Chapitre I : Atome d hydrogène et notion de mécanique quantique

Documents pareils
La fonction d onde et l équation de Schrödinger

SYSTEME DE PARTICULES. DYNAMIQUE DU SOLIDE (suite) Table des matières

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. - Section Orthoptiste / stage i-prépa intensif -

Mécanique Quantique EL OUARDI EL MOKHTAR LABORATOIRE MÉCANIQUE & ÉNERGÉTIQUE SPÉCIALITÉ : PROCÈDES & ÉNERGÉTIQUE. dataelouardi@yahoo.

Calcul intégral élémentaire en plusieurs variables

Contenu pédagogique des unités d enseignement Semestre 1(1 ère année) Domaine : Sciences et techniques et Sciences de la matière

Chapitre 1 Cinématique du point matériel

Fonctions de plusieurs variables

Professeur Eva PEBAY-PEYROULA

Interactions des rayonnements avec la matière

Cours de Mécanique du point matériel

Erratum de MÉCANIQUE, 6ème édition. Introduction Page xxi (milieu de page) G = 6, m 3 kg 1 s 2

Enseignement secondaire

K W = [H 3 O + ] [OH - ] = = K a K b à 25 C. [H 3 O + ] = [OH - ] = 10-7 M Solution neutre. [H 3 O + ] > [OH - ] Solution acide

THEME 2. LE SPORT CHAP 1. MESURER LA MATIERE: LA MOLE

TD 9 Problème à deux corps

Lycée Galilée Gennevilliers. chap. 6. JALLU Laurent. I. Introduction... 2 La source d énergie nucléaire... 2

Quantité de mouvement et moment cinétique

Chapitre n 6 MASSE ET ÉNERGIE DES NOYAUX

NOTICE DOUBLE DIPLÔME

Chapitre I- Le champ électrostatique. I.1.1- Phénomènes électrostatiques : notion de charge électrique

Module d Electricité. 2 ème partie : Electrostatique. Fabrice Sincère (version 3.0.1)

TABLE DES MATIÈRES CHAPITRE I. Les quanta s invitent

Chapitre 10 : Radioactivité et réactions nucléaires (chapitre 11 du livre)

DYNAMIQUE DE FORMATION DES ÉTOILES

PHYSIQUE QUANTIQUE ET STATISTIQUE PHYS-H-200

Chapitre 0 Introduction à la cinématique

OM 1 Outils mathématiques : fonction de plusieurs variables

BTS BAT 1 Notions élémentaires de chimie 1

3 Charges électriques

Chapitre 02. La lumière des étoiles. Exercices :

Etrangeté et paradoxe du monde quantique

FUSION PAR CONFINEMENT MAGNÉTIQUE

TS1 TS2 02/02/2010 Enseignement obligatoire. DST N 4 - Durée 3h30 - Calculatrice autorisée

FICHE 1 Fiche à destination des enseignants 1S 16 Y a-t-il quelqu un pour sauver le principe de conservation de l énergie?

Équivalence masse-énergie

Chapitre 11: Réactions nucléaires, radioactivité et fission

LE PHYSICIEN FRANCAIS SERGE HAROCHE RECOIT CONJOINTEMENT LE PRIX NOBEL DE PHYSIQUE 2012 AVEC LE PHYSICIEN AMERCAIN DAVID WINELAND

I - Quelques propriétés des étoiles à neutrons

Atelier : L énergie nucléaire en Astrophysique

Cours d Analyse. Fonctions de plusieurs variables

Compétence 3-1 S EXPRIMER A L ECRIT Fiche professeur

INTRODUCTION. A- Modélisation et paramétrage : CHAPITRE I : MODÉLISATION. I. Paramétrage de la position d un solide : (S1) O O1 X

1 ère partie : tous CAP sauf hôtellerie et alimentation CHIMIE ETRE CAPABLE DE. PROGRAMME - Atomes : structure, étude de quelques exemples.

Photons, expériences de pensée et chat de Schrödinger: une promenade quantique

a. Fusion et énergie de liaison des noyaux b. La barrière Coulombienne c. Effet tunnel & pic de Gamov

La physique nucléaire et ses applications

Michel Henry Nicolas Delorme

Chapitre 6. Réactions nucléaires. 6.1 Généralités Définitions Lois de conservation

Intégrales doubles et triples - M

Chapitre 6 : les groupements d'étoiles et l'espace interstellaire

Propriétés électriques de la matière

Chapitre 2 : Caractéristiques du mouvement d un solide

A retenir : A Z m n. m noyau MASSE ET ÉNERGIE RÉACTIONS NUCLÉAIRES I) EQUIVALENCE MASSE-ÉNERGIE

Plan du chapitre «Milieux diélectriques»

Résonance Magnétique Nucléaire : RMN

Qu est-ce qu un ordinateur quantique et à quoi pourrait-il servir?

Transformations nucléaires

Cours d électricité. Introduction. Mathieu Bardoux. 1 re année. IUT Saint-Omer / Dunkerque Département Génie Thermique et Énergie

PROGRAMME DE PHYSIQUE - CHIMIE EN CLASSE DE SECONDE GÉNÉRALE ET TECHNOLOGIQUE

A. Énergie nucléaire 1. Fission nucléaire 2. Fusion nucléaire 3. La centrale nucléaire

Chapitre 5 : Noyaux, masse et énergie

SUIVI CINETIQUE PAR SPECTROPHOTOMETRIE (CORRECTION)

C est un mouvement plan dont la trajectoire est un cercle ou une portion de cercle. Le module du vecteur position OM est constant et il est égal au

P17- REACTIONS NUCLEAIRES

F411 - Courbes Paramétrées, Polaires

Puissance et étrangeté du quantique Serge Haroche Collège de France et Ecole Normale Supérieure (Paris)

Panorama de l astronomie

STATIQUE GRAPHIQUE ET STATIQUE ANALYTIQUE

Unités, mesures et précision

La physique quantique couvre plus de 60 ordres de grandeur!

EXERCICES SUPPLÉMENTAIRES

Transformations nucléaires

Quelques liens entre. l'infiniment petit et l'infiniment grand

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

DM 10 : La fusion nucléaire, l énergie de l avenir? CORRECTION

par Alain Bonnier, D.Sc.

PHYSIQUE Discipline fondamentale

Introduction à l'electromagnétisme

Théorie quantique et échelles macroscopiques

Les rayons X. Olivier Ernst

Stabilité et Réactivité Nucléaire

Principe et fonctionnement des bombes atomiques

2 e partie de la composante majeure (8 points) Les questions prennent appui sur six documents A, B, C, D, E, F (voir pages suivantes).

LE PRODUIT SCALAIRE ( En première S )

À propos d ITER. 1- Principe de la fusion thermonucléaire

TP : Suivi d'une réaction par spectrophotométrie

Cours Fonctions de deux variables

M2 IAD UE MODE Notes de cours (3)

Interaction milieux dilués rayonnement Travaux dirigés n 2. Résonance magnétique : approche classique

Résolution d équations non linéaires

Application à l astrophysique ACTIVITE

M6 MOMENT CINÉTIQUE D UN POINT MATÉRIEL

Seconde Généralités sur les fonctions Exercices. Notion de fonction.

Plan du cours : électricité 1

DM n o 8 TS Physique 10 (satellites) + Chimie 12 (catalyse) Exercice 1 Lancement d un satellite météorologique

Repérage d un point - Vitesse et

Stage : "Développer les compétences de la 5ème à la Terminale"

Deux disques dans un carré

Transcription:

Chapitre I : Atome d hydrogène et notion de mécanique quantique Plan : ********************** II- INTRODUCTION DES NOTIONS FONDAMENTALES DE MECANIQUE QUANTIQUE... 3 1- Rappels sur l atome et présentation du problème... 3 - Fonction d onde... 3 a- Equation de Schrödinger(complément de cours hors programme)... 3 b- Signification de la fonction d onde (à connaître)... 6 3- Résultats de la résolution de l équation de Schrödinger (à admettre et à connaitre)... 6 a- Niveaux énergétiques électroniques... 7 b- Fonction d'onde électronique Ψn,l,m... 8 c- Dégénérescence des niveaux énergétiques... 11 4- Description d un électron par les 4 nombres quantiques n, l, m et m s... 1 5- Ion hydrogénoïde... 14 a- Définition... 14 b- Résultats de Mécanique Quantique... 14 ********************** Page 1 Claude Anies EduKlub S.A

Chapitre I : Atome d hydrogène Et notion de mécanique quantique Ce paragraphe de cours a pour objectif de présenter quelques notions de Mécanique Quantique. Cette mécanique, développée au début du XX ième siècle, permet d étudier l atome d hydrogène, objet «quantique» par excellence, composé d un noyau et d un électron. Ce cours sera retraité en classe de spéciale PC de façon un peu plus approfondie. A l aide des résultats de Mécanique Quantique, à admettre sans démonstration, on interprète les résultats expérimentaux concernant notamment : - le spectre d émission ou d absorption de l atome d hydrogène ; - ainsi que la formule expérimentale, établie par Ritz et Rydberg lors de l analyse des longueurs d onde des raies émises ou absorbées par l atome d hydrogène, et pour laquelle on retrouve une valeur numérique de la constante de Rydberg R H de l atome d hydrogène. On présente la notion de : fonction d onde notée Ψ et d énergie ε associée à cette fonction d onde. L équation de Schrödinger permettant d obtenir ce couple (Ψ, ε)est hors programme. Le modèle planétaire de l atome d hydrogène, basé sur une description via la mécanique classique, n est pas apte à décrire l atome d hydrogène. Néanmoins, Bohr propose un modèle pour l atome d hydrogène, système physique à deux particules, le noyau supposé immobile (approximation de Born-Oppenheimer) et l électron. L électron est soumis à la force attractive, d origine coulombienne, exercée par le noyau sur l électron de charge opposée à celle du noyau. Bohr est cependant amené à quantifier l énergie de l électron (quantification en 1/n ). Cette hypothèse est en accord avec les résultats expérimentaux mis en évidence lors de l étude du spectre d émission de l atome d hydrogène (cf. paragraphe I, Spectres d émission/d absorption de l atome d hydrogène) et la formule expérimentale établie par Ritz et Rydberg. Bohr quantifie également le moment cinétique L = r p (r vecteur position, p vecteur quantité de mouvement de l électron et et produit vectoriel) afin d expliquer pourquoi l électron ne s écrase pas sur le noyau. Le modèle développé par Bohr n est cependant pas au programme en chimie. D autre part, d après la relation d incertitude d Heisenberg, on ne peut pas déterminer simultanément r et p, respectivement vecteurs position et quantité de mouvement de l électron soumis à l attraction du noyau d hydrogène car : δ r. δ p avec = h π, h constante de Planck D après cette dernière relation, si l incertitude sur la position de l électron est faible, celle sur la quantité de mouvement est, au contraire, grande. Page Claude Anies EduKlub S.A

On rappelle que ces vecteurs sont utilisés en Mécanique Classique pour déterminer la trajectoire d une particule. On ne peut donc pas parler de trajectoire pour cet électron soumis à l attraction de l atome d hydrogène. L atome doit être considéré comme un objet «quantique», ses niveaux d énergie étant quantifiés. Il ne possède pas de continuum énergétique mais ne peut prendre que certaines valeurs d énergie. En mécanique quantique, on introduit donc : la fonction d'onde Ψ : o fonction mathématique réelle ou complexe, o solution de l'équation de Schrödinger o dont le carré ou la norme au carré représente la densité volumique de probabilité de présence de l électron de l atome d hydrogène ; o c est une fonction qui dépend de la position de l électron ε, énergie associée à la fonction d onde Ψ qui représente l'énergie de l électron de l atome décrit par cette même fonction d'onde Ψ. Ce couple (Ψ, ε), fonction d onde-énergie, est, en mécanique quantique, l analogue du couple ( r, p ), vecteur position-quantité de mouvement permettant de prédire la trajectoire d un objet. Ces deux couples permettent de décrire respectivement des objets «quantiques» ou «classiques». On aborde dans ce paragraphe uniquement le cas de l atome d hydrogène ou de l ion hydrogénoïde. II- Introduction des notions fondamentales de mécanique quantique 1- Rappels sur l atome et présentation du problème A On rappelle que l atome de symbole Z M est caractérisé par : Z, numéro atomique représente : nombre de protons = nombre d électrons, l atome étant électriquement neutre A, nombre de masse représente : nombre de nucléons, A-Z étant le nombre de neutrons. Le noyau est supposé immobile. Il s agit de l approximation de Born-Oppenheimer. En effet, en raison de la différence de masse entre le proton/neutron (nucléon) et l électron de l ordre de 000, le noyau, plus lourd que l électron, peut être considéré comme immobile. Le noyau est donc «positionné» au centre d un repère orthonormé. On souhaite alors décrire le «comportement» de l électron de l atome d hydrogène de symbole 1 1 H. L atome d hydrogène 1 1 H est donc constitué : d un noyau présentant un proton et 0 neutron ; et d un électron. - Fonction d onde a- Equation de Schrödinger(complément de cours hors programme) On associe à toute particule quantique une fonction d'onde Ψ, fonction mathématique, réelle ou complexe, solution de l'équation différentielle de Schrödinger. Page 3 Claude Anies EduKlub S.A

L'équation de Schrödinger est l équation fondamentale de Mécanique quantique analogue à celle déduite du Principe Fondamental de la Dynamique ou PFD (ou second loi de Newton), de la Mécanique Classique. L équation de Schrödinger e se présente de la manière suivante : Ψ + VΨ = ε Ψ µ ou HΨ=ε Ψ avec L équation de Schrödinger est hors programme. H opérateur Hamiltonien H avec H = + V µ Pour l atome d hydrogène 1 1 H, constitué d un proton et d un électron, ou pour l ion hydrogénoïde, A ( Z 1) Z M +, cation constitué d un noyau à Z protons, A-Z neutrons et d un seul électron, donc de charge (Z-1)+ en unité de charge élémentaire (1uce = 1,6.10-19 C), on a : µ masse réduite du système noyau-électron : mnoyau mélectron µ = mélectron mnoyau + mélectron car la masse de l électron est négligeable devant celle du noyau ; opérateur Laplacien : = + + x y z en coordonnées cartésiennes ; V énergie potentielle du système : Z e V = 4πε0 r avec r distance noyau-électron et Z la charge du noyau en unités de charges électroniques ; La fonction d'onde Ψ dépend logiquement des coordonnées de l espace de l électron (soit une fonction mathématique dépendant de 3 variables). En effet, son carré ou sa norme au carré représente une densité volumique de probabilité de présence de l électron (voir ci-après). Les probabilités de présence (et donc la fonction d onde) de l électron au noyau c est-à-dire au centre du repère orthonormé ou à l infini du noyau sont nulles. En effet, le noyau ne peut être confondu avec l électron, la probabilité de présence de l électron au centre du repère orthonormé est donc nulle. L électron ne peut être à l infini du noyau. Il s agirait dans ce dernier cas d un atome d hydrogène ionisé selon la transformation : H(gaz) H + (gaz) + e - Pour repérer la position de l électron, on adopte les coordonnées, non pas cartésiennes (x,y,z), mais les coordonnées dites sphériques (r,θ, φ) en raison de l énergie potentielle, invariante en tout point d une sphère (c est-à-dire en tout point d une sphère de rayon R, cette énergie prend la même valeur ; il y a donc invariance par rapport à θ ou φ). Page 4 Claude Anies EduKlub S.A

Les coordonnées sphériques, (r,,φ), sont définies selon : θ r = OM avec r [ 0, + [, coordonnées radiales avec O centre du repère orthonormé et M point de coordonnées (x,y,z) θ= ( Oz, OM) avec θ [ 0, + π[ coordonnée angulaires et φ= Ox, OM' avec φ [ 0, + π[ coordonnée angulaires ( ) avec M point projeté selon une projection orthogonale de M dans le plan (x,y) θ = Oz, OM z r = OM M x y z O y On note donc : x M' projeté orthogonal de M φ = Ox, OM' dans le plan (x,y) Coordonnées sphériques Ψ ( r, θ, φ) fonction d onde réelle ou complexe avec ( r,θ,φ) coordonnées sphériques de l électron. Pour représenter, dans un espace, cette fonction mathématique dépendant de 3 coordonnées de l espace, il faudrait donc un espace de dimension 4. On peut simplement représenter : des courbes iso-niveau, c est-à-dire des courbes liant les points où la fonction d onde prend les mêmes valeurs (comme en cartographie, on représente des courbes iso-altitude pour représenter un relief sur une carte à dimensions) ou mieux le carré ou la norme au carré de la fonction d onde pour une valeur fixée à 0,95 de la densité volumique de probabilité de présence (courbes iso-densité, voir ci-après). On montre, par résolution de l équation de Schrödinger, que cette fonction d onde se met sous la forme d un produit de deux fonctions : - l une ne dépendant que de la coordonnée radiale, r, et appelée partie radiale de la fonction d onde ; on la note R(r) ; - l autre dépendant des coordonnées angulaires, ( θφ, ), et appelée partie angulaire de la fonction d onde ; on la note Y ( θφ, ) D où : Ψ( r, θ, φ ) = R(r) Y( θ, φ ) On peut donc alors s intéresser à l étude mathématique et à la représentation de : - la partie radiale R(r) de la fonction d onde, R(r) fonction ne dépendant que de la coordonnée radiales r ; - et de la partie angulaire Y ( θφ), de la fonction d onde, Y ( θφ, ) fonction ne dépendant que des coordonnées angulaires (θ, φ). Page 5 Claude Anies EduKlub S.A

b- Signification de la fonction d onde (à connaître) La fonction d onde Ψ n a pas de signification physique particulière. Cependant, le carré ou la norme au carré de la fonction d onde Ψ volumique de probabilité de présence de l électron. Ψ, représente une densité Ainsi, lorsqu on recherche la probabilité élémentaire, notée dp, de présence de l électron dans un élément de volume élémentaire, noté dv, on a : dp = Ψ dv Remarque : Cette définition donne la dimension de la fonction d onde Ψ en m -3/ et surtout du carré ou de la norme au carré de la fonction d onde (qui a un sens physique contrairement à la fonction d onde) en m -3, la probabilité étant un nombre sans dimension. La densité volumique de probabilité de présence, Ψ, est homogène à l inverse d un volume. La probabilité de trouver l électron sur un espace A est alors : ( ) 1 A 0 < P A = Ψ dv Remarque : Il s agit d une intégrale triple (intégration sur 3 variables de l espace du carré ou de la norme au carré de la fonction d onde). La probabilité de trouver l électron sur tout l espace est alors 1. La fonction d onde Ψ est donc normée, donc bornée et prenant des valeurs nulles à l infini. La fonction d onde Ψ est donc en résumé : une fonction mathématique dépendant de 3 variables (coordonnées spatiales de l électron) normée, bornée et s annulant à l infini puisque l électron ne peut pas être à l infini du noyau. Il peut être intéressant de donner une représentation de la densité de probabilité par des courbes dites iso-densité de probabilité, courbes donnant l ensemble des points où la densité volumique de probabilité de présence, Ψ, prend une même valeur comprise entre 0 et 1 strictement. On obtient ainsi une «image» du volume occupé par l électron. 3- Résultats de la résolution de l équation de Schrödinger (à admettre et à connaitre) Ces résultats de Mécanique Quantique sont à admettre et à connaître, sans démonstration, car l équation de Schrödinger est hors programme. Le noyau est supposé immobile (Approximation de Born-Oppenheimer). Il est situé au centre du repère orthonormé en étant assimilé à un point matériel. La résolution de l'équation de Schrödinger est, dans le cas de l atome d hydrogène, exacte. L équation différentielle de Schrödinger étant linéaire dans le cas de l atome d hydrogène ou l ion hydrogénoïde alors que ce n est plus le cas pour l atome poly-électronique (en raison des répulsions électroniques). Page 6 Claude Anies EduKlub S.A