CHAPITRE A BASES GENETIQUES



Documents pareils
CHAPITRE 3 LA SYNTHESE DES PROTEINES

Dr E. CHEVRET UE Aperçu général sur l architecture et les fonctions cellulaires

Chapitre 7 : Structure de la cellule Le noyau cellulaire

Séquence 1. Reproduction conforme de la cellule et réplication de l ADN Variabilité génétique et mutation de l ADN

Biomarqueurs en Cancérologie

Bases moléculaires des mutations Marc Jeanpierre

INFORMATION GÉNÉTIQUE et REPRODUCTION SEXUÉE

LA MITOSE CUEEP - USTL DÉPARTEMENT SCIENCES BAHIJA DELATTRE

1 les caractères des êtres humains.

De la physico-chimie à la radiobiologie: nouveaux acquis (I)

Information génétique

Les tests génétiques à des fins médicales

Les OGM. 5 décembre Nicole Mounier

Les renseignements suivants sont destinés uniquement aux personnes qui ont reçu un diagnostic de cancer

TD de Biochimie 4 : Coloration.

Hépatite chronique B Moyens thérapeutiques

MAB Solut. vos projets. MABLife Génopole Campus 1 5 rue Henri Desbruères Evry Cedex. intervient à chaque étape de

Les tests de génétique moléculaire pour l accès aux thérapies ciblées en France en 2011

Univers Vivant Révision. Notions STE

1 Culture Cellulaire Microplaques 2 HTS- 3 Immunologie/ HLA 4 Microbiologie/ Bactériologie Containers 5 Tubes/ 6 Pipetage

Introduction générale

ANTICORPS POLYCLONAUX ANTI IMMUNOGLOBULINES

Plateforme Transgenèse/Zootechnie/Exploration Fonctionnelle IBiSA. «Anexplo» Service Transgenèse. Catalogue des prestations

MYRIAD. l ADN isolé n est à présent plus brevetable!

Marquage CE et dispositifs médicaux

Transport des gaz dans le sang

Travaux dirigés de Microbiologie Master I Sciences des Génomes et des Organismes Janvier 2015

Génétique et génomique Pierre Martin

Conférence technique internationale de la FAO

ULBI 101 Biologie Cellulaire L1. Le Système Membranaire Interne

DIAPOSITIVE 1 Cette présentation a trait à la réglementation sur les thérapies cellulaires.

Transport des gaz dans le sang

I. La levure Saccharomyces cerevisiae: mode de vie

UE : GENE Responsable : Enseignant : ECUE 1. Enseignant : ECUE 2. Dr COULIBALY Foungotin Hamidou

Coordinateur Roland Calderon

Gènes Diffusion - EPIC 2010

AMINES BIOGENIQUES. Dopamine/Noradrénaline/Adrénaline (CATECHOLAMINES) Sérotonine/Histamine/Dopamine

Contrôle de l'expression génétique : Les régulations post-transcriptionnelles

3: Clonage d un gène dans un plasmide

EXERCICES : MECANISMES DE L IMMUNITE : pages

LA TRANSMISSION DES CARACTÈRES

4 : MÉTHODES D ANALYSE UTILISÉES EN ÉCOLOGIE MICROBIENNE

Cellules procaryotes Service histologie Pr.k.mebarek

Séquence 2. L expression du patrimoine génétique. Sommaire

SESSION 2013 ÉPREUVE À OPTION. (durée : 4 heures coefficient : 6 note éliminatoire 4 sur 20) CHIMIE

Université de Montréal. Développement d outils pour l analyse de données de ChIP-seq et l identification des facteurs de transcription

IMMUNOLOGIE. La spécificité des immunoglobulines et des récepteurs T. Informations scientifiques

évaluation des risques professionnels

des banques pour la recherche

Bases de données des mutations

Les débuts de la génétique

Qu est-ce qu un test génétique?

Exercices de génétique classique partie II

Leucémies de l enfant et de l adolescent

2 C est quoi la chimie?

Journée SITG, Genève 15 octobre Nicolas Lachance-Bernard M.ATDR Doctorant, Laboratoire de systèmes d information géographique

ACIDES BASES. Chap.5 SPIESS

Le don de moelle osseuse :

I - CLASSIFICATION DU DIABETE SUCRE

SITUATION PROFESSIONNELLE

Chapitre 2 - Complexité des relations entre génotype et phénotype

VI- Expression du génome

AGRÉGATION DE SCIENCES DE LA VIE - SCIENCES DE LA TERRE ET DE L UNIVERS

Les outils de génétique moléculaire Les techniques liées aux acides nucléiques

Rôle des acides biliaires dans la régulation de l homéostasie du glucose : implication de FXR dans la cellule bêta-pancréatique

5.5.5 Exemple d un essai immunologique

Le rôle de l endocytose dans les processus pathologiques

Vieillissement moléculaire et cellulaire

Mise en place d une solution automatique de stockage et de visualisation de données de capture des interactions chromatiniennes à l échelle génomique

Bulletin officiel n 29 du 19 juillet 2012 Sommaire

La reconnaissance moléculaire: la base du design rationnel Modélisation moléculaire: Introduction Hiver 2006

Physiopathologie : de la Molécule à l'homme

L universalité et la variabilité de l ADN

Module 5 La maturation de l ARN et le contrôle post-transcriptionnel chez les eucaryotes

THESE. présentée DEVANT L UNIVERSITE DE RENNES I. Pour obtenir. Le grade de : DOCTEUR DE L UNIVERSITE DE RENNES I. Mention : Biologie PAR

Détection des duplications en tandem au niveau nucléique à l'aide de la théorie des flots

Semestre 2 Spécialité «Analyse in silico des complexes macromolécules biologiques-médicaments»

A Belarbi, ZC Amir, MG Mokhtech, F Asselah Service d Anatomie et de Cytologie Pathologique CHU Mustapha Alger

Qu est-ce que la maladie de Huntington?

L axe 5 du Cancéropole Nord Ouest

Symposium des Société Française d Angéiologie (SFA) et Société Francophone de Médecine Sexuelle (SFMS), Paris, Journées internationales Francophones

Dépistage drépanocytose. Édition 2009

Les tests de génétique moléculaire pour l accès aux thérapies ciblées en France en 2010

La surveillance biologique des salariés Surveiller pour prévenir

Introduction aux bases de données: application en biologie

Master en Biochimie et Biologie moléculaire et cellulaire (BBMC)

CATALOGUE DES PRESTATIONS DE LA

STRUCTURE ET FONCTION DES PLURICELLULAIRES

Eléments d'information. sur le Téléthon

l'institut Paoli-Calmettes (IPC) réunit à la Villa Méditerranée les 29 et 30 mai 2015

Autisme Questions/Réponses

Diagnostic des Hépatites virales B et C. P. Trimoulet Laboratoire de Virologie, CHU de Bordeaux

Qu est-ce que la PACES?

Plateforme. DArT (Diversity Array Technology) Pierre Mournet

THEME : CLES DE CONTROLE. Division euclidienne

Radiofréquences et santé

Les Parcours Scientifiques et les Ecoles Doctorales

Parrainage par Monsieur Philippe PAREIGE de notre classe, presentation des nanotechnologies.

Brest (29) Lessay (50), Mars 2012

Transcription:

CHAPITRE A BASES GENETIQUES TOUT CE QUE VOUS AVEZ TOUJOURS VOULU SAVOIR SUR LA GÉNÉTIQUE..SANS JAMAIS AVOIR OSÉ LE DEMANDER Nos séquences d ADN se perdent dans la nuit des temps ce qui compte le plus : les gènes immortels ou l individu qui exprime leur combinaison transitoire? Jacques RUFFIE (Traité du Vivant) 701

PLAN A. INTRODUCTION B. LE GENOME HUMAIN D. CARTOGRAPHIE GENETIQUE DES MALADIES : DE LA RECHERCHE À LA CLINIQUE I. L ACIDE DESOXYRIBONUCLEIQUE (ADN) ET LE CYCLE CELLULAIRE II. ORGANISATION DU GENOME I. LA MALADIE A T ELLE UNE COMPOSANTE HEREDITAIRE? II. COMMENT IDENTIFIER LES GENES RESPONSABLES? III. GENE, CODE GENETIQUE ET SYNTHESE DES PROTEINES III. LES CARTES ET LES MARQUEURS DU GENOME IV. DIVISION CELLULAIRE SOMATIQUE ET GAMETIQUE 1. MARQUEURS GÉNÉTIQUES 2. CARTES GÉNÉTIQUES DE LIAISON 3. CARTES PHYSIQUES C. LES ALTERATIONS DU GENOME ET LEURS MODES DE TRANSMISSION I. MUTAGENESE ET ANTI-MUTAGENESE 1. ERREUR DE RÉPLICATION 2. ALTÉRATIONS PHYSICO-CHIMIQUES DE L ADN 3. ALTÉRATIONS DE L ADN ET CONTRÔLE DU CYCLE CELLULAIRE II. NATURE DES MUTATIONS 1. MUTATIONS GÉNIQUES (FIG. 28) 2. ANOMALIES CHROMOSOMIQUES (FIG. 34) IV. LES METHODES STATISTIQUES EN GENETIQUE 1. L ANALYSE DE LIAISON GÉNÉTIQUE 2. LES ANALYSES D ASSOCIATION 3. LES ANALYSES D UN CARACTÈRE QUANTITATIF V. RECHERCHE DE MUTATIONS OU POLYMORPHISMES 1. RECHERCHE DE MUTATIONS OU POLYMOR- PHISMES CONNUS 2. RECHERCHE DE MUTATIONS OU POLYMOR- PHISMES INCONNUS 3. TECHNIQUES UTILISÉES EN BIOLOGIE MOLÉ- CULAIRE POUR LA MISE EN EVIDENCE D ALTÉ- RATIONS GÉNÉTIQUES 4. APPLICATIONS CLINIQUES : LES MALADIES À COMPOSANTE GÉNÉTIQUE 702

BASES GENETIQUES A. INTRODUCTION La génétique médicale est sortie du cadre des maladies rares, dites orphelines. Longtemps cantonnée aux syndromes malformatifs et aux maladies métaboliques de l enfant, elle s applique maintenant aux maladies communes de l adulte pour mieux comprendre leur physiopathologie (à l échelon moléculaire) et isoler de leur composante génétique des marqueurs diagnostiques et de nouvelles cibles thérapeutiques. Chaque individu est porteur d un matériel génétique qui le caractérise. Son développement et son vieillissement ne sont pas indépendants de son milieu, de son environnement et de son alimentation. Ces deux types de facteurs, génétiques (génotype) et non génétiques (facteurs environnementaux ou écologiques ou épigénétiques ou mésologiques), sont difficilement dissociables et contribuent à définir le phénotype de l individu. Cependant, l effet des facteurs mésologiques se fait ressentir sur le phénotype dans les limites définies par les processus génétiques. Ainsi, l information génétique de l individu définit l ampleur des variations qu il pourra supporter de son milieu. C est ce que l on définit sous le terme de concept d adaptation. L ampleur de ces variations est fonction également du type de caractère étudié, qu il soit normal ou morbide. Cette notion est essentielle à la compréhension des variations climatériques et diachroniques de l homme et de ses maladies. L impact des facteurs environnementaux (alimentation, pollution, radiations,..) dans l étiopathogénie des maladies repose sur une susceptibilité génétique à ces facteurs. Ce qui détermine des facteurs de risques définis par les interactions entre génotype et environnement, Ecogenetics ou environmental genetics des anglo-saxons. La réponse thérapeutique ou les effets adverses des médicaments répondent également à ce modèle génétique et ont permis le développement de la pharmacogénétique (bases génétiques de la réponse aux médicaments) et de la pharmacogénomique (découverte de nouveaux médicaments à partir de la découverte de nouveaux gènes). De grands programmes scientifiques, tant publics que privés, sont en cours pour déc rypter les séquences du génome humain et leurs fonctionnalité. Ces recherches fourniront les bases nécessaires à l identification des variations (polymorphismes) de certaines régions du génome humain et de leur traduction phénotypique en terme physiologique, pathologique ou pharmacologique. Le développement des techniques de biologie moléculaire et les corrélations génotype-phénotype en épidémiologie et pathologie moléculaire ont apporté une nouvelle vision nosologique des maladies où classification et histoire moléculaire se superposent progressivement aux classifications anatomo-cliniques et à l histoire naturelle des maladies. Le fait que les altérations moléculaires soient inscrites dans le génome avant leur traduction phénotypique permet d envisager leur identification comme des marqueurs prédictifs de la genèse ou de leur progression et définit ainsi les champs d application de la médecine moléculaire, prédictive voire préventive. 703

B. LE GENOME HUMAIN I. L ACIDE DESOXYRIBONUCLEIQUE (ADN) ET LE CYCLE CELLULAIRE Toutes les cellules somatiques d un individu possèdent le même matériel génétique, ou génome. Ces cellules sont diploïdes par opposition aux cellules germinales destinées à la reproduction. Elles possèdent en effet deux fois un nombre de base (n) dit haploïde de chromosomes à savoir n = 23 dans l espèce humaine. Chaque lot haploïde (n=23) de chromosomes est issu de chacun des deux parents, donnant pour chaque individu des cellules somatiques diploïdes (2n) à 46 chromosomes. Les chromosomes sont situés dans le noyau de la cellule et contiennent de l acide désoxyribonucléique (ADN) (Fig. 1). En 1953, James Watson et Francis Crick proposèrent comme modèle de structure de l ADN la forme double hélicoïdale bien connue actuellement. Ce qui, dans la structure double hélice de l ADN (Fig. 2), est responsable du code génétique consiste en la succession précise des paires de nucléotides (base + sucre + phosphate) contenant des bases spécifiques puriques: Adénine et Guanine ou pyrimidiques : Thymine et Cytosine. L ADN est donc une molécule bicaténaire : double brin où les deux hélices sont emboîtées et orientées en sens inverse (les deux brins d ADN sont antiparallèles 5 3 & 3 5 ). Chaque hélice est une chaîne de nucléotides où une purine (A ou G) est toujours en face d une pyrimidine (T ou C) (Fig. 3). La connaissance de ce modèle est naturellement primordiale en génétique. Cette structure permet en effet la réplication de l ADN et la colinéarité des séquences d ADN et des acides aminés qui composent les polypeptides (protéines) codés par le génome. Les deux chaînes nucléotidiques, face à face, sont parfaitement complémentaires et peuvent, après leur séparation, servir de modèle pour la réplication d une nouvelle chaîne complémentaire au cours de la division cellulaire ou servir à la synthèse d un Acide RiboNucléique messager : ARNm qui transmettra l information génétique en une séquence lisible pour la synthèse des protéines (Fig. 4). La synthèse de l ADN se produit pendant la phase S du cycle cellulaire (Fig. 5a). Elle débute simultanément en de nombreux points ou réplicons et progresse de façon bidirectionnelle jusqu à ce que deux réplicons adjacents entrent en contact. La synthèse d un brin d ADN n est possible que dans le sens (5 3 ). Sur le brin orienté en sens inverse (3 5 ), la synthèse se fait de façon discontinue par petites séquences de 1 à 2 kilobases appelées fragments d Okazaki. Elle s explique par analogie à une sorte de fermeture à glissière (Fig. 5b). Si l analogie est exacte, l ouverture va exposer les bases nucléotidiques qui, les règles de l appariement étant très strictes, ne peuvent s apparier à nouveau qu avec des bases complémentaires (Adénine avec la Thymidine, Cytosine avec la Guanine). Chaque hélice simple sert donc de modèle à la formation d une nouvelle hélice double semblable à celle de départ. Ce système de réplication implique également que la molécule fille contienne une des chaînes parentales et une chaîne nouvellement synthétisée, selon un mode semiconservatif. La réplication de l ADN est contrôlée par un système enzymatique hautement spécialisé. Il fait interv e n i r, entre autre, une famille d enzymes clef : les DNA polymérases et des petites molécules d ARN composées de 5 à 10 nucléotides ou amorces (primer) synthétisés par la DNA primase et qui initient la synthèse au niveau des réplicons. Cette étape physiologique, transposée au laboratoire, est à la base de la technique d amplification in vitro de l ADN (Polymerase Chain Reaction : PCR) (Fig. 6). Au cours de la réplication de l ADN, d autres enzymes sont essentielles comme la DNA hélicase ou la DNA ligase. Certaines, comme la DNA topoisomérase, constituent ainsi des cibles thérapeutiques pour la chimiothérapie des cancers (Fig. 7). La connaissance d autres protéines impliquées dans la réplication de l ADN au cours du cycle cellulaire, (comme le Proliferating Cell Nuclear Antigen : PCNA ou le Ki67), a permis de développer à partir de ces protéines des marqueurs de la prolifération cellulaire (Fig. 8). La régulation du cycle cellulaire dépend de différentes voies signalétiques intervenant essentiellement entre les phases G1 et S. A ce niveau, le cycle est schématiquement régulé par dégradation ou induction de cyclines. Les inhibiteurs de cyclines (CDKIs) peuvent inhiber le cycle cellulaire en réponse à de nombreux signaux impliquant des gènes majeurs comme p53 (protéine du gène TP53) 704

Cellules Chromosome Noyau Filament d ADN Mitochondrie Figure 1 : Le Génome Bases Puriques Bases Pyrimidiques Figure 2: Structure de l ADN 705

3 5 Liaison hydrogène S: Sucre désoxyribose P: Phosphate 2 nm Figure 3 :Structure de l ADN 706

Noyau ARNm ADN ARN messager Cytoplasme Protéine ARN de transfert Figure 4: Synthèse des protéines 3 5 M= Mitose G1= Cellule 2N S= Synthèse de l ADN (2NË4N) G2= Cellule 4N G0= Cellule hors cycle FO FO= Fragment d OKAZAKI Figure 5a: Phases du cycle cellulaire Figure 5b: Réplication de l ADN 707

Figure 6: PCR (polymerase chain reac - tion) Figure 7 : Cycle cellulaire et anticancéreux 708

A B Figure 8 : Marqueurs du cycle cellulaire. Marquarge en Immunohistochimie. A= PCNA - B=Ki67 Figure 8 bis: Cycle cellulaire 709

ou prb (protéine du gène RB1). Ces inhibiteurs de kinase peuvent être regroupés en 2 grandes familles: les CIP/KIP (p21, p27, p57) capables d inhiber toutes les cyclines de la phase G1 et les inhibiteurs de la famille INK4 (p15, p16, p18, p19) inhibant seulement les cyclines D (CDK 4 et CDK 6) (Fig. 8bis). Une enzyme, appelée télomérase, est spécialisée dans la réplication de l ADN au niveau des télomères. Les télomères sont des structures situées aux extrémités des chromosomes de toutes les cellules eucaryotes. Ces structures ont été séquencées chez l homme. Elles se présentent sous forme d héxanucléotides (TTAGGG) répétés en tandem. La télomérase est une nucléoprotéine constituée de l association de sous-unités codées par le gène htr (human Telomerase RNA) (3q26.3) pour la matrice ARN et par le gène htrt (human telomerase reverse transcriptase) (5p15.33) pour la sous-unité catalytique de la composante protéique. Au cours de la division cellulaire, une diminution de la taille des séquences des télomères est observée dans les cellules normales somatiques. Cette réduction de la taille télomérique est liée au problème de «fin de réplication». Au bout d un certain nombre de divisions, les télomères vont atteindre une taille critique qui est corrélée avec la mort physiologique de la cellule (horloge biologique). D ou l implication des télomères dans le phénomène de sénescence. En revanche, dans les cellules à division infinie (cellules souches, certaines cellules cancéreuses), la taille des télomères est stabilisée par une enzyme : la télomérase. Il s agit d une ribonucléoprotéine dont la partie ARN a été séquencée récemment chez l homme. Une fraction de cette séquence, qui est complémentaire de la structure primaire des télomères humains, sert de matrice à la télomérase pour la synthèse des extrémités télomériques. Le maintien de la taille des télomères est une étape critique dans l immortalisation des cellules. L activité de la télomérase a été détectée, selon la méthode TRAP-PCR, dans un grand nombre de cancers d origine humaine. En revanche, elle reste absente dans les tissus somatiques normaux. A l issue de ces résultats, la détection de l activité de la télomérase pourrait constituer un marqueur intéressant dans le diagnostic de certaines tumeurs (Fig. 9). II. ORGANISATION DU GENOME Une seule cellule humaine contient dans son ADN environ 3 milliards de paires de nucléotides (ou p a i res de bases :pb) ( 3 x 1 09 pb ou 3 millions de kilobase (kb) ou 3000 mégabases (Mb)) (Fig. 10). On peut ainsi estimer la longueur physique d un filament d ADN à environ 2,2 m. Ceci implique une structure complexe de repliement de l ADN au sein du noyau cellulaire. Chez les eucaryotes, l ADN et ses protéines associées (histones) forment la chromatine dont la structure a été comparée à celle d un collier de perles ( n u c l é o s o m e s ). Chaque nucléosome est formé de 8 protéines de type histone entourées d un 3/4 de spirale d ADN (soit environ 140 bases). Ce filament, ponctué de nucléosomes, présente encore une spiralisation et même une superspiralisation sous forme de solénoïde engendrant des filaments plus gros encore (Fig. 11). Cette structure plus ou moins condensée de la chromatine est corrélée aux activités fonctionnelles des gènes. Le plus haut niveau de condensation est observé au cours de la division cellulaire et correspond aux chromosomes alors visibles en microscopie o p t i q u e. Les chromosomes possèdent alors 2 chromatides reliées au niveau du centromère, c o n s t r i c t i o n (primaire) du chromosome et des extrémités appelées télomères. Chaque chromosome présente deux bras : un long (q) et un court (p) séparés par le centromère (Fig. 12). La technique du caryotype permet de reconnaître les chromosomes les uns des autres, de les classer par taille et d identifier des remaniements chromosomiques, en fonction d un marquage chimique des chromosomes, sous forme de bandes perpendiculaires à l axe de leurs chromatides. (Fig.13). Le caryotype normal présente 46 chro m o s o m e sc l a s- sés en 1 paire de chromosomes sexuels, l e s g o n o- s o m e s, identiques chez la femme (XX) et diff é r e n t s chez l homme (XY) et 22 paires de chro m o s o m e s (classés de 1 à 22) identiques chez les 2 sexes, l e s autosomes (Fig. 13 bis). Le caryotype nécessite une étape de culture cellulaire afin de bloquer, par la colchicine, les cellules pendant l étape de métaphase de la division cellulaire ou mitose. Seules des anomalies chromosomiques majeures sont détectées par le caryotype. La majorité des maladies génétiques non dysmorphiques et des altérations génétiques prédisposantes aux maladies communes sont dues à des altérations génomiques ponctuelles non détectables par 710

Figure 9 : Télomères et télomérase 711

Figure 10 :Taille des génomes modèles Figure 11: Structure de l ADN 712

Télomère satellite chromosome X «banding» nomenclature internationale bras court p centromère bandes Q et G positives bandes R négatives constriction secondaire bras long q bandes Q et G négatives bandes R positives Télomère chromosome type standard index centrométrique = c = p p + q chromosome 1 = 48,6 chromosome 21 = 28,6 Figure 12: Chromosome Figure 13: Techniques du caryotype 713

La liste suivante illustre l emploi de la nomenclature [International System for Human Cytogenetic Nomenclature (ISCN 1985)] dans les principaux types d anomalies chromosomiques humaines. 46, XX Caryotype féminin normal à 46 chromosomes (deux chromosomes X) 46, XY Caryotype masculin normal à 46 chromosomes (un chromosome X et un chromosome Y) 47,XXY Caryotype à 47 chromosomes (deux chromosomes X et un chromosome Y) 47, XY,+21 Caryotype à 47 chromosomes (un chromosome X et un chromosome Y) dont un chromosome 21 supplémentaire (trisomie 21) 13p Bras court d un chromosome 13 13q Bras long d un chromosome 13 13q14 Région 1, bande 4 du bras long d un chromosome 13 13q14.2 Région 1, bande 4, sous-bande 2 du bras long d un chromosome 13 2q- Perte d un segment du bras long d un chromosome 2 del(2) Délétion sur un chromosome 2 del(2)(q21ëqter) Délétion terminale (ter) du chromosome 2, avec point de cassure dans la région 2, bande 1 du bras long (2q21) inv(4) Inversion sur le chromosome 4 inv(4)(p11q21) Inversion péricentrique : inversion sur le chromosome 4, entre les deux points de cassure dans la région 1, bande 1 du bras court (4p11) et la région 2, bande 1 du bras long (4q21) dup(1) Duplication sur un chromosome 1 inv dup(1) Duplication inversée sur un chromosome 1 inv dup(2)(p23ë24) Duplication inversée dans la région 2 du bras court d un chromosome 2, avec points de cassure dans les bandes 3(2p23) et 4(2p24) r(13) Chromosome 13 en anneau (du à deux délétions) i(xq) Isochromosome pour le bras long de l X dic(y) Chromosome Y dicentrique idic(x) Chromosome X isodicentrique t(2;5) Translocation réciproque entre un chromosome 2 et un chromosome 5 t(2q - ;5q+) Translocation réciproque entre les chromosomes 2 et 5, raccourcissant le bras long du 2 et rallongeant celui du 5 t(2;5)(q21;q31) Translocation réciproque entre un chromosome 2 et un chromosome 5, avec points de cassure dans la région 2, bande 1 du bras long du 2 (2q21) der(2) Chromosome dérivant du chromosome 2 t(13q14q) Translocation robertsonienne : fusion centrique équilibrée entre les bras longs des chromosomes 13 et 14. Il en résulte un chromosome unique ins(5) Insertion dans un chromosome 5 ins(5 ;2)(p14 ;q22q32) Insertion directe dans le bras court du chromosome 5 au niveau de la région 1, bande 4 (5p14), d un frag ment provenant du bras long du chromosome 2 et limité par des cassures en région 2, bande 2 et région 3, bande 2 fra(x)(q27.3) Site fragile : chromosome X avec un point de cassure dans la région 2, bande 7, sous-bande 3 de son bras long (Xq27.3) Figure 13 bis: Nomenclature des chromosomes et des principales anomalies chromosomiques 714

Légende : coloration des chromosomes en bandes Q : Quinacrine G : Protéolyse + Giemsa R : Chaleur + Giemsa C : Traitement ionique + Giemsa Figure 13: Technique du caryotype 715

le caryotype. De nouvelles techniques de marquage des chromosomes directement sur coupes tissulaires (FISH) ou in vitro ( C G H ) (Fig. 14) ont été développées ces dernières années et permettent d étudier des remaniements chromosomiques sur des populations cellulaires hétérogènes comme le sont les tumeurs. Les séquences d ADN constituant le génome humain sont hétérogènes. Cette séquence est structurée à 30% en unités fonctionnelles appelées gènes et à 70% en séquences extragéniques dont la fonction n est pas connue au moins pour une partie d entre elles. Elles ne sont pas vitales car elles ont été éliminées du génome de certaines espèces animales ou végétales (espèces à génome condensé). Cet ADN non fonctionnel extragénique est constitué à environ 20% de séquences répétitives, comme l ADN satellite, riches en paires G-C ou en paires A-T. Cet ADN répétitif contient des séquences variables (polymorphiques) et spécifiques de régions chromosomiques qui peuvent servir de marqueurs pour établir des cartes génétiques (Fig. 15). Le gène peut être défini comme un segment de l ADN correspondant à une unité de l information génétique dont la séquence correspond à une protéine qui en assurera la fonction. Récemment, J. Weissenbach a suggéré que le génome humain contiendrait vraisemblablement e n v i ron 56000 gènes et non 100000 comme les premières estimations le laissaient penser. Au total, l ADN intragénique codant (exonique) pour des protéines ne représenterait que moins de 10% du génome total. L importance de l ADN non codant ne doit cependant pas être sous estimé car il joue probablement un rôle essentiel dans le régulation de l expression de l ADN codant. 716