Étude d un système technique industriel Pré-étude et modélisation



Documents pareils
Dimensionnement d une roue autonome pour une implantation sur un fauteuil roulant

Test : principe fondamental de la dynamique et aspect énergétique

LA PUISSANCE DES MOTEURS. Avez-vous déjà feuilleté le catalogue d un grand constructeur automobile?

véhicule hybride (première

Electrotechnique. Fabrice Sincère ; version

ELEC2753 Electrotechnique examen du 11/06/2012

CONCOURS COMMUNS POLYTECHNIQUES

1- Maintenance préventive systématique :

mm 1695 mm. 990 mm Porte-à-faux avant. Modèle de cabine / équipage Small, simple / 3. Codage

SEO 200. Banc d étude du positionnement angulaire d une éolienne face au vent DESCRIPTIF APPLICATIONS PEDAGOGIQUES

Les puissances La notion de puissance La puissance c est l énergie pendant une seconde CHAPITRE

Série 77 - Relais statiques modulaires 5A. Caractéristiques. Relais temporisés et relais de contrôle

Equipement d un forage d eau potable

document proposé sur le site «Sciences Physiques en BTS» : BTS AVA 2015

BACCALAURÉAT GÉNÉRAL SÉRIE SCIENTIFIQUE

Cours d électricité. Circuits électriques en courant constant. Mathieu Bardoux. 1 re année

MACHINES DE SCIAGE ET TRONCONNAGE MACHINES SPECIALES R 80 CN. Machine à commande numérique destinée au tronçonnage des dés.

1 Définition. 2 Systèmes matériels et solides. 3 Les actions mécaniques. Le système matériel : Il peut être un ensemble.un sous-ensemble..

CHAÎNES ÉNERGÉTIQUES I CHAÎNES ÉNERGÉTIQUES. II PUISSANCE ET ÉNERGIE

Electrotechnique: Electricité Avion,

1 000 W ; W ; W ; W. La chambre que je dois équiper a pour dimensions : longueur : 6 m largeur : 4 m hauteur : 2,50 m.

MOTORISATION DIRECTDRIVE POUR NOS TELESCOPES. Par C.CAVADORE ALCOR-SYSTEM WETAL Nov

LES LOIS PHYSIQUES APPLIQUÉES AUX DEUX-ROUES : 1. LA FORCE DE GUIDAGE

Varset Direct. Batteries fixes de condensateurs basse tension Coffrets et armoires. Notice d utilisation. Armoire A2

GROUPE HOLDIM Leader mondial de l optimisation moteur. DYNORACE 2WD /DF2 Banc 2 roues motrices. Banc de puissance Disponible en 3 versions :

Concours EPITA 2009 Epreuve de Sciences Industrielles pour l ingénieur La suspension anti-plongée de la motocyclette BMW K1200S

Eléments constitutifs et synthèse des convertisseurs statiques. Convertisseur statique CVS. K à séquences convenables. Source d'entrée S1

0.8 U N /0.5 U N 0.8 U N /0.5 U N 0.8 U N /0.5 U N 0.2 U N /0.1 U N 0.2 U N /0.1 U N 0.2 U N /0.1 U N

A Électrotechnique SYSTÈME DIDACTIQUE DE COMMANDE INDUSTRIELLE SÉRIE 8036

Mesure de la dépense énergétique

Oscillations libres des systèmes à deux degrés de liberté

Généralités. Aperçu. Introduction. Précision. Instruction de montage. Lubrification. Conception. Produits. Guides à brides FNS. Guides standards GNS

MOTO ELECTRIQUE. CPGE / Sciences Industrielles pour l Ingénieur TD06_08 Moto électrique DIAGRAMME DES INTER-ACTEURS UTILISATEUR ENVIRONNEMENT HUMAIN

2 La technologie DTC ou le contrôle direct de couple Guide technique No. 1

TP 7 : oscillateur de torsion

1. Les différents types de postes de livraison On peut classer les postes HTA/BT en deux catégories.

association adilca LE COUPLE MOTEUR

INSTALLATIONS INDUSTRIELLES

1 Savoirs fondamentaux

ventilation Caisson de ventilation : MV

I- Définitions des signaux.

Relais statiques SOLITRON MIDI, Commutation analogique, Multi Fonctions RJ1P

(Exemple ici de calcul pour une Ducati 748 biposto, et également pour un S2R1000, équipé d un disque acier en fond de cloche, et ressorts d origine)

Présentation Module logique Zelio Logic 0 Interface de communication

Relais statiques SOLITRON, 1 ou 2 pôles Avec dissipateur intégré

Module 3 : L électricité

Chapitre 7: Énergie et puissance électrique. Lequel de vous deux est le plus puissant? L'énergie dépensée par les deux est-elle différente?

Convertisseurs statiques d'énergie électrique

Rencontre des savoirs. L énergie électrique est-elle bien adaptée à une mobilité durable?

CONCOURS GÉNÉRAL DES LYCÉES Session Durée 5 heures. Corrigé. Poséidon au secours d Éole pour produire l énergie électrique

Entraînements personnalisés

Réflexions pour une efficience énergétique optimale des convoyeurs

CHARGE ACTIVE. Banc d'essais de machines tournantes. Notice d'instruction. Cette notice doit être transmise. à l'utilisateur final

TD 9 Problème à deux corps

Exercice n 1: La lampe ci-dessous comporte 2 indications: Exercice n 2: ( compléter les réponses sans espaces)

DISQUE DUR. Figure 1 Disque dur ouvert

CIRCUITS DE PUISSANCE PNEUMATIQUES

Centre de tournage. et de fraisage CNC TNX65/42

ERGOMÉTRIE ERGOMÉTRIE

Toujours pionnier, Opel fait progresser la mobilité électrique

CIRCUIT DE CHARGE BOSCH

Les Mesures Électriques

MODE OPÉRATOIRE. VI) Le projet mené dans le cadre de la technologie. Le projet porte sur la réalisation d une horloge CD.

GIRAFE ENERGIES RENOUVELABLES MATERIAUX RENOUVELABLES LA SYNERGIE PARFAITE

Cahier technique n 207

I - Quelques propriétés des étoiles à neutrons

Architecture des ordinateurs TD1 - Portes logiques et premiers circuits

Actionneur d'ouvre portail

SUIVEUR SOLAIRE : Informations complémentaires

MEMOIRES MAGNETIQUES A DISQUES RIGIDES

Manuel d'utilisation de la maquette

27/31 Rue d Arras NANTERRE Tél. 33.(0) Fax. 33.(0)

Infos. Indicateurs analogiques encastrables pour installation à courants forts. Série M W/P/ LSP BWQ BGQ TP TG WQ /0S WQ /2S FQ /2 W BI BIW DFQ

Notions fondamentales sur le démarrage des moteurs

Pour les utilités, le process et l environnement. Les solutions pompes KSB.

BREVET DE TECHNICIEN SUPÉRIEUR AGRICOLE SUJET

Le triac en commutation : Commande des relais statiques : Princ ipe électronique

Volvo FE hybride Pour la distribution et la collecte des ordures

Robots CNC. WITTMANN nommé «Meilleur achat» pour les robots. Technology working for you.

Dossier de sponsoring

Actualisation des connaissances sur les moteurs électriques

ALFÉA HYBRID DUO FIOUL BAS NOX

J TB/TW Limiteur de température, contrôleur de température avec afficheur LCD, montage sur rail oméga 35 mm

Version MOVITRANS 04/2004. Description / FR

Energie et conversions d énergie

CORRIGE. CHAP 04-ACT PB/DOC Electrolyse de l eau 1/12 1. ALIMENTATION ELECTRIQUE D'UNE NAVETTE SPATIALE

Fiche technique. 1) Pour faire tourner le moteur en avant ou en arrière (deux straps)... 2

Puissances d un nombre relatif

Eau chaude Eau glacée

Multifonction 1 NO Montage sur rail 35 mm (EN 60715)

Machine à courant continu

THE POWER OF DELIVERY. Transstockeurs Plus de performances dans votre entrepôt

Monte charge de cuisine PRESENTATION DU MONTE CHARGE

COMMANDER la puissance par MODULATION COMMUNIQUER

Le monte-escalier électrique pour des charges jusqu à 330 kg

BREVET DE TECHNICIEN SUPÉRIEUR AGRICOLE SUJET

Multitension Monofonction. Multitension Multifonction

Etude du SIMULATEUR DE VOL «FLY-HO»

PRODUCTION DE L ENERGIE ELECTRIQUE

Transcription:

BREVET DE TECHNICIEN SUPÉRIEUR ÉLECTROTECHNIQUE SESSION 2009 ÉPREUVE E4.1 LE PONT DE COULÉE 65T DES FONDERIES DE SAINT GOBAIN P.A.M Étude d un système technique industriel Pré-étude et modélisation Questionnement E4.1 Page 1/14

PRÉSENTATION GÉNÉRALE L usine Saint Gobain PAM fait partie de la branche «canalisation» du groupe Saint Gobain. Elle est spécialisée dans la fabrication de tuyaux et équipements de voirie en fonte ductile. La fonte est élaborée dans des hauts fourneaux à partir de deux ingrédients principaux : a. le coke qui sert de combustible et assure l'apport de carbone, b. le minerai de fer. CONTRESENS Gaz et minerai GUEULARD Minerai+Coke Au nombre de trois, les hauts fourneaux HF1, HF2 et HF3 ont chacun une capacité de production de 80 tonnes de fonte grise. L usine fonctionne 24h/24 et produit 160 tonnes de fonte par heure. Arrivée d air chaud du COWPER Une fois la fonte liquide obtenue en sortie du haut fourneau, celle-ci subit différents traitements : une correction du taux de carbone, par ajout de ferraille, un décrassage, opération qui consiste à retirer le laitier (cendres et résidus de combustion) en suspension sur la fonte liquide, une désulfuration par adjonction de chaux, après un nouveau décrassage, le stockage dans un mélangeur, four basculant qui permet le maintien en température (environ 1450 C) de la fonte liquide avant expédition vers les zones de production. L'ensemble de ces opérations est assuré dans la halle de coulée. La manutention de la fonte liquide se fait dans des poches, à l'aide de deux ponts de coulée, d'une capacité de levage respective de 65T pour l'un et de 70 T pour l'autre. Chaque poche pèse environ 60T, dont 40T de fonte. Ventre e creus Creuset et Fonte + laitier 1500 C L étude portera sur le mouvement de translation horizontale du pont de coulée de 65T comme l indique le plan ci-dessous. Questionnement E4.1 Page 2/14

Plan de la halle de coulée. Parking Correction carbone Désulfuration Mélangeur Côté canal Pont 65T Translation horizontale Pont 70T Côté route HF 1 HF 2 HF 3 Décrassage Enjeux de l'étude Bien qu obsolètes, les technologies employées sur le pont sont éprouvées et maîtrisées par le service de maintenance. Elles sont garantes d une disponibilité maximale du pont de coulée. Cependant, pour pérenniser la production sur le site, il est primordial de moderniser cet outil en répondant à deux enjeux majeurs : Limiter les dépenses énergétiques liées à l utilisation du pont de coulée. Limiter les coûts de maintenance du pont de coulée, tant du point de vue mécanique qu électrique. La problématique sera donc la suivante : Remplacer les moteurs asynchrones à rotor bobiné existants par deux moteurs à cage. Assurer les séquences de démarrage et de freinage des moteurs par un variateur de vitesse électronique. Les contraintes : La modernisation de la chaîne de conversion d énergie ne doit en rien altérer les performances actuelles du pont de coulée. La disponibilité du pont de coulée doit rester la préoccupation majeure de cette étude. Questionnement E4.1 Page 3/14

Chaque partie A1, A2, A3, B1, est indépendante des autres. Cependant, certains renseignements utiles ne sont pas systématiquement répétés dans chaque partie. Étude de la solution actuelle A. Étude de la chaîne cinématique : détermination des performances mécaniques nécessaires au déplacement du pont Données : masse totale du pont roulant en charge : M p =90 tonnes vitesse de translation du pont : V p = 60m.min -1 FIGURE 1 : Distances parcourues par le pont roulant dans la halle de coulée pour un cycle de production de fonte PARKING ( Position initiale du pont : P) étape 1 : 20m marche AV CORRECTION CARBONE étape 2 : 10m marche AR HF1 étape 3 : 40m marche AV DECRASSAGE 1 étape 4 : 10m marche AR DESULFURATION étape 5 : 10m marche AV DECRASSAGE 2 étape 6 : 50m marche AR PARKING Retour en position de parking avec une nouvelle poche vide Questionnement E4.1 Page 4/14

A.1. Détermination de la durée d un cycle de déplacement en translation Pour évaluer la consommation énergétique du pont roulant de coulée lors des déplacements en translation horizontale, on se propose de calculer la durée totale d un cycle de production de fonte. On s intéresse à l étape 1 du mouvement du pont roulant ; le profil de vitesse est conforme au graphe ci-dessous. Vp=60m.min -1 v Parking t 1 t 2 étape 1 t Correction Carbone FIGURE 2 : Vitesse de translation du pont au cours du temps Les phases d accélération et de freinage ont des durées égales à 7 secondes dans la solution actuelle. La distance parcourue par le pont lors de chaque étape est précisée sur la figure1. A.1.1. Calculer l accélération a du pont, en m.s - ², sur l intervalle (0 ; t 1 ) sachant que la vitesse en régime établi est de 60 m.min -1. A.1.2. En déduire que la distance d a parcourue par le pont pendant une phase d accélération est de 3,5m. A.1.3. Calculer la distance d f parcourue lors du freinage. A.1.4. En déduire la distance d p parcourue à vitesse constante lors de l étape 1. A.1.5. Calculer la durée (t 2 -t 1 ) de la phase à vitesse constante de l étape 1. A.1.6. On considère que les durées de démarrage et de freinage sont les mêmes pour chaque étape du cycle figure 1, en marche avant comme en marche arrière. Remplir le tableau du document réponse n 1 permettant de calculer la durée de chaque étape. A.1.7. On ne tient pas compte des durées de travail pendant lesquelles le pont roulant ne se déplace pas en translation horizontale. Calculer la durée T d un cycle complet de translation. Questionnement E4.1 Page 5/14

A.2. Performances en régime établi : puissance et couple des moteurs de translation Le déplacement du pont roulant est assuré par deux moteurs (un pour chaque rail de guidage). On donne, figure 3, le schéma simplifié de la transmission associée à chacun des deux moteurs : MOTEUR 1 Réducteur r = 39,6 Galet diamètre 800mm rail FIGURE 3 : schéma simplifié de la transmission associée à un moteur A.2.1. La vitesse linéaire de déplacement du pont roulant est v p = 60 m.min -1. Calculer la vitesse angulaire Ω G de rotation des galets en rad.s -1, le diamètre des galets étant d G = 800 mm. A.2.2. Déterminer la vitesse angulaire Ω M de rotation du moteur compte tenu du rapport de réduction r = Ω M /Ω G = 39,6 du réducteur. A.2.3. L effort nécessaire pour vaincre la résistance au roulement est donné par : F = e M p g P ; ( e : résistance au roulement; g P : accélération de la pesanteur; M p en kg). Calculer F en prenant e = 0,004 et g p = 9,81 m.s -2. A.2.4. L effort F étant équitablement réparti sur les deux moteurs, calculer le moment du couple T G exercé sur un seul galet moteur. A.2.5. En déduire la puissance de traction P G nécessaire au niveau d un galet moteur. A.2.6. Le rendement de la transmission étant η = 94%, calculer la puissance de traction P M nécessaire au niveau d un moteur. A 2.7. Quel est le moment du couple moteur T M nécessaire à la traction? Questionnement E4.1 Page 6/14

A.3. Performances dynamiques : couple de démarrage Le moment d inertie équivalent ramené sur l arbre d un des moteurs est J = 4,6 kg.m². La charge oppose à chaque moteur un couple résistant Tr = 19 Nm constant. La vitesse de rotation est de 945 tr.min -1 en régime établi. A.3.1. Ecrire la relation fondamentale de la dynamique s appliquant à l arbre d un des moteurs de translation. A.3.2. Calculer le moment du couple de démarrage Td du moteur si la phase de démarrage a une durée de 7s. A.3.3. Lors de la modification du système actuel, on envisage de réduire de moitié les durées de démarrage. Que devient la valeur de Td si on décide de fixer la durée de démarrage à 3,5s? B. Étude énergétique de la solution actuelle Les deux moteurs du mouvement de translation étudié sont à rotor bobiné. Des résistances sont insérées en série avec le rotor lors des phases de démarrage et de freinage de manière à limiter les couples (pour éviter le patinage des galets sur les rails) ainsi que les courants d appel. FIGURE 4 : Schéma du démarreur rotorique associé à un moteur de translation horizontale B.1. Démarrage et freinage du moteur Le schéma suivant sera utilisé pour modéliser chaque phase du moteur asynchrone pour différents régimes de fonctionnement établi. Ce modèle est ramené du côté stator. La tension V a une valeur efficace V = 230V et une fréquence de 50 Hz. I est le courant de ligne. I Ir j X r R r /g I m V j X m Questionnement E4.1 Page 7/14

On donne : X m = 7,6 Ω à 50 Hz X r = 0,033Ω à 50 Hz. La résistance R r représente la résistance équivalente d une phase rotorique, ramenée côté stator. Selon les phases de fonctionnement, R r peut prendre différentes valeurs comme l indique le tableau suivant : Début de démarrage Rr = 17Ω Régime établi Début de freinage en contremarche Rr = 4 Ω Rr = 17Ω B.1.1. Calculer la pulsation de synchronisme Ωs en rad/s. B.1.2. Exprimer la valeur efficace du courant Ir en fonction des éléments Rr,g Xr et V du schéma équivalent par phase. B.1.3. Calculer les valeurs efficaces de Ir : B.1.3.1. au démarrage (g=100%) B.1.3.2. au moment où l on débute le freinage en contremarche (g=200%). B.1.4. Étude du couple : B.1.4.1. Exprimer le moment du couple électromagnétique Tem du moteur en fonction de Rr, Ir g et Ωs. B.1.4.2. Calculer les valeurs de Tem au démarrage et au freinage. Pour éviter les problèmes de patinage des galets sur les rails, le moment du couple électromagnétique doit rester inférieur à 200 Nm. Pour que la durée de démarrage puisse passer à td = 3,5s, il est nécessaire de prendre Rr =10Ω au démarrage comme au freinage. 3,5s. B.1.5. Calculer les moments des couples de démarrage et de freinage pour td = B.1.6. Cette solution convient-elle? B.2. Étude des moteurs de translation en régime établi On se propose de vérifier que le dimensionnement des moteurs de translation peut être revu à la baisse pour le régime établi. On souhaite également déterminer la puissance perdue par chaque moteur pour ce régime établi. Questionnement E4.1 Page 8/14

On négligera les pertes mécaniques et magnétiques ainsi que les pertes par effet Joule au stator. On s intéresse à l un des moteurs de translation horizontale du pont. Alimentation du moteur : 230V / 400V 50 Hz ; Fréquence de rotation du moteur : 945 tr/min B.2.1. Déterminer le nombre de pôles du moteur B.2.2. Calculer le glissement nominal B.2.3. La puissance utile nominale du moteur est de 22kW. Calculer le moment du couple utile nominal de ce moteur. Les besoins en régime établi correspondent à un couple résistant Tr = 19 Nm. B.2.4. Que peut-on en déduire quant au régime de fonctionnement du moteur? B.2.5. Calculer la puissance utile nécessaire pour le mouvement de translation du pont roulant en régime établi. B.2.6. En déduire la puissance transmise au rotor P TR si on néglige les pertes mécaniques. B.2.7. Quelle est alors la puissance active Pa absorbée par le moteur? B.2.8. Calculer l ensemble des pertes en régime établi. B.2.9. A quoi correspondent ces pertes? B.3. Énergie consommée par une étape de fonctionnement du pont. Dans un souci de simplification de l étude, on considère que la masse totale du pont M p reste égale à 90 tonnes durant l ensemble du mouvement. Le glissement des 2 moteurs de translation en régime nominal établi est de 5,5%. On rappelle que le moment d inertie du pont ramené à l axe de l un des moteur est J = 4,6 kg m² et que la vitesse Vp de translation du pont est de 60m min -1. B.3.1. Calculer l énergie cinétique Wc du pont en déplacement à vitesse nominale. B.3.2. L énergie dissipée par effet Joule dans les résistances rotoriques peut se calculer lors des phases transitoires de démarrage et de freinage par la relation en valeur absolue : W = J Ω s ² ( g f² g i ²) 2 avec : Questionnement E4.1 Page 9/14

W : énergie en joules (1 moteur) Ω s : pulsation de synchronisme (rad/s) g f : glissement en fin de phase transitoire g i : glissement en début de phase transitoire B.3.2.1. Quelle est la valeur du glissement au démarrage? B.3.2.2. Calculer l énergie Wr dissipée par effet Joule dans les résistances rotoriques d un moteur lors d une phase transitoire de démarrage vers le régime de vitesse nominale? B.3.2.3. En vous aidant des résultats des questions B.3.1. et B.3.2.1., montrer que le réseau doit fournir au système une énergie Wd = 95 kj au démarrage afin de compenser les pertes des moteurs et assurer la translation du pont. B.3.2.4. Lors d un freinage en contremarche, l opérateur inverse deux phases de chaque moteur. La valeur du glissement au moment de la commutation devient g = 200%. Quelle sera la valeur du glissement à l arrêt complet du moteur? B.3.2.5. Quelle est l énergie W f dissipée dans les résistances rotoriques lors de la phase de freinage, jusqu à l arrêt complet, pour les deux moteurs? B.3.2.6. Cette énergie W f provient de l énergie cinétique du pont et de l énergie de freinage W fr que le réseau doit fournir en complément. Montrer que le réseau doit fournir au système une énergie W fr = 105 kj pour assurer le freinage en contremarche. B.4. Bilan énergétique sur un cycle de fonctionnement B.4.1. En utilisant le cycle complet de fonctionnement défini sur la figure 1, calculer l énergie W dt fournie par le réseau pour l ensemble des phases de démarrage en considérant qu elles sont toutes identiques. B.4.2. De même, calculer l énergie W frt fournie par le réseau pour l ensemble des phases de freinage en considérant qu elles sont toutes identiques. B.4.3. La durée totale des 6 phases en régime établi est de 98s et chaque moteur absorbe alors une puissance de 1990 W. Calculer l énergie W et que le réseau doit fournir pour l ensemble des phases de fonctionnement en régime établi. B.4.4 Calculer l énergie totale W tot que doit fournir le réseau pour assurer le fonctionnement en translation du pont sur un cycle complet défini figure 1. B.4.5. Quelles sont les phases de fonctionnement les plus consommatrices d énergie? Questionnement E4.1 Page 10/14

C. Étude de la solution proposée Pour améliorer le fonctionnement du pont roulant, la motorisation existante sera remplacée par un moteur asynchrone à cage, piloté par un variateur de vitesse électronique. Ainsi, les séquences de démarrage et de freinage par insertion de résistances, fortement consommatrices d énergie, seront supprimées. Les phases transitoires sont à présent gérées par le variateur de vitesse. Cela améliore la souplesse de conduite du pont par l opérateur, évite les à-coups et le patinage des galets sur les rails. C.1. Puissances de freinage et de démarrage : On considère une étape de fonctionnement du pont roulant. La charge impose un couple résistant de moment Tr = 19 Nm en régime établi. Les profils de vitesse et de couple pour un moteur de translation horizontale sont donnés sur le document réponse 2. C.1.1. Tracer en concordance des temps le graphe donnant la puissance mécanique Pm de la machine asynchrone sur le document réponse 2. C.1.2. En déduire : C.1.2.1. la puissance maximale de freinage P frmax C.1.2.2. la puissance moyenne de freinage P frmoy calculée sur la durée t f du freinage. C.1.3. Sachant que le rendement η d est de 60% sur la phase de démarrage, montrer que la puissance moyenne Pd consommée par un moteur est de 12,5 kw sur cette phase. C.1.4. Compte tenu des profils de vitesse et de couple sur le document réponse 2, quel est le comportement de la machine asynchrone (moteur : M ou génératrice : G ) lors des trois phases? on répondra directement sur le document réponse 2. C.2. Constitution du variateur de vitesse - Réversibilité. On donne sur le document réponse 1 un schéma de la constitution interne du variateur électronique de vitesse. Celui-ci est alimenté par le réseau 230V/400V 50 Hz triphasé. C.2.1 Indiquer sur le document réponse 1, les différentes fonctions représentées dans la structure du variateur de vitesse pour les éléments 1,2,3 et 4. C.2.2. Lors d une phase de freinage, l énergie cinétique des machines est convertie en énergie électrique. C.2.2.1. Pourquoi ne peut-on pas envisager une récupération par le réseau de cette énergie avec la structure proposée? C.2.2.2. On rappelle que l énergie emmagasinée par le condensateur peut s écrire : W = ½ C U 0 ². Le transistor T F est commandé par la tension aux bornes du condensateur comme l indique le schéma simplifié suivant : Questionnement E4.1 Page 11/14

785 V 540 V u 0 (t) 0 T F ouvert T F fermé T F ouvert T F fermé T F ouvert T F fermé t Justifier que la tension u 0 (t) augmente lorsque le transistor T F est bloqué (interrupteur ouvert). C.2.2.3. De même, pourquoi la tension u 0 (t) diminue-t-elle lorsque T F est passant (interrupteur fermé)? C.2.2.4. La tension U 0 est limitée à 785V. Calculer l énergie W cond que doit libérer le condensateur pour retrouver sa tension initiale, si sa capacité est C = 2000 µf C.2.2.5. Combien de cycles de charge-décharge devra subir le condensateur pour dissiper une énergie de 45kJ en une durée de 3,5 s? C.2.2.6. En déduire la fréquence f H de fonctionnement du transistor T F puis la période T H correspondante. C.2.2.7. Calculer finalement la puissance moyenne que la résistance R F devra dissiper. C.2.3. Quelles sont les phases où le réseau doit fournir de la puissance active aux machines? (démarrage, régime établi, freinage) C.3. Consommation énergétique C.3.1. Dans cette solution avec variateur de vitesse : L énergie fournie par le réseau aux moteurs, lors des phases de démarrage, a pour valeur W d = 525 kj. L énergie fournie lors des phases à vitesse constante vaut W et = 438 kj. L énergie fournie est nulle lors des freinages. Calculer l énergie totale fournie sur un cycle avec cette solution. C.3.2. À l aide des questions B.4.4. et C.3.1., comparer les deux solutions du point de vue énergétique en mettant en évidence les phases de fonctionnement où une réelle économie est réalisée. Questionnement E4.1 Page 12/14

DOCUMENT RÉPONSE 1 (à rendre avec la copie) ETAPE durée accélération + freinage Distance parcourue à vitesse constante Durée de la phase à vitesse constante durée totale de l étape 1 7s+7s=14s 2 14s 3 14s 4 14s 5 14s 6 14s M 3 ~ L I 0 Réseau triphasé 400V/50Hz C u 0 (t) R F T F M 3 ~ 1 2 3 4 fonction Questionnement E4.1 Page 13/14

DOCUMENT RÉPONSE 2 (à rendre avec la copie) Les proportions ne sont pas scrupuleusement respectées Ω (rad/s) 100 t d = t f = 3,5s 0 t d t f t Tu(Nm) 150 19 t -116 Pm( kw) 0 t Comportement machine Questionnement E4.1 Page 14/14