Les fonction affines EXERCICE 1 : Voir le cours EXERCICE 2 : Optimisation 1) Traduire, pour une semaine de location, chaque formule par une écriture de la forme (où x désigne le nombre de kilomètres parcourus pour la semaine de location) : La fonction f est une fonction constante : La fonction g est définie par morceaux : f (x) = 850 si x 2000 on a : g(x) = 700 si x > 2000 on a : g(x) = 700 + 0, 3(x 2000) = 700 + 0, 3x 0, 3 2000 = 100 + 0, 3x La fonction h est une fonction affine : h(x) = 53 7 + 0, 28x = 371 + 0, 28x 2) Représenter graphiquement ces trois formules de location, dans le cas décrit à la question précédente, dans un même repère. PAUL MILAN 1/ 7 3 février 2010
Pour représenter la fonction f entre 0 et 3000 km, on trace une droite parallèle à l axe des abscisses qui passe par les points A et B Pour représenter la fonction g, il faut calculer trois immages : g(0) = 700 g(2000) = 700 g(3000) = 100 + 0, 3 3000 = 1000 On obtient alors les trois points C(0, 700), D(2000, 700), E(3000, 1000). Pour représenter la fonction h, il faut calculer deux images : h(0) = 371 h(3000) = 371 + 0, 28 3000 = 1211 On obtient alors les deux points F(0, 371) et G(3000, 1211). 3) Déterminer la formule la plus avantageuse pour une semaine de location en fonction du nombre de kilomètres parcourus de deux manières différentes a) avec le graphique On détermine graphiquement les abscisses des point I et J. on trouve alors : Si on effectue moins de 1175 km, la formule 3 est plus avantageuse. Si on effectue entre 1175 et 2500 km, la formule 2 est plus avantageuse. Si on effectue plus de 3000 km, la formule 1 est plus avantageuse. b) par le calcul. Pour déterminer l abscisse du point I, il faut résoudre : h(x) = g(x) 371 + 0, 28x = 700 0, 28x = 700 371 x = 329 0, 28 = 1175 PAUL MILAN 2/ 7 3 février 2010
Pour déterminer l abscisse du point J, il faut résoudre : g(x) = f (x) 0, 3x + 100 = 850 x = 750 0, 3 = 2500 4) Un client a choisi la formule 1 pour deux semaines de vacances. Il a parcouru 4500 kilomètres. A-t-il fait le bon choix? Calculons le prix pour deux semaines avec 4500 km pour le trois trois formule. Formule 1 : on a deux forfaits à 850 soit 1700 e Formule 2 : on a deux forfaits à 700 et 500 km à 0,30 soit : 700 2 + 500 0, 3 = 1550 e Formule 3 : on a deux forfaits à 371 et 4500 km à 0,28 soit : 371 2 + 4500 0, 28 = 2002 e Le client aurait dû choisir la formule 2. EXERCICE 3 : Changement d unité de température. 1) Reproduire sur la copie sous forme d un schéma le tube de thermomètre figurant cidessous. a) Indiquer, à droite du tube, les valeurs correspondantes de l échelle Fahrenheit. Expliciter votre démarche. On calcule l écart entre deux graduations en fahrenheit : 212 31 10 = 18 On complète ensuite le schéma : PAUL MILAN 3/ 7 3 février 2010
b) Existe-t-il une relation de proportionnalité entre les deux suites de nombres figurant sur votre dessin (échelle Fahrenheit et échelle Celsius)? Justifier. L origine des graduations ne correspondant pas, les graduations ne sont pas proportionnelles. 2) Montrer que : T = 1, 8t + 32. La relation entre T et t est du type : T = ax + b. On sait que si t = 0 alors T = 32, on en déduit que b = 32. On sait que si t = 100 alors T = 212, on obtient alors : On obtient bien : T = 1, 8t + 32 3) Le thermomètre indique 25 C. 212 = a 100 + 32 212 32 a = = 1, 8 100 a) Calculer la valeur correspondante en F. Si t = 25 alors T = 1, 8 25 + 32 = 77 La valeur correspondantes à 25 C est 77 F. b) Expliquez comment vous pouvez vérifier ce résultat sur votre dessin. 25 C est le milieu entre 20 et 30 C. Donc la valeur correspondante se situe au milieu de 68 et 86 F, donc : 86 + 68 = 77 2 4) Calculer la température à laquelle les deux échelles donnent la même valeur. Vérifier ce résultat sur le dessin. Si la température est identique sur le deux échelles, on a T = t, on a alors : t 1, 8t = 32 t = 1, 8t + 32 0, 8t = 32 Ce résultat est bien vérifié sur le graphique. EXERCICE 4 : Heure de rencontre t = 32 0, 8 = 40 Deux robots, Arthur et Boz, sont placés aux deux extrémités d une piste rectiligne de 300 mètres de long qui relie un point A à un point B. Arthur est placé au point A et Boz au point B. On les fait partir l un vers l autre à 9 heures précises. Arthur se déplace à la vitesse constante de 6 km/h et Boz à la vitesse constante de 24 km/h. 1. Exprimer ces deux vitesses en mètre par minute. PAUL MILAN 4/ 7 3 février 2010
2. On veut déterminer l heure de rencontre des deux robots. a) Représenter dans un même repère les déplacements des deux robots. b) Par lecture graphique, estimer l heure de la rencontre. 3. Déterminer par le calcul, l heure de rencontre des deux robots. Pour la troisième question, on pouvait avoir une approche arithmétique. Puisque Boz, a une vitesse 4 fois supérieure à Arthur (24 km/h et 6 km/h), au point de rencontre I, Boz aura parcouru 4 fois plus de distance que Arthur. Il se rencontre au cinquième de la distance, comme le montre le schéma suivant : Le point I se trouve à : 300 = 60 m du point A. 5 Comme la vitesse d Arthur est de 100 m/min, il arrivera au point I au bout de : t = 60 100 EXERCICE 5 : Optimisation bis : énoncé 2001 en euro! = 0, 6 min soit 0, 6 60 = 36 secondes Un client s adresse à une agence de location de camping-car pour organiser ses vacances. Trois formules lui sont proposées Formule 1 : forfait hebdomadaire de 850 e, kilométrage illimité. Formule 2 : forfait hebdomadaire de 700e, avec 2000 kilomètres inclus et 0,30 e par kilomètre parcouru au-delà de 2000 kilomètres. Formule 3 : forfait journalier de 53 e et 0,28 e par kilomètre parcouru, toute semaine entamée étant payée intégralement. 1) Traduire, pour une semaine de location, chaque formule par une écriture de la forme (où x désigne le nombre de kilomètres parcourus pour la semaine de location) : y = f (x), pour la formule 1, y = g(x), pour la formule 2, y = h(x), pour la formule 3. Vérifier, en particulier, que pour x > 2000, on a : g(x) = 100 + 0, 3x. 2) Représenter graphiquement ces trois formules de location, dans le cas décrit à la question précédente, dans un même repère. 3) Déterminer la formule la plus avantageuse pour une semaine de location en fonction du nombre de kilomètres parcourus de deux manières différentes a) avec le graphique b) par le calcul. 4) Un client a choisi la formule 1 pour deux semaines de vacances. Il a parcouru 4500 kilomètres. A-t-il fait le bon choix? PAUL MILAN 5/ 7 3 février 2010
1. On a trouvé les expressions suivantes : f (x) = 850 Si x 2000 g(x) = 700 Si x > 2000 g(x) = 100 + 0, 3x h(x) = 371 + 0, 28x 2. On obtient la représentation suivante : a) D après le graphique : Si x est inférieur à 1180 km, la troisième formule est plus avantageuse. Si x est compris entre 1180 et 2500 km, la deuxième formule est plus avantageuse. Si x est supérieur à 2500 km, la première formule est plus avantageuse. b) Pour retrouver les abscisses des points I et J, il faut résoudre les équations suivantes : Pour I : h(x) = g(x) 371 + 0, 28x = 700 700 371 x = 0, 28 = 1175 Pour J : g(x) = f (x) 100 + 0, 3x = 850 850 100 x = 0, 3 = 2500 PAUL MILAN 6/ 7 3 février 2010
3. Pour deux semaines avec 4500 km, on a les tarifs suivants pour les trois formeules : Formule 1 Formule 2 Formule 3 : 850 2 = 1700 700 2 + 500 0, 3 = 1550 53 14 + 4500 0, 28 = 2002 Il n a donc pas fait le bon choix. Il aurait du choisir la deuxième formule. PAUL MILAN 7/ 7 3 février 2010