Pourquoi un transformateur est-il nécessaire? Qu'est-ce qu un transformateur et comment ça fonctionne? Qu'est-ce qu un transformateur de contrôle?



Documents pareils
SYSTEMES DE TRANSFERT STATIQUE: CEI 62310, UNE NOUVELLE NORME POUR GARANTIR LES PERFORMANCES ET LA SÉCURITÉ

Relais statiques SOLITRON MIDI, Commutation analogique, Multi Fonctions RJ1P

I GENERALITES SUR LES MESURES

MultiPlus sans limites

Sciences physiques Stage n

Références pour la commande

Série 77 - Relais statiques modulaires 5A. Caractéristiques. Relais temporisés et relais de contrôle

1 000 W ; W ; W ; W. La chambre que je dois équiper a pour dimensions : longueur : 6 m largeur : 4 m hauteur : 2,50 m.

Multichronomètre SA10 Présentation générale

ELEC2753 Electrotechnique examen du 11/06/2012

Les schémas électriques normalisés

F = B * I * L. Force en Newtons Induction magnétique en teslas Intensité dans le conducteur en ampères Longueur du conducteur en mètres

Système ASC unitaire triphasé. PowerScale kva Maximisez votre disponibilité avec PowerScale

EX RT 7/11 Manuel d'installation et d'utilisation

Varset Direct. Batteries fixes de condensateurs basse tension Coffrets et armoires. Notice d utilisation. Armoire A2

Les résistances de point neutre

Spécifications d installation Précision des mesures

MODULE DIN RELAIS TECHNICAL SPECIFICATIONS RM Basse tension : Voltage : Nominal 12 Vdc, Maximum 14 Vdc

Mesure. Multimètre écologique J2. Réf : Français p 1. Version : 0110

Le triac en commutation : Commande des relais statiques : Princ ipe électronique

Solutions pour la mesure. de courant et d énergie

APPENDICE B SYSTÈME DE PESAGE INTELLIGENT MODÈLE ILC3 ET LM3D VERSION 1.7

CH 11: PUIssance et Énergie électrique

Electrocinétique Livret élève

Thermostate, Type KP. Fiche technique MAKING MODERN LIVING POSSIBLE

Numéro de publication: Al. int. Cl.5: H01H 9/54, H01H 71/12. Inventeur: Pion-noux, uerara. Inventeur: Morel, Robert

Article sur les caractéristiques assignées du neutre dans l'ue

0.8 U N /0.5 U N 0.8 U N /0.5 U N 0.8 U N /0.5 U N 0.2 U N /0.1 U N 0.2 U N /0.1 U N 0.2 U N /0.1 U N

Le contenu de ce manuel peut faire l objet de modifications sans préavis et n engage pas la responsabilité de la société BENTEL SECURITY srl.

7200S FRA. Contacteur Statique. Manuel Utilisateur. Contrôle 2 phases

Cahier technique n 194

Centrale de surveillance ALS 04

M HAMED EL GADDAB & MONGI SLIM

Module Relais de temporisation DC V, programmable

Les puissances La notion de puissance La puissance c est l énergie pendant une seconde CHAPITRE

Electricité et mise à la terre

Energy Logic : Emerson Network Power. Feuille de route pour la réduction r de la consommation d'énergie dans le Centre de données

Identifier les défauts du moteur à travers l analyse de la zone de défaut par Noah P.Bethel, PdMA Corporation.

Louis-Philippe Gagnon Auditeur De Système D Alarme LABORATOIRES DES ASSUREURS DU CANADA 12 Novembre, 2014

GUIDE PRATIQUE. Installations photovoltaïques raccordées au réseau public de distribution

Module 3 : L électricité

POWER + SA Series 10kVA-40kVA & "POWER kVA-20kVA. Notre alimentation Votre confiance

équipement d alarme type 4

CH IV) Courant alternatif Oscilloscope.

Charges électriques - Courant électrique

Guide d application technique Correction du Facteur de Puissance. Solution en Compensation Facteur de puissance

SYSTEME DE DESENFUMAGE 12 NIVEAUX

DÉPANNAGE SUR PLACE D UN MOTEUR À COURANT CONTINU

CONTRÔLE DE BALISES TYPE TB-3 MANUEL D'INSTRUCTIONS. ( Cod ) (M H) ( M / 99G ) (c) CIRCUTOR S.A.

Sciences physiques Stage n

NO-BREAK KS. Système UPS dynamique PRÉSENTATION

Alimentation Electrique destinée aux systèmes de sécurité Incendie 27,6V DC

Aide à l'application Chauffage et production d'eau chaude sanitaire Edition décembre 2007

Vannes PN16 progressives avec corps en acier inox et

Tableau d Alarme Incendie Type 3 type marche/arrêt avec ou sans flash

BACCALAURÉAT PROFESSIONNEL EPREUVE DE TRAVAUX PRATIQUES DE SCIENCES PHYSIQUES SUJET A.1

LYCEE TECHNIQUE PIERRE EMILE MARTIN BOURGES ETUDE D UN TRAITEMENT DE SURFACE

NOTICE D UTILISATION

PUISSANCE ET ÉNERGIE ÉLECTRIQUE

MODE DE LIGNE : tension de secteur d'onde sinusoïdale 120 V (-13% / +15%), MODE DE PILE : sortie d'onde sinusoïdale 120 V (+/-5 %)

Tableaux d alarme incendie de type 4-230V~ - 1 boucle / 2 boucles /62

EW3961 Adaptateur voiture universel 90 W pour Ordinateur portable

INSTALLATION ET DÉPANNAGE MANUEL Pour tous les modèles de réfrigérateurs et congélateurs. AC/DC et DC seulement Nova Kool

SOMMAIRE. B5.1 Première approche

CHAPITRE IX : Les appareils de mesures électriques

7 bis impasse Denis Dulac Maisons-Alfort FRANCE Tél. : / Fax : : promattex@promattex.com

Série CLE - Chauffe-eau pour douche oculaire Solutions de chauffage d eau sans réservoir

CAPTEURS - CHAINES DE MESURES

PRODUCTION DE L ENERGIE ELECTRIQUE

Tableaux d alarme sonores

1. Les différents types de postes de livraison On peut classer les postes HTA/BT en deux catégories.

RELAIS STATIQUE. Tension commutée

MESURES D'ÉNERGIE ÉLECTRICITÉ

KIT SOLAIRE EVOLUTIF DE BASE

MONTAGE ET CONTREVENTEMENT DES FERMES

LA NORME NF C INSTALLATION ELECTRIQUE

1- Maintenance préventive systématique :

Chapitre N 8. Copyright LGM DEPANNAGE ELECTRIQUE : 1- Procéder avec méthode pour tester un circuit : 2: Contrôle de la continuité:

Fiche technique CPU 314SC/DPM (314-6CG13)

NUGELEC. NOTICE D'UTILISATION DU B.A.A.S. du type Ma - STI / MaME - STI. pages. 1 introduction 2. 2 encombrement 3 fixation

NOTICE D'UTILISATION DU TABLEAU D ALARMES TECHNIQUES SAT

Energie et conversions d énergie

L ÉLECTROCUTION Intensité Durée Perception des effets 0,5 à 1 ma. Seuil de perception suivant l'état de la peau 8 ma

Alimentation portable mah

HAM841K CENTRALE D'ALARME POUR SYSTEMES DE SECURITE COMMERCIAUX ET D'HABITATION

«Tous les sons sont-ils audibles»

description du système

Magnum vous présente ses nouvelles gammes d'armoires électriques. Gamme Auto de 125A à 400A

Borniers et borniers de distribution d alimentation. Faites votre choix

MODE D EMPLOI HAA51 DETECTEUR PASSIF D INTRUSION A INFRAROUGE INTRODUCTION

Protect 5.31 Sortie monophasée 10kVA 120kVA Protect 5.33 Sortie triphasée 25kVA 120kVA. Alimentations Statique Sans Interruption

DOCUMENT RESSOURCE SONDES PRESENTATION

Contrôle d'une habitation particulière par le consuel

Manuel d'utilisation de la maquette

Caractéristiques techniques INVERTER 9 SF INVERTER 9 HP INVERTER 12 SF INVERTER 12 HP

Jouve, 18, rue Saint-Denis, PARIS

UMG 20CM. UMG 20CM Appareil de surveillance des circuits de distribution avec 20 entrées et RCM. Analyse d harmoniques RCM. Gestion d alarmes.

- Motorisation électrique (vérins) permettant d ajuster la hauteur du plan de travail.

DATA CENTER. Règles d'ingénierie du Data Center DATA CENTER

Le chauffe-eau à pompe à chaleur: fiche technique à l intention des installateurs

Transcription:

Pourquoi un transformateur est-il nécessaire? Un transformateur de contrôle est nécessaire pour fournir la tension d'alimentation à une charge qui exige beaucoup plus de courant lors de la mise sous tension initiale que dans le cadre stable de fonctionnement normal. Un transformateur de contrôle est conçu pour fournir une tension secondaire stable dans une courte période de surcharge spécifique, dénommée ''inrush''. Qu'est-ce qu un transformateur et comment ça fonctionne? Un transformateur est un appareil électrique passif conçu pour convertir le courant alternatif d'une tension à un autre par induction magnétique. Il peut être conçu pour augmenter ou abaisser les tensions et fonctionne sur le principe d'induction magnétique. Un transformateur n a aucune pièce mobile et est un dispositif à l'état solide complètement statique. Ce qui, dans des conditions normales de fonctionnement, assure efficacité et longévité. Dans sa forme la plus simple, il est constitué de deux ou plusieurs bobines de fil isolé enroulé sûr un noyau d'acier laminé. Lorsque la tension alternative est introduite dans une bobine, dite primaire, elle magnétise le noyau de fer. Une tension est induite dans l'autre bobine, appelée la bobine secondaire ou de sortie. Le changement de tension (ou le ratio de tension) entre le primaire et le secondaire dépend du ratio de tours entre les deux bobines et obéit à la loi d'ampère (N1xI1=N2xI2). Qu'est-ce qu un transformateur de contrôle? Un transformateur de contrôle est un transformateur d'isolation conçu pour fournir un degré élevé de stabilité de la tension secondaire (régulation) au cours d'une condition de surcharge de courte période généralement dénommée ''inrush'' à une charge inductive. Les transformateurs de contrôle sont également appelés transformateurs de contrôle industriels, transformateurs machine-outil ou transformateurs de contrôle de puissance. Étapes pour sélectionner le transformateur approprié 1) Déterminer la charge électrique Tension requise par la charge La capacité en Amps ou KVA requise par la charge Fréquence en Hz (cycles par seconde) Vérifier si la charge est conçue pour fonctionner sur une alimentation monophasée

Toutes les informations ci-dessus sont des données standards normalement obtenues à partir de plaques d'équipement ou manuels d'instruction. 2) Déterminer la tension d'alimentation Tension d'alimentation (source) Fréquence en Hz (cycles par seconde) La fréquence de la ligne d'alimentation et la charge électrique doivent être la même. Sélectionnez le transformateur conçu pour fonctionner à cette fréquence, ayant un primaire (entrée) égal à la tension d'alimentation et un secondaire (sortie) égal à la tension requise par la charge. 3) Si la plaque signalétique de la charge exprime une côte en KVA, un transformateur peut être sélectionné directement à partir des tables. Choisissez parmi un groupe de transformateurs avec des tensions primaire et secondaire correspondant à celles que vous venez de déterminer. Sélectionnez un transformateur d'une capacité standard KVA égale ou supérieure à celle nécessaire au fonctionnement de la charge Les formules suivantes peuvent être utilisées pour déterminer la bonne taille de KVA pour le transformateur requis EXEMPLES : CHARGES MONOPHASÉES Sélectionnez un transformateur pour répondre aux conditions suivantes. La charge est d'éclairage monophasé utilisant des lampes à incandescence. Chacun exige 1,3 ampères à 120 volts, 1 phase, 60 Hz, facteur de puissance de l'unité. L'installation nécessite 30 unités de 100 watts chacune. Le circuit de distribution de l'énergie désirée des appareils d'éclairage est de 120/240 volts, trois fils, monophasé. La tension d'alimentation est de 600 volts, 3 phases. KVA nécessaire = 1.3 Amps x 120 Volts = 0.156 KVA pour chaque unité d'éclairage 1000

Toujours utiliser ampère x volts pour calculer le VA, ne jamais utiliser la puissance de la lampe. 0.156 KVA / unité x 30 unités = 4,68 KVA. Les deux tailles (KVA) les plus près 4,68 KVA sont de 4 KVA et 5 KVA. Utilisez le 5 KVA. Cela ne surchargera pas le transformateur et permettra une certaine capacité, 0,32 KVA, pour les charges futures. CHARGES TRIPHASÉES Sélectionnez un transformateur pour remplir les conditions suivantes. La charge est un moteur à induction triphasée, 2,5 chevaux à 240 volts, 60 Hz et une charge de chauffage de 1 kilowatt @ 240 volts monophasé. La tension d'alimentation est 600Y/347, triphasé, 4 fils. Moteur: 6,8 amps (2,5HP - 240V) 240 volts x 6,8 amps x 1.73 = 2,8 KVA 1000 Chauffage: 1 KVA Un transformateur triphasé doit être choisi de manière que toute phase n'est pas surchargée. Chaque phase doit avoir la puissance supplémentaire de 1 KVA requise par l'appareil de chauffage, même si l'appareil de chauffage fonctionnera sur une seule phase. Ainsi, le transformateur doit avoir un KVA minimal de 2,8 + 1 + 1 + 1, soit 5,8 KVA. Un transformateur delta-delta de 600 volts primaire et 240 volts secondaire peut être utilisé sur un raccordement de 4 fils, 600Y/347 volts. Le quatrième fil (neutre) n'est pas connecté au transformateur. Pour ne pas surcharger le transformateur, un transformateur de 6 KVA devrait être choisi. NOTE: toutes paires de fils (240 volts, 3 phases) développées par le secondaire du transformateur peuvent être utilisées pour alimenter le chauffage. Toutes paires de fils d'un système triphasé sont des systèmes monophasés. Qu'entend-on par régulation de sortie dans un transformateur? Sans charge, la tension à la sortie est un peu supérieure à la tension nominale. Quand une charge est appliquée, la tension va baisser légèrement. La différence entre la tension de sortie sous charge et la tension de sortie sans charge est dénommée régulation de sortie du transformateur et est normalement exprimée en pourcentage. Si sans charge un transformateur a une tension de sortie de 240 volts, mais sous charge la tension de sortie est de 230 volts, la différence serait de 10 volts et la régulation serait 10/240 ou 4,17%. Le facteur de puissance de la charge peut avoir un impact sur la régulation du transformateur. Les transformateurs à usage général peuvent être utilisés avec une variété de charges, la plus courante étant de charges de moteur à induction et des charges

résistives. Pour cette raison, il est commun d'exprimer la régulation d'un transformateur à 100% et à 80% du facteur de puissance. Les transformateurs de distribution de type sec ont généralement une régulation de 2% à 10%, selon la taille et l'application pour laquelle ils sont utilisés. Quel est l'effet de la charge sur un transformateur? Un transformateur de contrôle est conçu pour fournir la tension de sortie nominale au VA de sortie à pleine charge. Lorsque la charge diminue, la tension de sortie va augmenter. Inversement, l'accroissement de la charge se traduira par des tensions de sortie plus faible. En règle générale, plus petite est la taille de l'unité en VA, plus il y a de différence entre la tension à vide et la tension à pleine charge. Est-ce qu'un transformateur de contrôle régularise la tension de sortie? Les transformateurs de contrôle ne sont pas des régulateurs de tension. Parce que les changements de tension sont une fonction du rapport de tours du transformateur et son impédance interne, les variations de tension d'entrée seront proportionnellement reflétées à la sortie. Qu'entendons-nous par "impédance" d'un transformateur? L'impédance est définie comme la somme vectorielle de la résistance et la réactance qui limite la circulation du courant dans un circuit à courant alternatif. Lorsqu'il s'agit d'un transformateur, l impédance indique l'effet de limitation du courant si vous avez un courtcircuit sur le secondaire. Exprimés en pourcentage et généralement désignés comme %IZ, l'impédance et le ratio X/R sont utilisés pour la coordination des fusibles et/ou des disjoncteurs. Il est exprimé en pourcentage. Pourquoi est-ce important l'impédance? Il est utilisé pour déterminer la capacité de coupure d'un disjoncteur ou pour le dimensionnement d'un fusible utilisé pour protéger le primaire d'un transformateur. Est-ce qu un système d'isolation est meilleur qu'un autre?

Pas nécessairement. Il dépend de l'application et le coût-avantage d'être réalisé. Les systèmes d'isolation de haute température ont des coûts plus élevés et les transformateurs plus grands sont plus coûteux à construire. Par conséquent, les systèmes d'isolation plus dispendieux sont plus susceptibles d'être trouvés dans les unités de plus grand KVA. Les petits transformateurs utilisent la classe d'isolation 130 C. Les transformateurs dans l'époxyde utilisent une classe d'isolation 180 C. Les transformateurs ventilés plus grands sont conçus pour utiliser une classe d'isolation 220 C. Tous ces systèmes d'isolation auront normalement le même nombre d'années d'exploitation de vie. Un transformateur bien conçu observe ces limites de température et aura une espérance de vie de 20 à 25 ans. Qu'est-ce que "la classe de température" dans l'isolation? La classe d'isolation a été la méthode originale utilisée pour distinguer les matériaux isolants fonctionnant à différents niveaux de température. Des lettres ont été utilisées pour différentes désignations. La classification en lettres a été remplacée par des températures du système d'isolation en degrés Celsius. La température du système est la température maximale au point le plus chaud dans l'enroulement (bobine). Nous pouvons l'obtenir en ajoutant à la température ambiante, l'élévation de la température moyenne de la bobine (en utilisant la méthode de la résistance de bobinage) et le différentiel de température du point chaud. Les représentations des cinq systèmes d'isolation reconnu par Underwriters Laboratories, Inc (UL1446) sont présentées dans la figure suivante : Température ambiante Élévation de la température moyenne de la bobine Température du point chaud Classe de température (max) 40 C 55 C 10 C A (105 C) 40 C 80 C 10 C B (130 C) 40 C 100 C 15 C F (155 C) 40 C 120 C 20 C H (180 C) 40 C 160 C 20 C R (220 C)

Que signifie "température ambiante nominale"? La température ambiante nominale se réfère à la relation entre la puissance nominale de l'étiquette, la température de fonctionnement ambiante de l'application, et la puissance réelle requise après déclassement si nécessaire. De nombreux fabricants listent leurs évaluations des puissances basées sur une température ambiante de 40 C. Cela signifie que la puissance nominale (par exemple 60 watts) ne s'applique que si le transformateur est utilisé dans un environnement avec une température ambiante égale ou inférieure à 40 C. Si le transformateur fonctionne au-dessus de 40 C, la capacité de puissance de l'unité doit être considérablement réduite, avec beaucoup de déclassement se produisant habituellement à 50 C. Dans cet exemple, un dessin à 60 watts et 40 C serait réévalué à 30 watts dans une ambiance de 45 C et inopérable à 50 C. Ceci est important à deux égards. Tout d'abord, l'ingénieur doit faire correspondre la température ambiante de fonctionnement à une conception de l'alimentation appropriée, pour éviter toute surcharge de l'alimentation. Deuxièmement, l'acheteur de la source doit prêter attention aux différences des cotes de fonctionnement de température de manière à rendre une décision d'achat intelligente. Les différences de performances entrent les 40 C et 60 C sont importants, d'où le coût unitaire plus faible pour le moindre des deux. Que veut dire élévation de température dans un transformateur? L'élévation de température est la différence entre la température moyenne des enroulements du transformateur et la température ambiante (ou environnante). Qu'est-ce que le point chaud? Le point chaud est une allocation sélectionnée pour déterminer de façon sommaire la différence entre la température la plus élevée à l'intérieur de la bobine du transformateur et la température moyenne de la bobine du transformateur. Comment la température d un transformateur est-elle reliée à des pertes et à des boîtiers?

Les transformateurs génèrent de la chaleur! Ils le font tous. Il n'y a pas moyen de contourner cela. La chaleur est un sous-produit du processus de transformation et la chaleur est due aux pertes dans le noyau et les bobines du transformateur. Pour la plupart des applications, la chaleur produite est peu préoccupante. Mais cela devient un sujet de préoccupation lorsqu'il s'agit de déterminer le niveau de refroidissement qui doit être prévu pour compenser la chaleur ou quand la température du boîtier pourrait devenir un problème. Les pertes dans les transformateurs sont dépendantes de la charge. Un transformateur fonctionnant au KVA nominal génère des pertes au maximum. Ceci est considéré comme étant 100% de pertes avec une charge à 100%, les pertes de charge complètes. Un transformateur chargé à moins de 100% ne génère pas autant de pertes, mais ce n'est pas en proportion directe avec le montant de la charge comme indiquée dans le tableau cidessous. Les pertes dans les transformateurs sont exprimées en watts. Description % Charge 25% 50% 75% 100% % des pertes de chaleur totale produite (approx) 20% 30% 60% 100% % de température du boîtier maximal (approx) 10% 30% 60% 100% Protection contre les surintensités au secondaire Des dispositifs de surintensité sont utilisés entre les bornes de sortie du transformateur et la charge pour trois raisons : Protéger le transformateur de la charge des anomalies électriques Comme le courant de court-circuit est réduit au minimum, un fil de calibre plus petit peut être utilisé entre le transformateur et la charge par NEC, un plus grand fusible primaire peut être utilisé pour réduire les déclenchements intempestifs Que signifient les termes ''courant d appel de crête'' et "courant d'excitation'' et comment sont-ils liés aux transformateurs? Le courant d'excitation est le montant de l'intensité du courant électrique qu un transformateur attire en vertu d'une condition sans charge. Une autre façon de voir le courant d'excitation comme avoir le courant au neutre d'un transformateur. Le courant d'excitation pourrait également être appelé comme le courant sans charge bien que ce n'est pas techniquement exact. Le courant d'excitation est en fait constitué de deux

composants: pertes sans la charge (normalement exprimée en watts) et la puissance réactive (exprimée normalement en KVAR). Le courant d'excitation varie en pour cent de la capacité nominale du transformateur en fonction de la taille du transformateur. Il n'est pas rare d'avoir un courant d'excitation d'environ 10% sur les transformateurs de très petite taille (moins de 1 KVA). Sur les grands transformateurs, courant d'excitation peut être aussi faible que la moitié d'un pour cent. Le courant d appel de crête'' est le montant de l'intensité du courant électrique qu un transformateur attire instantanément quand il est allumé. Un transformateur a un noyau en fer et fonctionne en vertu du principe de l'induction magnétique. Le courant alternatif circule à travers une bobine de fil (enroulement primaire) et génère un champ magnétique. Le noyau de fer du transformateur contient la plupart du magnétisme et mène ce magnétisme dans l'endroit où il traverse une deuxième bobine de fil (enroulement secondaire). Le courant alternatif circulant sous la forme d'une onde sinusoïdale, la quantité de magnétisme fluctue en fonction de la tension sur la courbe de l'onde sinusoïdale. Comme ce magnétisme circule à travers du chemin de la deuxième bobine de fil, il induit une tension dans lui. Lorsque le transformateur est éteint, le noyau de fer conserve un montant de magnétisme résiduel selon l'endroit où dans l'onde sinusoïdale le transformateur a été éteint. Lorsque le transformateur est sous tension, plus il y a une différence de l'onde sinusoïdale du point ''éteindre '' au point "allumer" ceci détermine la quantité du ''courant d appel de crête''. Le ''courant d appel de crête'' pourrait être très faible si tout était en phase, ou il pourrait être aussi élevé que 20 à 30 fois à pleine charge. Bien que cette condition disparaît rapidement (en 6 à 10 cycles électriques - dixième à sixième de seconde), il est le premier demi-cycle électrique qui voit le montant de courant de crête. Cette condition peut causer des problèmes avec des dispositifs de surintensité. Si le fusible ou le disjoncteur sont de la variété "déclenchement rapide" ou s ils ne sont pas correctement taillés conformément au ''National Electric Code'', le ''courant d appel de crête'' pourrait provoquer un déclenchement à tort. Quel est l'effet de l'altitude sur un transformateur? Un transformateur peut être utilisé à pleine capacité nominale jusqu'à 3300 pieds (1000 mètres). Au-delà de cette altitude, la capacité du transformateur doit être réduite de 0,3% pour chaque 300 pieds d'altitude au-dessus de 3300 pieds. Comment peut être contrôlé le son d'un transformateur? Tous les transformateurs sous tension "hum". Cette "hum" est due à l'alternance de flux dans le noyau produisant un phénomène connu sous le nom de magnétostriction. Le "hum" dans les transformateurs, communément appelé ''bruit'', est principalement produite par le noyau à une fréquence fondamentale de deux fois la fréquence appliquée.

Le bruit est une caractéristique inhérente du noyau et ne peut pas être complètement éliminé. NEMA n ST20 et la norme ANSI C89.2 établisent les niveaux de bruit maximales pour les transformateurs de type sec. Ces niveaux sont: KVA à 9 KVA Niveau sonore maximum 40 db 10 à 50 KVA 45 db 51 à 150 KVA 50 db 151 à 300 KVA 55 db 301 à 500 KVA 60 db L'une des principales raisons de plaintes relatives au bruit transformateur est une mauvaise installation. Mauvaise installation et l'emplacement du transformateur peuvent augmenter les niveaux sonores de 10 décibels ou plus. Considérant qu'une augmentation de 3 décibels de niveau sonore a pour effet de doubler approximativement le volume sonore détecté par l'oreille humaine, une augmentation de 10 décibels du niveau sonore ne peut pas (dans la plupart des cas) être tolérée. La première étape de l'installation à faible niveau sonore d'un transformateur est de clarifier l'emplacement approprié. Avec la popularité croissante dans les avantages économiques et coûts de la distribution à haute tension dans des bâtiments modernes d'aujourd'hui, il est nécessaire de localiser les petits transformateurs de type sec relativement proche (ou dans) les zones occupées. Les transformateurs doivent être situés dans des zones où le bruit serait le moins contestable. La limite maximale du bruit du transformateur à installer doit être comparé au niveau sonore ambiant de l'emplacement d'installation. Si le transformateur est prévu pour être plus bruyant que le bruit ambiant du site, il devrait être situé ailleurs. Ne pas placer un transformateur à proximité de plusieurs surfaces réfléchissantes. Un exemple d'un mauvais emplacement du transformateur serait dans un coin près du plafond ou le plancher. Chacun de ces lieux présente trois surfaces réfléchissantes, et ces surfaces agissent comme un mégaphone pour le bruit des transformateurs. Les salles de réception ne sont pas trop souhaitables, en raison de la courte distance entre les surfaces opposées réfléchissantes. Quand le meilleur emplacement possible a été trouvée, la prochaine étape est le montage. Les transformateurs doivent être montés sur un plancher, mur ou une structure avec une aussi grande masse possible. Une ligne directrice est que la surface de montage doit peser au moins dix fois plus que le transformateur. Prenez soin de ne pas monter un transformateur sur un paroi mince (par exemple contreplaqué ou un mur rideau) car ils

amplifient le bruit un peu comme un tambour. La première source de bruit dans le transformateur est dans le noyau et la bobine. Le bruit provenant de cette source est amplifié et reflété par toute structure solide qui a lui sont connectés. Cela inclut conduit entrants et des conducteurs. (Dispositifs flexibles peuvent être utilisés à cet effet). Les bonnes installations de transformateurs essayent d'isoler le transformateur de tous les autres composants et des structures.