Bases de l IRM en cardiologie. JN Dacher, CHU ROUEN

Documents pareils
IRM hépatique: ce que le manipulateur doit savoir

Résonance magnétique (IRM)

Interaction milieux dilués rayonnement Travaux dirigés n 2. Résonance magnétique : approche classique

Développements en imagerie RMN spirale et application

Résonance Magnétique Nucléaire : RMN

Compléments - Chapitre 5 Spectroscopie

Partie Observer : Ondes et matière CHAP 04-ACT/DOC Analyse spectrale : Spectroscopies IR et RMN

Foscolo (1), J Felblinger (2), S Bracard (1) CHU Hôpital central, service de neuroradiologie, Nancy (1) CHU BRABOIS, Centre d investigation clinique

L IRM pas à pas Un module d enseignement interactif des bases physiques de l Imagerie par Résonance Magnétique.

Mesure de la surface spécifique

SYSTÈME DE DÉFIBRILLATION EVERA MRI SURESCAN

5. Les conducteurs électriques

La Dysplasie Ventriculaire Droite Arythmogène

ANALYSE SPECTRALE. monochromateur

MONITORING PÉRI-OPÉRATOIRE DE L'ISCHÉMIE CARDIAQUE. Dary Croft 9 mai 2013

LIRE UN E.C.G. Formation sur le langage et la lecture d un ECG destinée aux techniciens ambulanciers de la région Chaudière-Appalaches

Champ électromagnétique?

Notions de base Gestion du patient au bloc opératoire

Equipement. électronique

Transformations nucléaires

Notice d Utilisation du logiciel Finite Element Method Magnetics version 3.4 auteur: David Meeker

... IRM bas champ : développement d un système pour son intégration en imagerie multimodale in vivo du petit animal

Les Champs Magnétiques

Expérience 3 Formats de signalisation binaire

Le compte rendu de scanner et d IRM du cœur. DIU Imagerie CV 2007

TP 7 : oscillateur de torsion

Microscopie de fluorescence Etat de l art

Comment réaliser physiquement un ordinateur quantique. Yves LEROYER

Chapitre 2 Les ondes progressives périodiques

compaction ventriculaire gauche sur la fonction ventriculaire chez l adulte

INTERPRÉTATION ET ANOMALIES DE LA PROSPECTION À RÉSONANCE MAGNÉTIQUE (MRS)

PRODUCTION, CONVERSION OU DISTRIBUTION DE L ÉNERGIE ÉLECTRIQUE

- MANIP 2 - APPLICATION À LA MESURE DE LA VITESSE DE LA LUMIÈRE

Séquence maladie: insuffisance cardiaque. Mieux connaître l insuffisance cardiaque Vivre avec un DAI

Molécules et Liaison chimique

L E.C.G. pour les nuls

La pompe cardiaque, le débit cardiaque et son contrôle

TABLE DES MATIÈRES CHAPITRE I. Les quanta s invitent

G.P. DNS02 Septembre Réfraction...1 I.Préliminaires...1 II.Première partie...1 III.Deuxième partie...3. Réfraction

suva Factsheet Version juillet 2008 Introduction Systèmes électroniques de sécurité

Caractéristiques techniques

Logiciel NorthEast Monitoring, Inc. Holter LX Analysis. Mode d emploi international

23. Interprétation clinique des mesures de l effet traitement

Actualités IRM dans la SEP Thomas Tourdias 1, 2

Farzin Beygui Institut de Cardiologie CHU Pitié-Salpêtrière Paris, France. Probability of cardiovascular events. Mortalité CV

Etrangeté et paradoxe du monde quantique

Animation pédagogique sur l oscilloscope à mémoire Hameg HM 507

Chapitre 10 : Radioactivité et réactions nucléaires (chapitre 11 du livre)

Eléments de spécification des systèmes temps réel Pierre-Yves Duval (cppm)

Professeur Eva PEBAY-PEYROULA

THEME 2 : CORPS HUMAIN ET SANTE : L EXERCICE PHYSIQUE

Approche expérimentale du rayonnement électromagnétique émis par un téléphone portable

DIPLÔME INTERUNIVERSITAIRE D ECHOGRAPHIE. Examen du Tronc Commun sous forme de QCM. Janvier h à 16 h

Épreuve d effort électrocardiographique

Caractérisation de défauts par Magnétoscopie, Ressuage, Courants de Foucault

M HAMED EL GADDAB & MONGI SLIM

Mini_guide_Isis.pdf le 23/09/2001 Page 1/14

Prise en charge du patient porteur d un dispositif implantable. Dr Philippe Gilbert Cardiologue CHU pavillon Enfant-Jésus

LE COSMODETECTEUR : UN EXEMPLE DE CHAÎNE DE MESURE

LES CARACTERISTIQUES DES SUPPORTS DE TRANSMISSION

Groupe Nanostructures et Systèmes Quantiques

Traitement bas-niveau

EURO DEFI PADS IU9I 2012/10

Cas clinique n 1. Y-a-t-il plusieurs diagnostics possibles? Son HTA a t elle favorisé ce problème?

SYSTEME DE PALPAGE A TRANSMISSION RADIO ETUDE DU RECEPTEUR (MI16) DOSSIER DE PRESENTATION. Contenu du dossier :

1 Démarrer L écran Isis La boite à outils Mode principal Mode gadget Mode graphique...

Caractéristiques des ondes

NO-BREAK KS. Système UPS dynamique PRÉSENTATION

Fluorescent ou phosphorescent?

Applications en imagerie cérébrale (MEG/EEG)

DIFFRACTion des ondes

Votre guide des définitions des maladies graves de l Assurance maladies graves express

Principe ALARA mis en place lors de la phase de conception des cyclotrons. Ch. Bouvy; J-M. Geets; B. Nactergal 11/06/14

Sachez bien utiliser les aimants pour votre santé!

Défibrillateur Cardiaque Automatisé

La prise en charge de votre insuffisance cardiaque

J AUVRAY Systèmes Electroniques TRANSMISSION DES SIGNAUX NUMERIQUES : SIGNAUX EN BANDE DE BASE

Fiche professeur. L analyse spectrale : spectroscopies IR et RMN

Rapport. Mesures de champ de très basses fréquences à proximité d antennes de stations de base GSM et UMTS

Livret d accueil des stagiaires

TP 03 B : Mesure d une vitesse par effet Doppler

Photons, expériences de pensée et chat de Schrödinger: une promenade quantique

Comment déterminer la structure des molécules organiques?

De l effet Kondo dans les nanostructures à l électronique de spin quantique. Pascal SIMON

La solution à vos mesures de pression

Dr E. CHEVRET UE Aperçu général sur l architecture et les fonctions cellulaires

Mesures de temps de propagation de groupe sur convertisseurs de fréquence sans accès aux OL

Notions d ECG. Définition. Compétences à acquérir

Imagerie TDM et IRM des obstacles du bas cholédoque

Le signal GPS. Les horloges atomiques à bord des satellites GPS produisent une fréquence fondamentale f o = Mhz

Surveillance et Detection des Anomalies. Diagnostic d une digue: rappel méthodologique

Guide de démarrage rapide. (pour la version 5.0.)

Glossaire technique Veditec

Bandes Critiques et Masquage

IRM du Cancer du Rectum

Les Réseaux sans fils : IEEE F. Nolot

PRINCIPE ET FONCTIONNEMENT DES DÉFIBRILLATEURS AUTOMATIQUES IMPLANTABLES (DAI)

Ischémie myocardique silencieuse (IMS) et Diabète.

TROUBLES DU RYTHME ARYTHMIES, TACHYCARDIES,FIBRILLATIONS, EXTRASYSTOLES, BRADYCARDIES

Transcription:

Bases de l IRM en cardiologie JN Dacher, CHU ROUEN

Objectifs de l enseignement Bases physiques de l IRM Concepts de base du phénomène physique Connaître la définition de TR, TE, T1, T2, TI, pondération Comprendre l asservissement ECG en IRM Connaître les contre indications absolues et relatives de l IRM

Sources et lectures recommandées Web; e-mri par D Hoa B Kastler et D Vetter ; «Comprendre l IRM, manuel d auto apprentissage», Masson J Bogaert et al.; Clinical Cardiac MRI, Springer MRI made easy. Monographie Schering

Historique : Découverte du phénomène : 1926 Bloch et Purcell : Spectres de RMN en 1946 Damadian : Spectres tissulaires en 1972 Lauterbur : Applications à l imagerie par analogie à la tomodensitométrie (fin des années 70) en cardiologie; premières publications anciennes «explosion» depuis l avènement de deux grands types de séquences; balanced FFE et delayed enhancement

IRM ou RMN? Résonance Magnétique Nucléaire Nuclear Magnetic Resonance N noyau M champ magnétique R radiofréquence et résonance

LE N de RMN : le proton Certains noyaux atomiques présentent spontanément une rotation autour d un axe propre qui peut être assimilée à la rotation de la Terre autour de son axe Quand ils possèdent une charge positive (ion H + ), ils se comportent comme des micro-aimants possédant chacun un pôle Nord et un pôle Sud Ce micro aimant peut être matérialisé par un vecteur possédant une intensité (champ) et une direction (polarisation)

Le champ induit

LE N de RMN : le proton L hydrogène (H + ) contient un seul proton et présente l avantage de son extrême abondance dans le corps humain Spontanément, les protons du corps humain sont orientés au hasard Soumis à un champ magnétique externe donné (exprimé en Tesla), la fréquence de rotation (MHz) de l hydrogène est constante (42,58 MHz / Tesla)

Pas de champ magnétique axes variables résultante nulle

LE N de RMN N: Nucléaire, Nucléon, Proton. Aimant microscopique du corps humain qui s aligne dans l axe d un champ magnétique extérieur stable en tournant (spin) autour de son propre axe à la fréquence F F = Bo. K F : fréquence de rotation (ou de précession) Bo : champ magnétique K : constante gyromagnétique de l hydrogène

LE N de RMN L IRM est une imagerie de l hydrogène les organes dépourvus d H+ ne donnent pas de signal air ambiant ou alvéolaire ligaments corticale des os

De la RMN à l IRM... M : Magnétique. Champ magnétique puissant (Bo)) et aussi stable que possible, responsable de l alignement des protons axe homogène : magnétisation maximale et état d équilibre

LE M de RMN L aimant naturel : bas champ (0.2T), poids considérable (11 à 12 tonnes, pas de développement actuel, ne consomme aucune énergie résistif : électro aimant posant le problème de la production de chaleur supra conducteur : alliage particulier perdant toute résistance électrique au zéro absolu, permet de développer des champs élevés W = R I 2 t

LE M de RMN : le champ magnétique Les protons (N) soumis au champ Bo (M) vont subir essentiellement 2 phénomènes - Orientation ou alignement le long de l axe du champ magnétique (z) vers le «Nord» (+ z, basse énergie) ou vers le «Sud» (-z haute énergie) - Rotation ou Précession le long de l axe z à une fréquence (de Larmor) qui dépend de la constante gyromagnétique et du champ F = Bo. K

A l équilibre, tous les H+ soumis au champ sont orientés suivant l axe z en ± et effectuent une rotation de fréquence constante. Cependant ils sont déphasés

LE R de RMN : résonance et radiofréquence (RF) L application d une radiofréquence égale à la fréquence de Larmor du proton a 2 effets 1) Elle fait passer un certain nombre de protons d un état de basse énergie à un état de haute énergie 2) Surtout, elle met l ensemble des protons en phase (c-à-d sur le même point de leurs orbites respectives)

LE R de RMN : résonance et radiofréquence (RF) L application d une radiofréquence différente de la fréquence de Larmor du proton n a aucun effet perte de l énergie dans le milieu ceci permet de ne faire résonner que certains protons

LE R de RMN : résonance et radiofréquence (RF) Immédiatement, après l administration d une onde très brève (pulse) de RF, la magnétisation longitudinale (z) est nulle. Un vecteur de magnétisation transversale (rephasage des protons) est apparu

La relaxation des protons stimulés

LE R de RMN : résonance et radiofréquence (RF) Dès l arrêt de la RF, l antenne émettrice devient réceptrice. Les protons qui ne sont de nouveau plus soumis qu au champ magnétique principal Bo vont tendre à retourner à l état qui était le leur avant l administration de la RF. C est la relaxation

La relaxation des protons stimulés

Le signal IRM La relaxation protonique sous l influence du champ Bo (après l impulsion RF qui est coupée) induit un courant électrique (loi de Faraday) qui est recueilli par l antenne : le signal IRM

Les 2 relaxations simultanées Relaxation transversale : diminution du vecteur de magnétisation transversale (T2) = Perte de la synchronisation RF induite Relaxation longitudinale : recroissance du vecteur de magnétisation longitudinale (T1) = Retour à l état d équilibre

Résumé du phénomène Corps humain, Coeur : population de protons (ions H+) Dans un champ magnétique externe puissant Obtention d un état d équilibre Administration d une onde de radiofréquence Retour à l état d équilibre (relaxation) Induction par les protons en relaxation d un signal électromagnétique (le signal IRM) La relaxation diffère d un tissu à l autre On peut créer une image avec du contraste entre les tissus (échelle de gris)

Le matériel et le patient Aimant supraconducteur (parfois naturel) Bobines de gradients (positionnement du signal dans l espace) Antenne émettrice (onde de radiofréquence RF) Antenne réceptrice (recueil du signal) Système informatique (traitement des données et transformation du signal électromagnétique en image)

Localiser la provenance du signal Les protons capables de recevoir l énergie sont ceux dont la fréquence de rotation est égale à la fréquence de l onde RF. Il n y a pas de transfert d énergie aux protons dont la vitesse est différente (intérêt des bobines de gradients et importance de «l immobilité» de la source de protons, c-a-d le patient, ou bien le coeur)

Localiser la provenance du signal Des gradients de champ magnétique sont appliqués dans les 3 plans de l espace (x, y, z). Ils modifient de façon graduelle le champ principal Bo dans les 3 plans de l espace Une coupe donnée, choisie par l examinateur, est excitée par une radiofréquence sélectionnée. On n enregistre pour remplir la matrice correspondante que les protons qui résonnent à cette fréquence

Localiser la provenance du signal Définition du «gradient de sélection de coupe» (GSS) La finesse de coupe dépend de la «vitesse de montée» (pente) des gradients

Localiser par la phase et la fréquence Gradient de codage de phase (Gp); codage des lignes de l espace de Fourier Gradient de codage de fréquence (Gf); codage des colonnes

Application des gradients Gradient de sélection de coupe (Fc) Gradient de codage de phase Gradient de codage de Fc ω 6 φ 1 φ 1 φ 1 φ 2 G SS G φ G ω φ 2 φ 3 φ 2 φ 3 φ 3 ω 1 ω 2 ω 3 ω 1 ω 2 ω 3 ω 1 ω 2 ω 3 φ 1 φ 2 φ 3 G SS G φ G ω 90 Signal

Localiser la provenance du signal L IRM requiert l immobilité du patient ou de l organe sédation des enfants IRM cardiaque : nécessité de synchroniser l acquisition à l ECG IRM avec synchronisation respiratoire (foie, reins) Synchronisation cardiaque et respiratoire ; IRM coronaire

Mise en place de l ECG Préparation de la peau Pose des électrodes Ne pas croiser les fils Axe du cœur : variable selon la corpulence

Les 2 modes de synchronisation ECG Synchro. Synchronisation Prospective R R-R FENÊTRE D ACQUISITION MESURES Acquisition déclenchée par la détection de chaque onde R Réglage de la fenêtre d acquisition 90% du RR L acquisition ne se fait que pendant cette période R FENÊTRE ACQ. MESURES Synchronisation Rétrospective ECG Synchro. R R-R FENÊTRE D ACQUISITION MESURES Acquisition continue Mesures triées une fois l acquisition achevée, rétrospectivement Réglage de la fenêtre d acquisition > de 10 à 20 % au RR R FENÊTRE

Vérification du signal ECG Vérifier la bonne amplitude du signal avec une grande onde R positive Choisir la meilleure dérivation Repositionner les électrodes jusqu à l obtention d un bon tracé. Connaître la pseudo croissance de l onde T dans l IRM ECG diagnostique limité dans l enceinte de l IRM

Les limites de l ECG Limites et artéfacts: arythmie, extra-systoles nombreuses, micro-voltage des épanchements péricardiques abondants («swinging heart») Il est inutile de démarrer un examen si la synchronisation est défaillante

Exemples de tracés ECG en cours d acquisition Synchro Prospective Synchro Rétrospective

Exemple de séquence CINE segmentée avec synchronisation prospective R Intervalle RR R ECG Synchro. Fenêtre d acquisition Fenêtre d acquisition Segments...... Phases 1 2 3 4... N 1 2 3 4... N

Principe de segmentation L espace R-R est divisé en plusieurs segments Nécessite des commutations rapides des gradients Au cours de chaque segment, on enregistre plusieurs lignes (et non pas une seule) Gain de temps permettant l acquisition d un plan de coupe en une apnée

Choix du type de synchronisation CINE IRM (balanced FFE) ; rétro Quantification des flux (Contraste de phase) ; pro

Revenons à notre image Les différences des temps de relation des tissus sont à la base du contraste en IRM Le temps de relaxation d un tissu dans le plan longitudinal est aussi appelé temps T1 Le temps de relaxation d un tissu dans le plan transversal est aussi appelé temps T2

Les 3 paramètres fondamentaux du signal IRM T1 : temps requis pour qu un tissu retrouve 63 % de sa magnétisation longitudinale p : densité de protons T2 : temps requis pour qu un tissu perde 63 % de sa magnétisation transversale Ces 3 paramètres sont les déterminants principaux de la brillance (intensité) de chaque voxel (unité de volume étudiée) et du contraste (différence d intensité entre les voxels voisins)

Temps d Écho TE et Temps de Répétition TR Le TR est le temps séparant 2 séquences élémentaires successives (impulsions de 90 ) Un Temps de Répétition court (500 ms) «pondère» l image en T1 : la recroissance du vecteur de magnétisation longitudinale est incomplète

Z TR court XY Signal IRM Différences surtout liées au T1 tps

Temps d Echo TE et Temps de Répétition TR Le TR est le temps séparant 2 séquences élémentaires successives (impulsions de 90 ) Un TR long fait disparaître la pondération T1 : les vecteurs longitudinaux des différents tissus se sont rejoints (pondération T2)

Z TR long XY TR Signal IRM Différences liées uniquement au T2 TE tps

Pond. T1 Pond. T2

Temps d Echo TE et Temps de Répétition TR (2) Le TE est le temps qui sépare l impulsion de 90 de la mesure Plus le Temps d Écho est court, plus le signal est fort Mais, moins le contraste est important TR long et TE court donnent une image à fort signal et faible contraste : le signal est fonction de la densité de protons (p) Si on allonge le TE, on perd du signal mais on gagne du contraste. Il faut trouver un compromis pour obtenir des images interprétables et pondérées en T2 (TR et TE longs)

Le produit de contraste Injection de Gd

Inversion récupération Inversion de 180 préalable à l excitation de 90 (hyper pondération T1) Identification d un contraste (faible) entre myocarde normal et zone retenant le gadolinium (fibrose, nécrose, granulome)

Inversion récupération

Séquence 2D IR segmentée

Le temps d acquisition Il dépend du Temps de Répétition (TR) des impulsions Il dépend de la matrice utilisée Il dépend du nombre d acquisitions demandé (moyenne des mesures)

En imagerie cardiaque, Le TR dépend de l espace RR, et on ne pourra pas obtenir strictement des pondérations T1 et T2

Les séquences «classiques» Spin écho ; les hétérogénéités du champ magnétique sont annulées par une double impulsion sélective de RF 90, puis 180 Sang noir car les protons circulants excités ont quitté le plan de coupe au moment de l écoute du signal Séquences consommatrices de temps et de qualité médiocre (respiration libre) Spin écho multi coupes = multi phases, donc pas adapté aux mesures (p ex. épaisseur diastolique du myocarde)

Les séquences «classiques» Écho de gradient ; l angle de bascule est moindre. Pas de double impulsion (inversion du gradient de lecture) Sang «blanc» par phénomène d entrée de coupe Séquences sensibles au déphasage Encore utilisées pour l analyse du jeu valvulaire

Les «nouvelles» séquences TR court avec aimantation transversale résiduelle On peut la détruire (spoiler); base de l ARM avec injection. Pondération T1 forte. On peut la renforcer (gradients rephaseurs, séquences SSFP). Amélioration du rapport signal / bruit

Les préparations Saturation de la graisse Présaturation des spins circulants ; préparation dark blood Tagging

Contre indications à l IRM Cardiologiques Pacemaker Défibrillateur implantable Nb. Les stents coronaires même récents et les prothèses valvulaires ne contre indiquent pas la pratique d une IRM jusqu à 1.5T Extra cardiologiques Neurostimulateur Corps étranger métallique intra oculaire Implant cochléaire Claustrophobie ; penser à poser les bonnes questions au patient avant toute IRM (tunnel, ascenseur..)

En 2007, les dispositifs implantés (PM, Def, NS) sont devenus des contre indications relatives à la pratique de l IRM. En cas de besoin d imagerie, préférer le scanner Si l IRM est indispensable, nécessité d avis d un trio médical qui doit être présent le jour de l examen Demandeur de l examen Responsable du dispositif implanté Médecin en charge de la réalisation de l IRM