Travail et énergie. Seule une force dont le point d application se déplace peut fournir un travail.

Documents pareils
Chapitre 11 Bilans thermiques

CHAÎNES ÉNERGÉTIQUES I CHAÎNES ÉNERGÉTIQUES. II PUISSANCE ET ÉNERGIE

L énergie sous toutes ses formes : définitions

Mesure de la dépense énergétique

Thermodynamique (Échange thermique)

Chapitre 5 : Le travail d une force :

Chapitre n 6 MASSE ET ÉNERGIE DES NOYAUX

Premier principe de la thermodynamique - conservation de l énergie

document proposé sur le site «Sciences Physiques en BTS» : BTS AVA 2015

Premier principe : bilans d énergie

Chap 2 : Noyaux, masse, énergie.

DYNAMIQUE DE FORMATION DES ÉTOILES

TEMPÉRATURE DE SURFACE D'UNE ÉTOILE

PHYSIQUE Discipline fondamentale

Domosol : Système solaire combiné (SSC) de production d eau chaude et chauffage

2.0. Ballon de stockage : Marque : Modèle : Capacité : L. Lien vers la documentation technique :

Chapitre 02. La lumière des étoiles. Exercices :

ANALYSE SPECTRALE. monochromateur

A retenir : A Z m n. m noyau MASSE ET ÉNERGIE RÉACTIONS NUCLÉAIRES I) EQUIVALENCE MASSE-ÉNERGIE

Chapitre 5. Le ressort. F ext. F ressort

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. - Section Orthoptiste / stage i-prépa intensif -

Chap 1: Toujours plus vite... Introduction: Comment déterminer la vitesse d une voiture?

TD 9 Problème à deux corps

Chapitre 1: Facteurs d'échelle

MATIE RE DU COURS DE PHYSIQUE

Formulaire standardisé pour un chauffe-eau solaire

Formulaire standardisé pour un chauffe-eau solaire

La physique nucléaire et ses applications

Lycée Galilée Gennevilliers. chap. 6. JALLU Laurent. I. Introduction... 2 La source d énergie nucléaire... 2

Chapitre 5 : Noyaux, masse et énergie

LE RÉSULTAT DU CERTIFICAT PEB Pour le résidentiel


P17- REACTIONS NUCLEAIRES

Exercice 1. Exercice n 1 : Déséquilibre mécanique

I. Introduction: L énergie consommée par les appareils de nos foyers est sous forme d énergie électrique, facilement transportable.

Mesures et incertitudes

RUBIS. Production d'eau chaude sanitaire instantanée semi-instantanée.

Transformations nucléaires

Chapitre 6 ÉNERGIE PUISSANCE - RENDEMENT. W = F * d. Sommaire

Eau chaude Eau glacée

Energie et conversions d énergie

À propos d ITER. 1- Principe de la fusion thermonucléaire

Chapitre 10 : Radioactivité et réactions nucléaires (chapitre 11 du livre)

Soltherm Personnes morales

LA PUISSANCE DES MOTEURS. Avez-vous déjà feuilleté le catalogue d un grand constructeur automobile?

LE CHAUFFAGE. Peu d entretien. Entretien. fréquent. Peu d entretien. Pas d entretien. Pas d entretien. Entretien. fréquent. Peu d entretien.

DM n o 8 TS Physique 10 (satellites) + Chimie 12 (catalyse) Exercice 1 Lancement d un satellite météorologique

ÉNERGIE : DÉFINITIONS ET PRINCIPES

NOTIONS FONDAMENTALES SUR LES ENERGIES

MESURE DE LA TEMPERATURE

THEME 2. LE SPORT CHAP 1. MESURER LA MATIERE: LA MOLE

Le triac en commutation : Commande des relais statiques : Princ ipe électronique

TP : Suivi d'une réaction par spectrophotométrie

EXERCICES SUPPLÉMENTAIRES

Thermorégulateurs Easitemp 95 et 150 eau. La solution compacte & économique

Lorsque l'on étudie les sciences de la nature, deux grands axes de raisonnement

AIDE-MÉMOIRE LA THERMOCHIMIE TABLE DES MATIERES

Solutions logicielles de gestion énergétique coopérante smart building in smart grid : Exemple CANOPEA. Xavier Brunotte info@vesta-system.

Les effets de température

Energy Logic : Emerson Network Power. Feuille de route pour la réduction r de la consommation d'énergie dans le Centre de données

Activité 1 : Rayonnements et absorption par l'atmosphère - Correction

8/10/10. Les réactions nucléaires

Différents types de matériaux magnétiques

Résonance Magnétique Nucléaire : RMN

INTRODUCTION À L'ENZYMOLOGIE

Contenu pédagogique des unités d enseignement Semestre 1(1 ère année) Domaine : Sciences et techniques et Sciences de la matière

en Appartement Besoins, Choix du Système, Coûts...

L offre DualSun pour l eau chaude et le chauffage (SSC)

Comment peut-on produire du chauffage et de l'eau chaude à partir de l'air? EFFICACITÉ POUR LES MAISONS

Réduire sa consommation d énergie dans les entreprises industrielles

Chaudières et chaufferies fioul basse température. Olio 1500, 2500, 3500, 4500, 7000

Module HVAC - fonctionnalités

Que nous enseigne la base de données PAE?

Annexe 3 Captation d énergie

Interaction milieux dilués rayonnement Travaux dirigés n 2. Résonance magnétique : approche classique

L ÉNERGIE C EST QUOI?

Plan du chapitre «Milieux diélectriques»

Retours d expériences: le suivi de bureaux. Christophe Schmauch Pierrick Nussbaumer CETE de l Est

1 Savoirs fondamentaux

Energie nucléaire. Quelques éléments de physique

GLEIZE ENERGIE SERVICE

Trépier avec règle, ressort à boudin, chronomètre, 5 masses de 50 g.

Remeha ZentaSOL. La nouvelle norme en matière de simplicité, design et rendement

Zone Région de Bruxelles Capitale

Caractéristiques des ondes

SCIENCES TECHNOLOGIES

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation )

Manuel d'utilisation de la maquette

RAPPORT COMPLET D'ETUDE DUALSYS

Série 77 - Relais statiques modulaires 5A. Caractéristiques. Relais temporisés et relais de contrôle

VERSION Ce document doit être complété et signé par l installateur agréé Soltherm ayant réalisé les travaux

Les rayons X. Olivier Ernst

C3. Produire de l électricité

CAMPING-CAR. La chaleur douce et silencieuse

Application à l astrophysique ACTIVITE

SCIENCES PHYSIQUES. Durée : 3 heures. L usage d une calculatrice est interdit pour cette épreuve. CHIMIE

Atelier : L énergie nucléaire en Astrophysique

LAMPES FLUORESCENTES BASSE CONSOMMATION A CATHODE FROIDE CCFL

Présentation du programme. de physique-chimie. de Terminale S. applicable en septembre 2012

Les calculatrices sont autorisées

Transcription:

Travail et énergie 1. Travail d une force : Dans le langage courant, le travail est synonyme d effort et de fatigue... En physique, le travail mécanique correspond à un transfert d énergie entre deux formes différentes : cinétique, potentielle, thermique,... Rappeler la définition d une énergie cinétique : Citer un exemple mettant en évidence un transfert d énergie : Seule une force dont le point d application se déplace peut fournir un travail. Soit une force F constante (c est à dire dont la..., le... et la... ne varient pas) dont le point d application se déplace d un point A vers un point B. Son travail entre ces deux points A et B ne dépend pas du chemin effectivement suivi entre ces 2 points. A X WA B ( F ) = F. AB = F. AB. cosα WA B ( F ) = WA C ( F ) WC B ( F ) C X F X B travail résistant la force ne travaille pas travail moteur 2. Travail du poids d'un objet en mouvement: Un solide de masse m et de centre d inertie G se déplace dans le champ de pesanteur terrestre g supposé uniforme, entre 2 points A et B de hauteurs respectives h A et h B. Exprimer le travail effectué par le poids P de ce projectile au cours de ce déplacement en fonction de m, g, h A et h B. ha hb 1

3. Energie potentielle de pesanteur: Rappels de 1 ère S: Un solide de masse m dont le centre d inertie G est situé à une hauteur h par rapport à une origine choisie arbitrairement possède une énergie en réserve du fait de sa position dans le champ de pesanteur terrestre g. Cette énergie, appelée énergie potentielle de pesanteur, peut se transformer en énergie cinétique si le poids du solide effectue un travail moteur. Elle a pour expression: E pp = m.g.h J'en déduis que: Le travail du poids est égal à l opposé de la variation de l énergie potentielle de la masse m dans le champ de pesanteur terrestre WA B ( P ) = Epp(A) Epp(B) Vérifie qualitativement qu il n y a pas d erreur de signe dans cette relation. A retenir: Lorsque le travail d'une force entre 2 points A et B est indépendant du chemin suivi par le point d'application de cette force, on dit que cette force est conservative. C'est le cas pour toutes les forces constantes, mais aussi pour certaines forces non constantes comme la force de rappel d'un ressort (qui varie avec l'allongement du ressort). A toute force conservative, on peut associer une énergie potentielle. 4. Energie mécanique d'un système: Définition: L'énergie mécanique E m d'un système est définie comme la somme de son énergie cinétique Ec 1 = m.v 2 2 et de son énergie potentielle Ep. Em = Ec Ep Si ce système est soumis uniquement à des forces conservatives (ou à des forces non conservatives qui ne travaillent pas) son énergie mécanique se conserve, c'est à dire reste constante au cours du temps. Il y a alors en permanence pour le système transformation d'énergie cinétique en énergie potentielle, et inversement, sous l'effet de la force conservatrice qui effectue tantôt un travail résistant, tantôt un travail moteur. Les forces de frottement sont dissipatives: Considérons une balle lâchée sans vitesse initiale à 1,0m du sol et qui rebondit un grand nombre de fois en conservant une trajectoire verticale. Les courbes du haut correspondent au cas idéal (et irréaliste) où les forces de frottement seraient nulles: l'énergie mécanique de la balle se conserve. Les courbes du bas correspondent à une situation réelle: l'énergie mécanique se transforme progressivement en chaleur à cause des forces de frottement. Pourquoi les forces de frottement et les forces de pesanteur se comportent-elles différemment? 2

Lorsqu'un système est soumis à une force f non conservative, son énergie mécanique ne reste pas constante. Sa variation correspond au travail effectué par cette force dissipative: Em = W(f ) Application 1: le pendule pesant en l'absence de frottement Un pendule simple est constitué par une bille de masse m=200g accrochée à l extrémité d un fil de longueur l. On l écarte de sa position d équilibre d un angle θo=20 puis on le lâche sans vitesse initiale à l'instant t = 0. Les forces de frottement sont négligées et on prendra g =10N.kg 1. La période propre du pendule pour des oscillations de faible amplitude est donnée par la relation: T 0 = 2π l g Fais ci-contre un schéma de ce dispositif pour θ=0 et pour θo=20 Quelle doit être la valeur de l pour qu il «batte la seconde», c est à dire pour que sa période soit de 2,0s. Calcule l énergie mécanique de ce pendule à l'instant t = 0. Comment évolue-t-elle au cours du temps? justifie. Déduis-en la vitesse du centre d inertie de la bille lorsqu elle passe par la position d équilibre Application 2: une force de frottement effectue-t-elle toujours un travail résistant? Un tapis roulant de longueur L=AB = 5,0m est utilisé pour charger un bagage de masse m = 20kg dans la soute d'un avion? Le tapis est incliné d'un angle α=20 par rapport à l'horizontale et avance à vitesse constante V=1,0m.s 1. Faire l'inventaire des forces agissant sur le bagage. Représenter ces forces sur le schéma. Calculer la variation d'énergie mécanique de la valise sur le trajet AB. En déduire la valeur f de la force de frottement exercée par le tapis roulant sur le bagage, en la supposant constante sur ce trajet. Cette hypothèse vous parait-elle fondée? 3

5. Travail d'une force électrostatique: Une particule chargée placée dans un champ électrique uniforme subit une force constante F = q. E qui dérive donc d'une énergie potentielle. La force électrique est une force conservative. Quel est le signe de la charge q sur le schéma ci-contre? La tension électrique U AB ou différence de potentiel V A V B entre les points A et B est définie par la relation U AB = V A V B = E. AB Retrouver la relation entre la tension U délivrée par le générateur, la distance d entre les plaques et la valeur du champ électrique E. X B E d F q G.H.T. U AB E X A Exprimer WA B ( F ) en fonction de q et de U AB. En déduire l'expression de l'énergie potentielle électrique d'une particule de charge q placée en un point de potentiel électrique V. 6. Du macroscopique au microscopique: Energie thermique libérée par une réaction chimique: Proposer un protocole pour mettre en évidence l'énergie thermique libérée par la réaction chimique entre un acide fort et une base forte, et montrer que cette énergie dépend des quantités de matière mises en jeu. Energie interne microscopique: Energie cinétique: plus la température d'un corps est élevée, plus l'agitation thermique des particules qui le constituent est importante. Energie potentielle: due aux interactions entre les particules qui constituent le système (électrique, nucléaire), et que l'on peut modéliser par des ressorts. Le comportement individuel de chaque particule est inaccessible mais leur comportement collectif peut être décrit grâce à des grandeurs macroscopiques mesurables à notre échelle (température, pression, volume,...). Un système macroscopique est une portion d'espace limitée par une surface contenant la matière étudiée. Nous n'étudierons que des systèmes fermés (qui n'échangent pas de matière avec l'extérieur). L'énergie interne U d'un système macroscopique résulte de contributions microscopiques. C'est la somme des Ec et des Ep des particules qui le constituent. Variation d'énergie interne d'un système: La variation d'énergie interne U d'un système est la conséquence d'échanges d'énergie avec l'extérieur par travail W ou par transfert thermique Q. U = W Q Par convention, W et Q sont comptés positivement s'ils sont reçus par le système négativement s'ils sont cédés. 4

Exemple: Un radiateur électrique convertit de l'énergie... en énergie... Il reçoit un... (W > 0) et cède un... (Q < 0) L'énergie électrique reçue pendant l'intervalle de temps t a pour expression: W = P x t (en Joule) avec P = U x I = puissance électrique du radiateur (en Watt) et t en s. Comment s'effectuent les transferts thermiques? L'existence d'une différence de température entre 2 systèmes provoque un transfert spontané d'énergie du plus chaud vers le plus froid. Si les 2 systèmes se retrouvent à la même température, le transfert thermique cesse: on a alors atteint l'équilibre thermique. Les transferts thermiques sont irréversibles: ils ne peuvent se faire spontanément en sens inverse. Exemple: le mélange d'un verre d'eau chaude et d'un verre d'eau froide donne spontanément de l'eau tiède. La transformation inverse est-elle possible? Citer un exemple de transfert énergétique réversible: On peut interpréter les transferts thermiques dans la matière selon les 3 modes suivants: conduction: de proche en proche entre atomes, sans déplacement de matière. convection: généré par un mouvement global des molécules à l'intérieur d'un système à l'état liquide ou gazeux (fluide). rayonnement: Tout corps chaud émet un rayonnement électromagnétique dont le spectre est continu, mais l'intensité lumineuse associée à chaque longueur d'onde dépend de la température. Ce spectre présente un maximum d'intensité I max pour une longueur d'onde λ max particulière. Lorsque la température du corps augmente, on constate que: * λ max diminue. * l'intensité lumineuse maximale I max augmente La loi de Wien relie la température T du corps chaud (T(K) = θ( C) 273) et la longueur d'onde λ max de son maximum d'émission (en m): 1nm=10 9 m. T x λ max = 2,9.10 3 Exemple: "La température moyenne du sol sur terre est de 15 C. Elle serait de 19 C en l'absence d'atmosphère." Expliquer le rôle joué par l'atmosphère dans la régulation de la température sur terre à partir du document ci-contre. Relation entre la variation d'énergie interne U d'un système et sa variation de température T: U = C x T avec C = capacité thermique du système étudié (à l'état solide ou liquide) unité: J.K 1 C = m x c c est la capacité thermique massique du matériau en J.kg 1.K 1 La capacité thermique d'un système caractérise sa capacité à stocker de l'énergie interne. Exemple: l'huile est-elle plus efficace que l'eau pour stocker de l'énergie? (c eau = 4185 c huile = 2000 J.kg 1.K 1 ) Utilise-t-on de l'huile ou de l'eau dans les radiateurs électriques à inertie thermique? Pourquoi? 5

7. Notion de flux thermique: L'énergie thermique ne se transmet spontanément que dans un sens, de la source chaude vers la source froide. Un transfert thermique est un transfert d'énergie E irréversible. Il peut se faire plus ou moins rapidement, selon que le matériau qui sépare la source chaude de la source froide est plus ou moins isolant. L'énergie transférée par unité de temps à travers une paroi s'appelle le flux thermique Φ à travers cette paroi. Φ = E t avec E en J t en s et Φ en Watt(W) (Attention! t = temps et non pas température T) De quels paramètres (qui apparaissent sur le schéma ci-dessus) dépend le flux thermique à travers une paroi? Pour une paroi donnée, le flux thermique Φ est proportionnel à l'écart de température T (en K) ou θ (en C) entre les deux côtés de la paroi. Le coefficient de proportionnalité s'appelle conductance thermique G th de la paroi: Φ = G th x T On préfère cependant caractériser une paroi par sa résistance thermique R th, qui est l'inverse de sa conductance G th : R th = 1/G th ce qui conduit à la relation: Remarques: plus une cloison est isolante thermiquement, plus sa résistance thermique est... Φ = T R th R th en K.W 1 lorsque plusieurs parois sont accolées, la résistance thermique totale est égale à la somme des résistances thermiques individuelles. Soit une paroi d'épaisseur e et de surface S constituée d'un matériau de conductivité thermique λ. Exprimer sa conductance thermique puis sa résistance thermique en fonction de e, S et λ. On pensera à faire une analogie avec la conductance électrique (et non pas thermique!) d'une solution aqueuse. Quelle est l'unité de λ? Pourquoi utilise-t-on des fenêtres à double vitrage dans les constructions récentes? (voir exo p 372) 8. Bilan énergétique: L'énergie totale d'un système fermé (qui n'échange pas de matière avec l'extérieur) est la somme de son énergie interne U (d'origine microscopique) et de son énergie mécanique E m (d'origine macroscopique). Pour établir un bilan énergétique, il faut: définir le système macroscopique étudié. relever la nature des transferts énergétiques entre ce système et l'extérieur: * transferts thermiques notés Q * transferts dus aux travaux W des forces non conservatives considérer le sens de ces transferts et leur attribuer un signe: positif si le système reçoit de l'énergie négatif si le système perd de l'énergie Exemple: un moteur de voiture à régime moyen développe une puissance moteur de 15,1kW pendant 30min en consommant 3,0L d'essence. Compléter le diagramme ci-contre en indiquant la nature et le sens des transferts d'énergie pour le moteur. La combustion de 1,0L d'essence libère 3,6.10 4 kj. Calculer ces transferts d'énergie en supposant que la température du moteur reste constante durant ce régime. Définir puis calculer le rendement de ce moteur à régime moyen. chambre de combustion air extérieur transmission Moteur 6