q n S t q. Q = = n q v S t [4. ] La vitesse v est une vitesse moyenne appelée vitesse de dérive ou d entrainement. Application Soit un fil de cuivre de rayon r = mm qui transporte un courant = 0A, calculer la vitesse de dérive des électrons. Données : Le cuivre a un électron de conduction par atome, sa masse atomique M est égale à 64g/mol et sa masse volumique 3 ρ = 8900 Kg. m, e = charge de l électron =.6 0 9 C Nombre d Avogadro = N a = 6.0 0 3 Solution Dans le cas du cuivre, les porteurs de charge sont des électrons. On a donc q = e Or : = ne v S v = ne S. On nous donne la valeur de, on peut trouver la valeur de S. Sachant que N est le nombre d électrons de conduction, il reste à déterminer la valeur de n = nombre d électrons par unité de volume V : n = N V Puisque le cuivre possède un électron mobile par atome, N est donc égal au nombre d atomes dans le fil.

ELECTROMAGNETSME Electrocinétique Page 3 sur La masse volumique m ρ = = V massedu fil Volume du fil La densité électronique s écrit : ρ n = N m En introduisant le nombre d atomes par mole l vient : n N N = = A ρ m M N n = A ρ M M Par conséquent : v = = = ne S ρ N a e π r ρ Na e π r M Application numérique : 3 0 64 0 v = 8900 6.0 0.6 0 π 0 ( ) 3 9 3 =.38. 0 4 m/s Les électrons se déplacent donc très lentement, contrairement à ce que l on pourrait supposer : il leur faut à peu près 400 secondes, ou plus d une heure, pour parcourir un mètre! 3. Résistance et Loi d Ohm 3.. Loi d Ohm On appelle densité de courant à l intérieur du conducteur la quantité J : J = = n q v S en A/m [4. 3] J est aussi une grandeur vectorielle : J = n q v. Si on entretient une différence de potentiel aux extrémités d un conducteur, il s y établit à l intérieur un champ E. On pose : J = σ E [4.4]

ELECTROMAGNETSME Electrocinétique Page 4 sur σ est la conductivité du conducteur. Elle représente "la facilité" qu'ont les porteurs de charges à se mouvoir sous l'influence d'un champ électrique. L'inverse de la conductivité σ est la résistivité ρ. Conductivité et résistivité sont des caractéristiques électriques locales d'un matériau. Les matériaux, tels que l on puisse écrire la loi d Ohm. J = σ E sont dits «ohmiques» ou qu ils obéissent à 3.. Résistance et résistivité Soit un segment de fil rectiligne de longueur l et de section S. Soit V = VA V B la différence de potentiel appliquée aux extrémités. Le champ électrique E est supposé uniforme, par conséquent : V = E l Soit J le vecteur densité de courant : J = σ E = σ Or J =, On peut donc écrire : S V l V l J = = σ V = S l σ S La quantité l σ S s appelle résistance R du conducteur, et on a : l ρ l R = = σ S S [4. 5] Avec ρ = σ : la résistivité La loi d Ohm est alors donnée par la relation : Unités R s exprime en Ohm ( Ω ) ρ s exprime en Ohm ( Ω. m ) σ s exprime en Siemens. m ( S. m ) V = R [4.6]

ELECTROMAGNETSME Electrocinétique Page 5 sur 3... Association des résistances en série La résistance R équivalente à deux résistors en série se calcule aisément: Les deux résistances sont traversées par le même courant d'intensité. Fig. : Association en série de deux résistances La loi d'ohm appliquée à chacune des résistances donne : U U = = R R La tension U aux bornes de l'ensemble est égale à la somme des tensions aux bornes de chacun : U = U + U ( ) U = R = R + R U = R = R + R La résistance équivalente U R = vaut donc : R = R + R Cette relation peut se généraliser pour un nombre quelconque de résistances : la résistance d'un ensemble de résistances en série est égale à la somme de leurs résistances : R= R [4.7] i i

ELECTROMAGNETSME Electrocinétique Page 6 sur 3... Associations de résistances en parallèle Calculons la résistance R équivalente à deux résistances en parallèle. Fig. : Association en parallèle de deux résistances Les deux résistances sont soumises à la même tension : U = U = U L'intensité du courant du générateur est égale à la somme des intensités des courants circulant dans les résistances : = U + = + R La loi d'ohm appliquée à chacun des résistors donne : U = U = R R U = R U = R U U U Par conséquent : = + = + R R R R R R Cette relation peut se généraliser pour un nombre quelconque de résistances, la résistance équivalente R est telle que : = [4.8] R R i i

ELECTROMAGNETSME Electrocinétique Page 7 sur Remarques : est appelée conductance équivalente du circuit. La conductance d'un ensemble de R résistances en parallèle est égale à la somme de leurs conductances. Cas particuliers : la résistance équivalente à n résistances de même valeur R est : R = 3..3. Résistivité de certains métaux, alliages métalliques et non métaux Dans ce tableau, et à titre d exemple, sont données les valeurs de résistivité de différents types de matériaux. R n Matériau Résistivité 0 8 Ω.m Matériau Résistivité 0 8 Ω.m Argent,6 Platine 0 Cuivre,7 Fer 0 or,4 Silicium 0 Aluminium,7 Etain 8 Zinc 6 Constantan 49 Nickel 7 Mercure 96 Laiton 7 Nichrome 00 Application Trouver la résistance d un fil de cuivre de 00 m de long et de rayon r =mm. La résistivité ρ du cuivre est égale à.7. 0 8 Ω. m. Solution ρl ρ l R = = π S r 8.7 0 00 Application numérique : R= = 0.548 Ω 3 π 0 ( )

ELECTROMAGNETSME Electrocinétique Page 8 sur 3..4. Résistivité en fonction de la température La résistivité d un conducteur dépend d un certain nombre de facteurs dont la température. La résistivité de la plupart des métaux augmente en fonction de la température. Dans un domaine particulier de variation de la température, on exprime ρ (T) la relation : ( ) ρ (T) =ρ 0 + α T T 0 [4.9] ρ 0 est la résistivité à une température de référence souvent prise à 0 C et α est le coefficient de dilatation thermique de la résistivité. Puisque R est proportionnelle à ρ, on peut écrire : R(T) = R + α( T T ) 0 0 4. Mobilité des porteurs de charges Dans un métal, les électrons sont quasi libres et se déplacent entre les ions fixes du réseau cristallin. ls sont au nombre de n par mètre cube et leur mobilité µ n s exprime en m² s Volt. Si e désigne la valeur absolue de la charge de l'électron et µ n la mobilité (m² s V ) des électrons quasi libres du métal, la résistivité ρ du métal a pour expression : ρ = e µ n n Charge de l'électron Mobilité des électrons du métal Nombre d'électrons par unité de volume [4.0] La mobilité des électrons µ n du métal relie la vitesse v des électrons quasi libres au champ électrique E dans le métal : v = µ E n [4.] Exemple : Dans le cas du cuivre, on a : n 8,. 0 8 électrons m 3 µ n 0,0047 m²/(s Volt) ce qui donne une conductivité σ (S.m ) de 6.6.0 7 S.m.

ELECTROMAGNETSME Electrocinétique Page 9 sur Dans les semi conducteurs, deux types de porteurs de charges mobiles sont responsables de la conduction électrique : les électrons : de charge e =,6 0 9 C, en nombre n par unité de volume (m 3 ), et de mobilité µ n en m² s V les trous : de charge e = +,6 0 9 C, en nombre p par unité de volume (m 3 ) et de mobilité µ p en m² s V Dans un semi conducteur intrinsèque très pur donc non dopé, on a : n = p Un semi conducteur est dit "dopé" quand de façon contrôlée, on a modifié le nombre d'électrons (dopage N), ou de trous (dopage P). La résistivité ρ en Ω.m d'un semi conducteur intrinsèque (très pur) est : ρ = = eµ n + eµ p e n µ + µ ( ) n p n p Dans le cas d'un dopage N, on aura un nombre n d'électrons par unité de volume très supérieur au nombre p de trous et la conductivité (S.m ) sera : σ n e µ n n Dans le cas du dopage P, se sont les trous qui dominent et leur nombre par unité de volume p (m 3 ) est cette fois très supérieur à n, d'où la conductivité σ (S. m ) est égale à σ p e µ p p 5. Energie électrique et puissance Soit un circuit constitué d une pile dont les bornes sont reliées à une résistance (Fig. 3). Soit une quantité dq de charges positives se déplaçant dans le circuit, à partir du point A que l on supposera être au potentiel de référence. Ce potentiel est pris égal à zéro. Lorsque dq se déplace de A vers B en passant par la pile, son énergie potentielle augmente de ( dq V ) (V est le potentiel au point B).

ELECTROMAGNETSME Electrocinétique Page 0 sur B C + R A D Fig. 3 : une pile établit un courant dans un circuit contenant une résistance Au fur et à mesure que dq se déplace de C vers D, elle perd son énergie potentielle électrique par collision avec les atomes de la résistance R en produisant de l énergie thermique. On suppose qu entre B et C ainsi qu entre D et A il n ya pas de perte d énergie. Dans un temps dt, l énergie E transmise à la résistance est : de = dq V = ( dt) V = V dt La puissance dissipée est donc : de P = = V dt En appliquant la loi d Ohm, on peut écrire que : V = R et on a : P = V = R [4.] Unités : L énergie E s exprime et Joule (J) et la puissance s exprime en Watt (W).

ELECTROMAGNETSME Electrocinétique Page sur Application ) Une ampoule électrique porte une inscription 0V/75W. Déterminer le courant qui circule dans le filament de cette lampe et sa résistance R. ) Combien coûte l éclairage d une pièce dans laquelle cette ampoule reste allumée pendant 4 heures. Prix de revient 0. / kilowattheure. Solution P 75 ) Nous avons : P = V = = = 0.34 A V 0 V 0 La résistance R vaut : R = = = 647 Ω 0.34 ) 75 W = 0.075 kw Energie consommée pendant 4 h = 0.075 4 =.8 kw Coût = 0..8 0.. 6. Loi de Joule L'énergie E (Joule) dégagée par un conducteur électrique de résistance R( Ω ) traversé par un courant d'intensité (A) pendant un temps t(s) est donnée par la relation suivante : E = R t [4.3] L'énergie dépend donc de 3 facteurs : L'intensité du courant (le facteur le plus important puisqu'il est au carré) ; Le temps pendant lequel circule le courant ; La résistance du conducteur. Autre démonstration de la loi de Joule Un électron de charge e placé dans un champ électrique E constant est soumis à la force de Coulomb F = e E. Soit v la vitesse d entrainement des électrons, le déplacement élémentaire dl est donné par la relation : dl = v dt

ELECTROMAGNETSME Electrocinétique Page sur Le travail élémentaire de la force de Coulomb est : dwel = e E. dl = e E.v dt Comme E et v dont colinéaires et de sens opposés, on peut écrire : dwel = e E v dt Pour un cylindre homogène de section S, de longueur l et de densité d électrons n on a : ( ) ( ) ( ) dw = n Sl e E v dt = ne v E l S dt Nombre J V d ' électrons Soit : dw = ( ) V J S dt Comme : V = R, il vient dw = R dt Et par conséquent : dw P = = R dt 7. Loi d Ohm généralisée (Loi de Pouillet) Fig. 4 : Schéma de principe de la loi de Pouillet L'intensité de courant débité par un générateur de f.e.m E et de résistance interne R, dans un circuit purement ohmique de résistance équivalente R eg est donnée par l'expression : = E R+ R eq [4.4]