Chapitre 15 : Mécanismes en chimie organique- Réactions de substitution nucléophile et d élimination

Documents pareils
LES SUBSTITUTIONS NUCLÉOPHILES EN SÉRIE ALIPHATIQUE S N 1 ET S N 2

Résume de Cours de Chimie Organique (Prof. M. W. Hosseini) Notions acquises Définitions et conventions : Ordre de grandeur de longueur d'une liaison

ACIDES BASES. Chap.5 SPIESS

Partie 1. Addition nucléophile suivie d élimination (A N + E) 1.1. Réactivité électrophile des acides carboxyliques et groupes dérivés

Effets électroniques-acidité/basicité

Molécules et Liaison chimique

C3. Produire de l électricité

K W = [H 3 O + ] [OH - ] = = K a K b à 25 C. [H 3 O + ] = [OH - ] = 10-7 M Solution neutre. [H 3 O + ] > [OH - ] Solution acide

EXERCICE II. SYNTHÈSE D UN ANESTHÉSIQUE : LA BENZOCAÏNE (9 points)

AIDE-MÉMOIRE LA THERMOCHIMIE TABLE DES MATIERES

CHAPITRE 2 : Structure électronique des molécules

1.2 Coordinence. Notion de liaison de coordinence : Cas de NH 3. et NH 4+ , 3 liaisons covalentes + 1 liaison de coordinence.

Partie Observer : Ondes et matière CHAP 04-ACT/DOC Analyse spectrale : Spectroscopies IR et RMN

Physique Chimie. Utiliser les langages scientifiques à l écrit et à l oral pour interpréter les formules chimiques

TECHNIQUES: Principes de la chromatographie

Chap 2 : Noyaux, masse, énergie.

THEME 2. LE SPORT CHAP 1. MESURER LA MATIERE: LA MOLE

Chapitre n 6 MASSE ET ÉNERGIE DES NOYAUX

I. Introduction: L énergie consommée par les appareils de nos foyers est sous forme d énergie électrique, facilement transportable.

A retenir : A Z m n. m noyau MASSE ET ÉNERGIE RÉACTIONS NUCLÉAIRES I) EQUIVALENCE MASSE-ÉNERGIE

Synthèse et propriétés des savons.

Compétence 3-1 S EXPRIMER A L ECRIT Fiche professeur

CORRIGE. CHAP 04-ACT PB/DOC Electrolyse de l eau 1/12 1. ALIMENTATION ELECTRIQUE D'UNE NAVETTE SPATIALE

Enseignement secondaire

La gravure. *lagravureparvoiehumide *lagravuresèche

Lycée Galilée Gennevilliers. chap. 6. JALLU Laurent. I. Introduction... 2 La source d énergie nucléaire... 2

STÉRÉOISOMÉRIE CONFIGURATIONNELLE STÉRÉOISOMÉRIE OPTIQUE COMPOSÉS OPTIQUEMENT ACTIFS À UN SEUL CARBONE ASYMÉTRIQUE

La vie des étoiles. La vie des étoiles. Mardi 7 août

Energie Nucléaire. Principes, Applications & Enjeux. 6 ème /2015

Fiche professeur. L analyse spectrale : spectroscopies IR et RMN

Exercices sur le thème II : Les savons

La reconnaissance moléculaire: la base du design rationnel Modélisation moléculaire: Introduction Hiver 2006

INTRODUCTION À L'ENZYMOLOGIE

BTS BAT 1 Notions élémentaires de chimie 1

8/10/10. Les réactions nucléaires

TS1 TS2 02/02/2010 Enseignement obligatoire. DST N 4 - Durée 3h30 - Calculatrice autorisée

Chapitre 5 : Noyaux, masse et énergie

Plan du chapitre «Milieux diélectriques»

Lycée français La Pérouse TS. L énergie nucléaire CH P6. Exos BAC

SCIENCES TECHNOLOGIES

EXERCİCE N 1 : «Synthèse de l éthanamide» (7 pts)

SESSION 2013 ÉPREUVE À OPTION. (durée : 4 heures coefficient : 6 note éliminatoire 4 sur 20) CHIMIE

SECTEUR 4 - Métiers de la santé et de l hygiène

CHAPITRE VI : HYBRIDATION GEOMETRIE DES MOLECULES

Rappels sur les couples oxydantsréducteurs

RUBIS. Production d'eau chaude sanitaire instantanée semi-instantanée.

Le ph, c est c compliqué! Gilbert Bilodeau, agr., M.Sc.

Chapitre 6. Réactions nucléaires. 6.1 Généralités Définitions Lois de conservation

Les isomères des molécules organiques

EXERCICES SUPPLÉMENTAIRES


La physique nucléaire et ses applications

Résonance Magnétique Nucléaire : RMN

Chapitre 02. La lumière des étoiles. Exercices :

Les Énergies Capter et Stocker le Carbone «C.C.S»

PHYSIQUE-CHIMIE DANS LA CUISINE Chapitre 3 : Chimie et lavage

- I - Fonctionnement d'un détecteur γ de scintillation

TP : Suivi d'une réaction par spectrophotométrie

LABORATOIRES DE CHIMIE Techniques de dosage

pka D UN INDICATEUR COLORE

Transformations nucléaires

Chapitre 10 : Radioactivité et réactions nucléaires (chapitre 11 du livre)

LE MODELE CONCEPTUEL DE DONNEES

Marine PEUCHMAUR. Chapitre 4 : Isomérie. Chimie Chimie Organique

Chapitre 11: Réactions nucléaires, radioactivité et fission

Équivalence masse-énergie

- pellicule de fruits qui a un rôle de prévention contre l'évaporation, le développement de moisissures et l'infection par des parasites

Modélisation moléculaire

Transformations nucléaires

L énergie en France et en Allemagne : comparaisons

CHIMIE ET ENVIRONNEMENT : LA «CHIMIE VERTE»

1 RÉPUBLIQUE FRANÇAISE MINISTÈRE DE L EMPLOI, DE LA COHÉSION SOCIALE ET DU LOGEMENT ARRÊTÉ

BAC BLANC SCIENCES PHYSIQUES. Durée : 3 heures 30

La Fusion Nucléaire (Tokamak) Nicolas Carrard Jonathan Carrier Guillomet 12 novembre 2009

ANALYSE SPECTRALE. monochromateur

DYNAMIQUE DE FORMATION DES ÉTOILES

METEOROLOGIE CAEA 1990

Des molécules hydrophobes dans l eau

Titre alcalimétrique et titre alcalimétrique complet

A. Énergie nucléaire 1. Fission nucléaire 2. Fusion nucléaire 3. La centrale nucléaire

TP N 3 La composition chimique du vivant

1 ère partie : tous CAP sauf hôtellerie et alimentation CHIMIE ETRE CAPABLE DE. PROGRAMME - Atomes : structure, étude de quelques exemples.

RÉDUISEZ VOS CONSOMMATIONS ALLÉGEZ VOS FACTURES ÉNERGÉTIQUES

5.5.5 Exemple d un essai immunologique

A chaque couleur dans l'air correspond une longueur d'onde.

greng /77 L( ~ d el '. parlementaire 1 ~ :.UV Monsieur Laurent Mosar Président de la Chambre des Député-e-s Luxembourg

U-31 CHIMIE-PHYSIQUE INDUSTRIELLES

Présentation générale des principales sources d énergies fossiles.

Vitesse d une réaction chimique

OPTIMISATION À UNE VARIABLE

CIRCULAIRE N 2983 DU 18/01/2010

THE SEPARATION OF A TRACER FOR THE RADIOCHEM1CAL ANALYSIS OF RADIUM 226.

SUIVI CINETIQUE PAR SPECTROPHOTOMETRIE (CORRECTION)

Dossier «L énergie nucléaire»

FctsAffines.nb 1. Mathématiques, 1-ère année Edition Fonctions affines

CHAPITRE VI ALEAS. 6.1.Généralités.

Quelques aspects de la chimie des cosmétiques. Correction

Origine du courant électrique Constitution d un atome

BANQUES DE DONNÉES PÉDAGOGIQUES

1. Contexte général page Le compte auprès de la BCGE...page La procuration 2.2 Les accès e-banking 2.3 Le bon de retrait 2.

Transcription:

1-Les objectifs du chapitre Chapitre 15 : Mécanismes en chimie organique- Réactions de substitution nucléophile et d élimination Ce que je dois connaître Les mécanismes de substitution nucléophile S N 1 et S N 2 Les mécanismes des réactions d'élimination Les possibilités de stéréosélectivité et de régiosélectivité de ces réactions. Ce que je dois savoir faire Identifier l'atome de carbone électrophile d'un dérivé halogéné. Utiliser le formalisme des flèches courbes pour décrire les mécanismes des réactions de substitution et d'élimination. Comparer la réactivité de différents substrats vis-à vis d'un réactif nucléophile. Tracer le profil énergétique des réactions de substitution (SN1 et SN2) et d'élimination (E1 et E2) Etudier l'aspect stéréochimique de ces réactions

2-Je maîtrise l essentiel du chapitre a-structure et réactivité des halogéno-alcanes Halogénoalcane: définition Un halogénoalcane est un composé contenant une liaison carbone-halogène. C'est un composé très réactif, en général synthétique (pas naturel), préparé à partir des pétroles. Halogénoalcane: réactivité. Polarité: Les halogènes sont plus électronégatifs que le carbone. La liaison C-X (de type σ) est polarisée. Le carbone possède une charge partielle positive et constitue un site électrophile. Polarisabilité: Les liaisons C-X sont polarisables (apparition d'un moment dipôlaire induit sous l'influence d'un champs électrique extérieur) dans l'ordre suivant: C-F<< C-Cl < C-Br < C-I Plus la polarisabilité de la liaison C-X est forte plus la rupture hétérolytique de la liaison C-X est facile. l'ion halogénure formé X - est appelé nucléofuge. Halogénoalcane: réactions Les halogénoalcanes peuvent donner les réactions suivantes: Substitution nucléophile (SN) Elimination (si un hydrogène est disponible en béta du groupe partant halogénure) synthèse d'organométalliques (ex: organomagnésiens ) b-substitutions nucléophiles (SN) Le bilan général d une substitution nucléophile est :

Les caractéristiques de la substitution nucléophile SN2 Substitution nucléophile S N 2: Mécanisme La S N 2 se déroule en une seule étape bimoléculaire: (voir plus bas) Substitution nucléophile S N 2: Loi de vitesse et profil énergétique La loi de vitesse est de la forme v=k[nu-][rx] (plus k est grande plus le nucléophile est fort). Le profil énergétique montre un seul état de transition. Substitution nucléophile S N 2: Stéréochimie Pour un carbone asymétrique, il y a une inversion de configuration relative, appelée inversion de Walden. La S N 2 est énantiosélective si réactif et produit sont chiraux. Si le rang (priorité CIP) du Nucléophile et du nucléofuge ne changent pas, alors le réactif R produit (S) et on a aussi réactf (S) produit (R). Ainsi: La SN2 est énantiospécifique (voir exemple ci-dessous) Mécanisme de la SN2 δ+ δ- S N 2: Mécanisme

La SN2 est énantiospécifique (exemple) δ- δ- # * * E δ- δ- # E * *

Les caractéristiques de la substitution nucléophile SN1 Substitution nucléophile S N 1: Mécanisme La S N 1 se déroule en deux étapes. La première étape est cinétiquement déterminante est monomoléculaire. Il y a passage par un intermédiaire carbocation. (voir ci- dessous) Plus la carbocation intermédiaire est stabilisé (par des effets électrodonneurs +I ou +M) plus le mécanisme SN1 est facilité. Substitution nucléophile S N 1: Loi de vitesse et profil énergétique La loi de vitesse est de la forme v=k[rx] (La vitesse dépend uniquement de l'halogénoalcane). Le profil énergétique montre deux états de transition. Substitution nucléophile S N 1: Stéréochimie On passe par un intermédiaire carbocation plan. Dans la deuxième étape, l'attaque du carbocation plan par le nucléophile Nu - est équiproabe. on obtient donc un mélange racémique si le carbone fonctionnel est asymétrique. Mécanisme de la SN1 # δ+ δ- +

Deuxième étape : attaque du carbocation plan par Nu- de manière équiprobable a + k2 # b Passage par une SN1 ou SN2 : Influence de différents paramètres Ce qui favorisent une Substitution nucléophile S N 1 La vitesse de la S N 1 augmente avec la stabilité du carbocation formé dans l'étape ECD, il faut donc un carbocation substitué (donc un RX tertiaire ou secondaire). Un halogénoalcane tertiaire favorise une SN1. Remarque : Tout halogénoalcane qui donnera dans l'ecd un carbocation stabilisé par effet électrodonneur +I ou +M favorisera la SN1. Un solvant qui favorise la coupure de la liaison C-X et stabilise le carbocation intermédiaire réactionnel favorise la SN1: Les solvants polaires protiques favorisent la SN1. La vitesse de la SN1 ne dépend pas du nucléophile car celui ci n'intervient pas dans l'ecd. il peut donc être un nucléophile faible. Ce qui favorisent une Substitution nucléophile S N2 La SN2 passe par l'attaque directe d'un nucléophile sur le carbone fonctionnel de l'halogénoalcane R-X. Il faut donc un site électrophile dégagé, un nucléophile puissant et peu solvaté. La SN2 est favorisée par: Les réactifs nucléophiles puissants (chargés (meilleurs que neutres), polarisables, peu encombrés). Les nucléofuges gros et polarisables. Les halogénoalcanes peu encombrés (halogénoalcanes primaires ou secondaires)

C-Les réactions d élimination Une β-élimination nécessite la présence d un hydrogène sur le carbone en position β de l halogène ainsi qu un milieu basique. Le bilan général est : La règle de Saytzev stipule que si plusieurs hydrogènes sont disponibles sur des carbones en positionβ de l halogène, c est celui qui conduit à l alcène le plus stable (en générale le plus substitué) qui est éliminé majoritairement. La réaction d élimination est donc régiosélective selon la règle de Saytzev. Les caractéristiques de l élimination E2 Elimination E2: Mécanisme L'élimination E2 est bimoléculaire (ordre global 2). Elle se déroule en une seule étape: (voir ci dessous) Elimination E2: Loi de vitesse et profil énergétique La loi de vitesse est de la forme v=k[b-][rx]. Le profil énergétique montre un état de transition. Elimination E2: Stéréochimie Les liaisons C-X et C β -H doivent être en position antiparallèle. La réaction peut (selon la nature de la chaîne) être diastéréospécifique.

Les caractéristiques de l élimination E1 Elimination E1: Mécanisme L'élimination E1 est essentiellement une réaction parasite de la SN1. Le mécanisme de la E1 se déroule en deux étapes. La première étape (qui est identique à celle de la SN1) est cinétiquement déterminante et est monomoléculaire. Il y a passage par un intermédiaire carbocation. (voir mécanisme ci-dessous) Elimination E1: Loi de vitesse et profil énergétique La loi de vitesse est de la forme v=k[rx] (La vitesse dépend uniquement de l'halogénoalcane). Le profil énergétique montre deux états de transition. Elimination E1: Stéréochimie Le passage par un intermédiaire carbocation plan et la libre rotation induisent une nonstéréospécificité: les alcènes Z et E sont obtenus. La règle de Saytzev s'applique au mécanisme E1, il y a régiosélectivité. Si il y a diastéréoisomérie (Z,E), l'alcène E plus stable est obtenu majoritairement: il y stéréosélectivité.

Formation du carbocation Formation de l alcène Passage par une élimination E1 ou E2 : Effet de différents paramètres. Ce qui favorisent une élimination E1 Ce qui favorisent une élimination E 2 Le mécanisme E1 n'a lieu que dans le cas d'une base faible, diluée, et nécessite un carbocation stable (RX tertiaire), et un solvant polaire protique. Une E2 est favorisée par: Un dérivé halogéné peu encombré (H plus accessible à l'attaque de la base B - ) Une base forte et concentrée (KOH/EtOH; EtONa/EtOH, NH 2- (ion amidure)..) Un nucléofuge gros et polarisable Un solvant aprotique (afin de ne pas protoner la base B - )

d-compétition entre substitution nucléophile et élimination Il existe souvent une compétition entre les mécanismes de SN et de E, conduisant à un mélange de produits. En général Un réactif nucléophile mais peu basique donne surtout des SN une base forte et concentrée favorise une élimination ( de type E2) Une température élevée favorise les réactions d' élimination E.

3-J applique les méthodes pour réussir a-réactivité de la liaison carbone-halogène Méthode 1-Je sais déterminer si une réaction se déroule selon un mécanisme SN2 ou SN1 Méthode 1: SN1 ou SN2, comment prévoir? Un R-X primaire réagit généralement selon une SN2, alors qu'un R-X tertiaire réagit généralement selon une SN1. un R-X secondaire peut réagir selon SN1 ou SN2. Si le carbocation issu de l'halogénoalcane est stabilisé par mésomérie (quelle que soit la classe), le substrat réagit selon une SN1. Le résultat stéréochimique peut indiquer le type de mécanisme utilisé (si le carbone fonctionnel est le seul carbone asymétrique du substrat): le mécanisme est une SN2 si l'on obtient qu'un seul produit optiquement actif. Le méanisme utilisé est une SN1 si on obtient un mélange racémique. Conseils méthodologiques pour choisir SN1/SN2 Pour prévoir entre une SN1 ou SN2, regarder en priorité la classe de l'halogénoalcane, puis en second lieu la puissance du nucléophile. Faire attention cependant à vérifier s'il y a : -un fort encombrement des carbones C β -Un effet mésomère stabilisant La nature du solvant: un solvant protique favorise une SN1; La nucléophilie du réactif en solvant polaire protique: liée à sa polarisabilité.

Méthode 2-Je sais écrire un mécanisme SN2 et représenter le profil énergétique. Méthode 2: écrire le mécanisme SN2 et représenter le profil Ep=f(CR) Représenter simultanément l'attaque dorsale du nucléophile sur le carbone fonctionnel dans l'axe de la liaison C-X et le départ du nucléofuge X- à l'aide de flèches courbes. Dans l'état de transition, le carbone fonctionnel est pentacoordiné; la liaison C-X commence à se rompre, la liaison C-Nu à se former, et les trois autres groupements sont coplanaires. L'aspect stéréochimique doit apparaître. on utilise la représentation de Cram. Le profil énergétique présente un seul état de transition (un seul maximum ). en général, la réaction est exothermique: donc l'énergie potentielle des produits est inférieure à l'énergie potentielle des réactifs. Méthode 3-Je sais écrire un mécanisme SN1 et représenter son profil énergétique. Méthode 3:écrire le mécanisme SN1 et représenter le profil énergétique. Représenter les flèches courbes décrivant les deux étapes du mécanisme: la formation du carbocation par rupture de la liaison C-X. l'addition du nucléophile de part et d'autre du plan du carbocation. Le profil énergétique fait apparaître deux états de transition successifs, correspondant aux deux étapes élémentaires. Le carbocation intermédiaire correspond au minimum énergétique. On utilise la représentation de Cram pour faire apparaître l'aspect stéréochimique.

Méthode 4-Je sais prévoir la nature du produit majoritaire lors d une β-élimination Méthode 4:Prévoir le produit majoritaire d'une élimination. Etape 1-Sur une représentation plane de l'halogénoalcane, mettre en évidence les atomes d'hydrogène portés par les atomes de carbone en position β du C lié à l'halogène. Ces atomes H peuvent être arrachés par une base forte lors de la β-élimination. Etape 2-Représenter l'alcène obtenu dans chaque cas. Etape 3-Identifier l'alcène le plus stable (alcène conjugué, ou alcène le plus substitué s'il n'y a pas de stabilisation possible par résonance). D'après la règle de Saytzev, il s'agit du produit majoritaire de la réaction d'élimination. Conseils méthodologiques pour choisir E1/E2 Pour la compétition E1/E2, regarder en priorité la puissance de la base. Une base forte et concentrée favorise une E2 Une base faible encombrée favorise une E1.

Méthode 5 Je sais écrire un mécanisme d élimination E2 avec le déroulement stéréochimique Méthode 5:écrire le mécanisme de E2. Représenter le substrat dans la conformation où les liaisons C-H et C-X sont antipériplanaires. Représenter simultanément les flèches courbes correspondant à l'attaque de la base sur le H en β, la formatio de la liaison C=C et le départ du nucléofuge X -. Méthode 6- Je sais orienter une réaction vis-à-vis de la compétition SN/E. Conseils méthodologiques pour choisir entre SN/E Pour la compétition SN/E, Etape 1-regarder en priorité les conditions de température: à froid, la SN est favorisée; à chaud E est favorisée. Etape 2- Regarder les qualités respectives nucléophile/base.