BACCALAURÉAT GÉNÉRAL SÉRIE SCIENTIFIQUE



Documents pareils
Equipement d un forage d eau potable

MOTO ELECTRIQUE. CPGE / Sciences Industrielles pour l Ingénieur TD06_08 Moto électrique DIAGRAMME DES INTER-ACTEURS UTILISATEUR ENVIRONNEMENT HUMAIN

ELEC2753 Electrotechnique examen du 11/06/2012

CABLECAM de HYMATOM. Figure 1 : Schéma du système câblecam et détail du moufle vu de dessus.

BACCALAURÉAT GÉNÉRAL SÉRIE SCIENTIFIQUE

Algorithmes de recherche

Monte charge de cuisine PRESENTATION DU MONTE CHARGE

(Exemple ici de calcul pour une Ducati 748 biposto, et également pour un S2R1000, équipé d un disque acier en fond de cloche, et ressorts d origine)

BACCALAURÉAT TECHNOLOGIQUE Sciences et Technologies de l Industrie et du Développement Durable ENSEIGNEMENTS TECHNOLOGIQUES TRANSVERSAUX

ALFÉA HYBRID DUO FIOUL BAS NOX

BACCALAURÉAT GÉNÉRAL SÉRIE SCIENTIFIQUE

AP1.1 : Montages électroniques élémentaires. Électricité et électronique

TP 3 diffusion à travers une membrane

Demande préalable pour un projet de création ou de modification d'un plan d'eau

Série 77 - Relais statiques modulaires 5A. Caractéristiques. Relais temporisés et relais de contrôle

En recherche, simuler des expériences : Trop coûteuses Trop dangereuses Trop longues Impossibles

Liste des Paramètres 2FC4...-1ST 2FC4...-1PB 2FC4...-1PN 2FC4...-1SC 2FC4...-1CB

Références pour la commande

Moto électrique Quantya'"

ballons ECS vendus en France, en 2010

TP : Suivi d'une réaction par spectrophotométrie

Premier ordre Expression de la fonction de transfert : H(p) = K

L offre DualSun pour l eau chaude et le chauffage (SSC)

1 000 W ; W ; W ; W. La chambre que je dois équiper a pour dimensions : longueur : 6 m largeur : 4 m hauteur : 2,50 m.

RELAIS STATIQUE. Tension commutée

Multitension Monofonction. Multitension Multifonction

Daikin. DAIKIN ALTHERMA BI-BLOC, Solution pour le tertiaire et le résidentiel collectif. Pompes à chaleur Air / Eau. Inverter. » Economies d énergie

L exclusion mutuelle distribuée

CONCOURS GÉNÉRAL DES LYCÉES Session Durée 5 heures. Corrigé. Poséidon au secours d Éole pour produire l énergie électrique

Système M-Bus NIEVEAU TERRAIN NIVEAU AUTOMATION NIVEAU GESTION. Domaines d'application

LA MESURE INDUSTRIELLE

PC Check & Tuning 2010 Optimisez et accélérez rapidement et simplement les performances de votre PC!

CH 11: PUIssance et Énergie électrique

Caractéristiques des ondes

CHAPITRE IX : Les appareils de mesures électriques

Caractéristiques techniques

TRAVAUX DIRIGÉS D'ÉLECTRONIQUE DE PUISSANCE

Hubert & Bruno Lundi 12 octobre 2009 SAINT-QUENTIN (02)

BACCALAURÉAT PROFESSIONNEL EPREUVE DE TRAVAUX PRATIQUES DE SCIENCES PHYSIQUES SUJET A.1

Notions d asservissements et de Régulations

PUISSANCE ET ÉNERGIE ÉLECTRIQUE

La combinaison. naturelle DAIKIN ALTHERMA HYDRIDE POMPE À CHALEUR CHAUFFAGE ET EAU CHAUDE SANITAIRE. Informations préliminaires

Base de l'informatique. Généralité et Architecture Le système d'exploitation Les logiciels Le réseau et l'extérieur (WEB)

ésylog, direction technique Esylog_PeerBackup outil de sauvegarde individuelle mails & fichiers personnels documentation technique

Modélisation intégrée des écoulements pour la gestion en temps réel d'un bassin versant anthropisé

2.0. Ballon de stockage : Marque : Modèle : Capacité : L. Lien vers la documentation technique :

MESURE DE LA PUISSANCE

500 W sur 13cm avec les modules PowerWave

LES DIFFÉRENTS FORMATS AUDIO NUMÉRIQUES

La consommation énergétique des usines de dépollution est un poste de dépense important et l un des plus émetteurs de gaz à effet de serre.

L AUTOMATISME LE SIGNAL

Autoconsommation en photovoltaïque Principe et intérêt

Continuité et dérivabilité d une fonction

MultiPlus sans limites

Ballon d'eau chaude sanitaire et composants hydrauliques

Circuits RL et RC. Chapitre Inductance

Chap17 - CORRECTİON DES EXERCİCES

véhicule hybride (première

LYCEE TECHNIQUE PIERRE EMILE MARTIN BOURGES ETUDE D UN TRAITEMENT DE SURFACE

CONCOURS COMMUNS POLYTECHNIQUES

Les Contrôles Non Destructifs

Copropriété: 31, rue des Abondances Boulogne-Billancourt

PROBLEMES D'ORDONNANCEMENT AVEC RESSOURCES

Comme chaque ligne de cache a 1024 bits. Le nombre de lignes de cache contenu dans chaque ensemble est:

Transférer et enregistrer les photos sur l'ordinateur

Dimensionnement d une roue autonome pour une implantation sur un fauteuil roulant

La relève de chaudière, une solution intermédiaire économique et fiable.

novapro Entreprise Introduction Supervision

LA PUISSANCE DES MOTEURS. Avez-vous déjà feuilleté le catalogue d un grand constructeur automobile?

Stockage ou pas stockage?

La conversion de données : Convertisseur Analogique Numérique (CAN) Convertisseur Numérique Analogique (CNA)

ventilation Caisson de ventilation : MV

Correction sujet machine à pain

Plate-formes inclinées SUPRA & SUPRA LINEA

COMMANDER la puissance par MODULATION COMMUNIQUER

L'intégration et le montage d'appareillages électriques doivent être réservés à des électriciens

Pompes à carburant électriques

Limitations of the Playstation 3 for High Performance Cluster Computing

Electricien automaticien Electricienne automaticienne

4.4. Ventilateurs à filtre. Les atouts. Montage rapide. Polyvalence et fonctionnalité

SCIENCES INDUSTRIELLES (S.I.)

SOMMAIRE. 1 Pourquoi sauvegarder? Sur quel support? La procédure idéale... 5 GUIDE DE LA SAUVEGARDE

Plate-formes inclinées SUPRA & SUPRA LINEA

APPLICATION DU SCN A L'EVALUATION DES REVENUS NON DECLARES DES MENAGES

Nom-Projet MODELE PLAN DE MANAGEMENT DE PROJET

BACCALAURÉAT GÉNÉRAL SÉRIE SCIENTIFIQUE

0.8 U N /0.5 U N 0.8 U N /0.5 U N 0.8 U N /0.5 U N 0.2 U N /0.1 U N 0.2 U N /0.1 U N 0.2 U N /0.1 U N

Manuel de validation Fascicule v4.25 : Thermique transitoire des structures volumiques

Formation Bâtiment Durable :

Caractéristiques techniques

Manuel d Utilisateur - Logiciel ModAFi. Jonathan ANJOU - Maud EYZAT - Kévin NAVARRO

Restauration de la continuité écologique Seuils servant à l'hydrométrie. Journées Hydrométrie SCHAPI 3-4 février 2014

Emerson montre aux centres de données comment réduire ses coûts énergétiques

I- Définitions des signaux.

Information Technique Derating en température du Sunny Boy et du Sunny Tripower

Centrale électrique hybride ENERTRAG. Centrale électrique hybride. Description succincte

1 ROLE ET DESCRIPTION DES DIESELS D ULTIME SECOURS

Exercice n 1: La lampe ci-dessous comporte 2 indications: Exercice n 2: ( compléter les réponses sans espaces)

Instructions d'utilisation

Transcription:

Texte BACCALAURÉAT GÉNÉRAL SÉRIE SCIENTIFIQUE ÉPREUVE DE SCIENCES DE L INGÉNIEUR Session 2015 Page 1 sur 9

Petite centrale hydroélectrique à vis d'archimède 2. Réponse au besoin Éléments de correction Objectif(s) de cette partie : évaluer la puissance électrique que l on peut espérer produire et la pertinence de l investissement financier. Q1. Indiquer le débit minimal garanti par la Lauch sur la période ciblée. En tenant compte du débit de réserve, en déduire le débit minimal disponible pour la production électrique. Le débit minimal est de 2,22 m 3 s 1. Le débit de réserve correspondant à un dixième de la moyenne annuelle soit 0,16 m 3 s 1. Le débit minimal est donc 2,06 m 3 s 1. Q2. La hauteur de chute d'eau est de deux mètres. Calculer dans ces conditions la puissance hydraulique disponible en kw. En déduire la puissance électrique que l'on peut espérer si le rendement global de l'installation est supposé de 75 %. P=ρ g Q H donc P=1000 9,81 2 2 = 39,24 kw Avec un rendement de 75 % la puissance électrique serait de 29,43 kw Q3. Calculer pour la période définie précédemment, la production annuelle d'énergie électrique minimale garantie en kw h. Sur la période d'utilisation il y a 151 jours. La production annuelle est de : 29,43 24 151 = 106 654 kwh. Q4. Calculer le nombre d'années nécessaire pour amortir l'investissement financier de la centrale. Conclure sur le choix d'implantation de la centrale au regard des capacités hydrauliques de la rivière. Le gain annuel s'élève à10 665. Ce qui correspond au nombre d'années suivant :150 000/10 665=14,06 ans. La durée d'amortissement est du même ordre de grandeur que celle préconisée. Le projet d implantation d'une centrale est donc viable car on s'est placé dans le cas le plus défavorable de débit d'eau. Page 2 sur 9

3. Respect de la faune aquatique Objectif(s) de cette partie : vérifier que la solution utilisée respecte les recommandations ichtyophiles de l'onema (Office National de l'eau et des Milieux Aquatiques). Q5. En prenant en compte les éléments de la figure 3 et les données relatives au site de production, justifier le choix du constructeur d'implanter une vis d'archimède. Avec 2 m 3 s 1 et une hauteur de chute de 2 m, on se trouve dans le cadre de sélection pour la vis d'archimède. Q6. Déterminer la vitesse de rotation de la vis (N vis ) pour un débit Q=2 m 3 s 1. Le volume d'eau déplacé pour un tour de la vis est de 4,04 m 3. Avec un débit de 2 m 3 s 1, N= 2 4,04 =0,495 tr s 1 =29,7tr min 1 Q7. Déterminer dans ces conditions la vitesse tangentielle sur le diamètre extérieure de la vis. Connaissant le diamètre de la vis ainsi que sa vitesse de rotation, on en déduit la vitesse tangentielle : V= De 2 Ω =1,25 30 π vis =3,92 m s 1 30 Q8. Conclure sur le respect du critère d'ichtyophilie par une vis d'archimède. L'O.N.E.M.A. préconise des vitesses périphériques inférieures à 6 m s -1. Une vitesse de 3,92 m s 1 est compatible avec le respect de la faune aquatique. Page 3 sur 9

4. Architecture de l'installation Objectif(s) de cette partie : justifier l'architecture et le dimensionnement du système de transmission mécanique. Q9. Compléter le document réponse DR1 en précisant les deux grandeurs, effort et flux, correspondant à la puissance transportée par chacun des liens de puissance. Les unités du système international de ces deux variables seront également précisées. Les zones en pointillés sont à compléter. Rivière Vis Rendement variable Multiplicateur Rendement constant 0,96 Pouliescourroies Rendement constant 0,95 Génératrice Rendement variable Réseau EDF P. hydraulique P. électrique P (Pa) C 1 (N m) C 2 (N m) C 3 (N m) U(V) Q (m 3 s -1 ) ω 1 (rad s -1 ) ω 2 (rad s -1 ) ω 3 (rad s -1 ) I(A) Q10. À partir des rendements des différents éléments de la chaîne de transmission de puissance indiqués figure 6, déterminer le rendement global et évaluer la puissance électrique que l on peut attendre de l installation. Le produit de tous les rendements donne un rendement global égal à 67,6 %. La puissance hydraulique est de 39,24 kw. La puissance à la sortie de la génératrice est donc de 39,24 0,676=26,53 kw. Q11. Au regard de la fréquence du réseau EDF de 50 Hz, déterminer la vitesse de synchronisme N s. La vitesse de synchronisme est liée au nombre de paires de pôles par la relation f = (p N ) s d'où une vitesse de synchronisme de : 50= 3 N s 60 60 ; N =1000 s tr min 1. Q12. Afin d'optimiser le fonctionnement de la génératrice, il est choisi de travailler au glissement nominal de la machine asynchrone qui est fixé par le constructeur à -1,8 %. Déterminer la vitesse de rotation N G du rotor. N G =N s g l N s =1018 tr min 1 Q13. Déduire le rapport de multiplication du dispositif poulies-courroie. Sachant que r= N multiplicateur N, alors 15,354= N multiplicateur 29,7 d'où N multiplicateur =456tr.min 1, r courroie = soit r courroie = 1018 N multiplicateur 456 =2,23 Le rapport de multiplication est donc de 2,23. N G Page 4 sur 9

Q14. Le concepteur a choisi d'utiliser deux systèmes de multiplication successifs. Justifier ce choix. Le multiplicateur dispose d'un rapport de réduction constant imposé par son fabriquant. L'ajout d'un système poulie courroie permet d'ajuster ce rapport de réduction en fonction des besoins. Par ailleurs les courroies permettent de supporter des à-coups de couple qui seraient destructeurs à terme pour le multiplicateur. La transmission par courroie apporte de l'élasticité dans la chaîne de transmission. Q15. Expliquer ce que représente physiquement le ressort dans ce modèle. Cette modélisation permet de prendre en compte l'allongement de la courroie face aux efforts mis en jeu. Q16. Indiquer à quel instant cette situation peut se produire. Indiquer la valeur de la précontrainte appliquée à la courroie lors de son montage. À l'instant de date t = 2,5 s, on constate que sous l'action du couplage, le brin A de la courroie se tend alors que le brin B se détend. L'effort pendant la phase transitoire est très proche de 0 N. C'est à cet instant précis qu'il y a un risque que la courroie saute une dent. La précontrainte peut être lue sur le graphe lors d'un mouvement uniforme, soit juste avant 2,5 s. On peut lire : environ 1600 N. Q17. Calculer, après l'instant t =2,5 s au point O, centre de la poulie réceptrice (figure 8), les moments des efforts F A et F B notés respectivement M(O, F A ) et M(O, F B ). En posant le produit vectoriel ou en utilisant la méthode des «bras de levier» on trouve : M(O, F A )= OA F A = 184 10 3 y ( 2959 x) soit M(O 2, F A )=272 z M(O, F B )= OB F B = 184 10 3 y ( 241 x) soit M(O 2, F B )= 25 z Q18. Calculer, au point O, le moment résultant de ces 2 efforts. En déduire, à partir de la figure 9 et des résultats précédents les conditions de couplage retenues pour cette simulation (vitesse et couple sur l'arbre de la génératrice). Compte tenu des résultats précédents on trouve en faisant la somme des moments que les conditions de couplage correspondent à un couple de 247N m et une vitesse de 1020 tr min 1. Q19. Calculer la largeur minimale b en mm de la courroie si le comportement du matériau qui la constitue est linéaire. La largeur minimale vaut donc : b= 6 15000 = 2959 6 15000 =32,9mm F A Page 5 sur 9

5. Étude des conditions de couplage et de découplage de la génératrice au réseau EDF Objectif(s) de cette partie : définir les conditions de couplage et de découplage de la génératrice au réseau EDF. Analyser les moyens mis en œuvre pour assurer ces fonctions techniques. Q20. Déterminer, en la justifiant, la vitesse de rotation du rotor pour laquelle le couplage au réseau occasionne la contrainte la plus élevée pour la transmission à courroie. Justifier les conditions de couplage trouvées à la question Q18. Pour une vitesse de 1020 tr min 1, le couplage entraîne un échelon de couple de 250 N m. C'est pour cette vitesse de couplage qu'il y a un à-coup ( dc ) de couple le plus dt important. Les deux autres vitesses de couplage offrent une évolution du couple plus lente et donc moins «traumatisante» pour la transmission. Les conditions de couplage de la question Q18 sont celles du couplage à 1020 tr min -1 pour se placer dans le cas le plus défavorable pour la courroie. Q21. À partir des dimensions du disque (figure 12), tracer sur le document réponse DR1, l'allure du signal électrique restitué par le capteur lorsque la vitesse de rotation est de 1000 tr min 1. Préciser la tension et les temps caractéristiques. Q22. Compléter, sur le document réponse DR1, l algorithme correspondant à ce cycle en précisant et en justifiant les valeurs numériques. Pour une vitesse de rotation de 1000 tr min 1, la période entre deux fronts montants est de : ( 1000 1 60 ) =60 10 3 s. Pour une vitesse de rotation de 1020 tr min 1, la période entre deux fronts montants est de : ( 1020 1 60 ) =58,8 10 3 s. D'où l algorithme suivant : Page 6 sur 9

ALGORITHME DE COUPLAGE DEBUT COMPTEUR=0 TANT QUE COMPTEUR<5 FAIRE Attente d'une nouvelle valeur de TEMPS_MESURE SI (TEMPS_MESURE 58,8 ms) ET (TEMPS_MESURE 60 ms) ALORS COMPTEUR=COMPTEUR + 1 SINON COMPTEUR=0 FIN SI FIN TANT QUE COUPLER LA GENERATRICE AU RESEAU FIN Q23. Expliquer ce qui justifie ce découplage. Lorsque la machine asynchrone absorbe de la puissance active au lieu de lui en fournir elle fonctionne en régime moteur et non plus en génératrice. Q24. À l aide du document technique DT1 déterminer la trame de la requête de l automate vers la centrale afin que celle-ci renvoie la valeur de la puissance active. L'adresse de la centrale DIRIS est : 5 (valeur par défaut). Le code de contrôle CRC ne sera pas calculé. Adresse de l'esclave Code de la fonction Adresse de la grandeur mesurée Nombre de mots demandés CRC 1 octet 1 octet 2 octets 2 octets 2 octets 05 03 C568 0002 La trame est 05 03 C5 68 00 02 CRC Q25. Décrire ce qui se passera si l'automate reçoit à 5 reprises successives la trame suivante : 05 03 04 00 00 00 C8 CRC. $000000C8 = 200 ce qui donne une puissance positive égale 2 kw. Cela corresponds donc à un fonctionnement en moteur et ce pendant 5 secondes donc l'ordre de découplage sera donné. Page 7 sur 9

6. Exploitation et supervision de l'installation Objectif(s) de cette partie : justifier la présence et le rôle des capteurs de niveaux installés sur le site. Q26. Indiquer, sur le document réponse DR1, les débits prévisionnels exploitables. Q27. Les capteurs de niveau sont de type à ultrasons. Montrer et justifier, à l'aide de la figure 13, que l'information délivrée par les capteurs de niveau ne donne pas directement le niveau d'eau. L'information délivrée correspond à la distance entre le capteur et la surface de l'eau. Pour obtenir la hauteur d'eau réelle, il faudra soustraire cette information à la hauteur d'implantation des capteurs par rapport au fond considéré. Q28. En se référant à la vue synoptique de la figure 13, préciser les capteurs dont l'information servira pour déterminer le débit utilisable, le débit turbiné et la hauteur de chute utile. Justifier les réponses. Débit utilisable : capteur niveau amont. Celui-ci donne une image du niveau d'eau de la rivière et donc du débit de celle-ci par le biais de la courbe de tarage. Débit turbiné : capteur niveau amont et capteur niveau entrée vis. Ces deux informations permettent de calculer approximativement le débit d'écoulement Q=k h H a. Hauteur de chute utile : capteur niveau entrée vis et capteur niveau aval. La connaissance de ces informations et des cotes des radiers permet de trouver cette hauteur. Q29. Déterminer la relation à implanter dans l'automate permettant d'obtenir cette information. La masse économisée vaut : m=1,061 W, W énergie produite en kwh. Page 8 sur 9

7. Synthèse Objectif(s) de cette partie : comparer la production estimée à la production réelle obtenue sur la première année d'exploitation afin de valider le temps de retour sur investissement. Q30. Analyser, le plus précisément possible, l'allure des deux courbes d'énergie. L'analyse devra apporter une justification cohérente des portions linéaires des courbes obtenues et mettra en évidence les écarts observés. Critiquer la méthode qui a permis d'estimer le retour sur investissement dans le début de l'étude. Pendant les quatre premiers mois le débit autorise de fonctionner à puissance nominale. La pente de la courbe de l'énergie estimée est l'image de la puissance produite : 30 kw. Pendant les deux premiers mois l'énergie produite est deux fois plus faible que celle estimée du fait de la puissance réduite pour le démarrage de l'installation (rodage et contrôle). Les vingt cinq jours suivants l'installation a fonctionné à puissance nominale (même pente que l'énergie estimée). Au quatre vingtième jour la production stagne, ceci est vraisemblablement dû à un arrêt de l'installation (il est peu probable que ce soit par manque d'eau). Ensuite la courbe d'énergie produite ne présente plus de portion linéaire car on entre dans une période où le débit n'a pas permis de travailler à puissance nominale. En considérant un démarrage à puissance nominale, l'énergie se serait rapprochée de l'estimation, et aurait été plus importante que celle estimée au début de l'étude. Le retour sur investissement réel se fera plus rapidement. Le fait de ne prendre en compte que les cinq mois les plus productifs de l'année permet d'avoir une estimation pessimiste de la durée du retour sur investissement. Page 9 sur 9