Chapitre n 4 : OXYDOREDUCTION EN SOLUTION AQUEUSE

Documents pareils
Rappels sur les couples oxydantsréducteurs

Physique Chimie. Réaliser les tests de reconnaissance des ions Cl -,

THEME 2. LE SPORT CHAP 1. MESURER LA MATIERE: LA MOLE

EXERCICE II. SYNTHÈSE D UN ANESTHÉSIQUE : LA BENZOCAÏNE (9 points)

LABORATOIRES DE CHIMIE Techniques de dosage

Synthèse et propriétés des savons.

1 ère partie : tous CAP sauf hôtellerie et alimentation CHIMIE ETRE CAPABLE DE. PROGRAMME - Atomes : structure, étude de quelques exemples.

Fiche de révisions sur les acides et les bases

REACTIONS D OXYDATION ET DE REDUCTION

BTS BAT 1 Notions élémentaires de chimie 1

SP. 3. Concentration molaire exercices. Savoir son cours. Concentrations : Classement. Concentration encore. Dilution :

TS1 TS2 02/02/2010 Enseignement obligatoire. DST N 4 - Durée 3h30 - Calculatrice autorisée

Exercices sur le thème II : Les savons

Application à l astrophysique ACTIVITE

BAC BLANC SCIENCES PHYSIQUES. Durée : 3 heures 30

T4 Pourquoi éteindre les phares d une voiture quand le moteur est arrêté? Comment fabriquer une pile? un accumulateur?

Mesures calorimétriques

Titre alcalimétrique et titre alcalimétrique complet

Table des matières. Acides et bases en solution aqueuse Oxydo Réduction... 26

TP : Suivi d'une réaction par spectrophotométrie

Vitesse d une réaction chimique

Décrets, arrêtés, circulaires

Calcaire ou eau agressive en AEP : comment y remédier?

A chaque couleur dans l'air correspond une longueur d'onde.

SUIVI CINETIQUE PAR SPECTROPHOTOMETRIE (CORRECTION)

K W = [H 3 O + ] [OH - ] = = K a K b à 25 C. [H 3 O + ] = [OH - ] = 10-7 M Solution neutre. [H 3 O + ] > [OH - ] Solution acide

CORRIGE. CHAP 04-ACT PB/DOC Electrolyse de l eau 1/12 1. ALIMENTATION ELECTRIQUE D'UNE NAVETTE SPATIALE

FICHE 1 Fiche à destination des enseignants

Les Énergies Capter et Stocker le Carbone «C.C.S»

Chapitre 02. La lumière des étoiles. Exercices :

10 en agronomie. Domaine. Les engrais minéraux. Livret d autoformation ~ corrigés. technologique et professionnel

Matériel de laboratoire

Sujet. calculatrice: autorisée durée: 4 heures

(aq) sont colorées et donnent à la solution cette teinte violette, assimilable au magenta.»

TP N 3 La composition chimique du vivant

TS 31 ATTAQUE DE FOURMIS!

Séquence 5 Réaction chimique par échange de protons et contrôle de la qualité par dosage

Demande chimique en oxygène

DÉTERMINATION DU POURCENTAGE EN ACIDE D UN VINAIGRE. Sommaire

Meine Flüssigkeit ist gefärbt*, comme disaient August Beer ( ) et Johann Heinrich Lambert ( )

pka D UN INDICATEUR COLORE

Molécules et Liaison chimique

PHYSIQUE-CHIMIE DANS LA CUISINE Chapitre 3 : Chimie et lavage

U-31 CHIMIE-PHYSIQUE INDUSTRIELLES

Suivi d une réaction lente par chromatographie

Site : mail : mennier@isnab.fr SUJET ES - session 2003 Page 1 68-(7(6VHVVLRQ

Enseignement secondaire

ECO-PROFIL Production Stratifié HPL mince fabriqué par Polyrey

Détermination des métaux : méthode par spectrométrie de masse à source ionisante au plasma d argon

ACIDES BASES. Chap.5 SPIESS

*EP A1* EP A1 (19) (11) EP A1 (12) DEMANDE DE BREVET EUROPEEN. (43) Date de publication: Bulletin 2000/39

Séquence 6. Les piles électriques et l énergie chimique. Fabriquons et utilisons une pile de Volta

Physique Chimie. Utiliser les langages scientifiques à l écrit et à l oral pour interpréter les formules chimiques

Comprendre l Univers grâce aux messages de la lumière

BREVET DE TECHNICIEN SUPÉRIEUR QUALITÉ DANS LES INDUSTRIES ALIMENTAIRES ET LES BIO-INDUSTRIES

Notions de Chimie Générale - 4. Sommaire

Le ph, c est c compliqué! Gilbert Bilodeau, agr., M.Sc.

Perrothon Sandrine UV Visible. Spectrophotométrie d'absorption moléculaire Étude et dosage de la vitamine B 6

Chapitre 7 Les solutions colorées

<^> T * ,:%*> m \ jm^lftl

259 VOLUMETRIE ET TITRATION DOSAGE DU NaOH DANS LE DESTOP

BREVET D ÉTUDES PROFESSIONNELLES AGRICOLES SUJET

Dr Berdj Haroutunian, 5, Chemin Gottret ch-1255 VEYRIER tél (0) berdj@haroutunian.ch

Comment suivre l évolution d une transformation chimique? + S 2 O 8 = I SO 4

Solutions pour le calibrage et l entretien Gamme complète d accessoires indispensables

ANALYSE SPECTRALE. monochromateur

Session 2011 PHYSIQUE-CHIMIE. Série S. Enseignement de Spécialité. Durée de l'épreuve: 3 heures 30 - Coefficient: 8

CONSTRUCTION DES COMPETENCES DU SOCLE COMMUN CONTRIBUTION DES SCIENCES PHYSIQUES

ACCREDITATION CERTIFICATE. N rév. 5. Satisfait aux exigences de la norme NF EN ISO/CEI : 2005 Fulfils the requirements of the standard

THE SEPARATION OF A TRACER FOR THE RADIOCHEM1CAL ANALYSIS OF RADIUM 226.

CODEX ŒNOLOGIQUE INTERNATIONAL. SUCRE DE RAISIN (MOUTS DE RAISIN CONCENTRES RECTIFIES) (Oeno 47/2000, Oeno 419A-2011, Oeno 419B-2012)

La spectrophotométrie

Viandes, poissons et crustacés

Physique : Thermodynamique

BACCALAURÉAT GÉNÉRAL PHYSIQUE-CHIMIE

Séquence 4. Les liquides et la conduction électrique. 1 Qu est-ce qu une «solution aqueuse»? 2 Tous les liquides ne sont pas des solutions aqueuses.

TECHNIQUES: Principes de la chromatographie

Mise en pratique : Etude de spectres

Niveau 2 nde THEME : L UNIVERS. Programme : BO spécial n 4 du 29/04/10 L UNIVERS

Utilisation des 7 cartes d intensité jointes en annexe du règlement. A- Protection d une construction vis-à-vis des effets toxiques :

Exemple de cahier de laboratoire : cas du sujet 2014

TRAVAUX PRATIQUES D INTRODUCTION À L ÉTUDE DES RÉACTIONS ÉLECTROCHIMIQUES

Intoxications collectives en entreprise après incendies de locaux Proposition d une conduite à tenir

Hydrolyse du sucre. Frédéric Élie, octobre 2004, octobre 2009

Chap 1: Toujours plus vite... Introduction: Comment déterminer la vitesse d une voiture?

Hortensia! bleu! Hortensia!

4 ème PHYSIQUE-CHIMIE TRIMESTRE 1. Sylvie LAMY Agrégée de Mathématiques Diplômée de l École Polytechnique. PROGRAMME 2008 (v2.4)

Présentation générale des principales sources d énergies fossiles.

Étape 1 : Balancer la chimie de l'eau

Spectrophotométrie - Dilution 1 Dilution et facteur de dilution. 1.1 Mode opératoire :

Séquence 1. Physique Couleur, vision et image Chimie La réaction chimique. Sommaire

EXERCICE 2 : SUIVI CINETIQUE D UNE TRANSFORMATION PAR SPECTROPHOTOMETRIE (6 points)

DETERMINATION DE LA CONCENTRATION D UNE SOLUTION COLOREE

Partie Observer : Ondes et matière CHAP 04-ACT/DOC Analyse spectrale : Spectroscopies IR et RMN

CHROMATOGRAPHIE SUR COUCHE MINCE

TP 2: LES SPECTRES, MESSAGES DE LA LUMIERE

Effets électroniques-acidité/basicité

La voiture électrique. Cliquez pour modifier le style des sous-titres du masque

Chapitre 11: Réactions nucléaires, radioactivité et fission

Transcription:

Chimie - 7 ème année - Ecole Européenne Chapitre n 4 : OXYDOREDUCTION EN SOLUTION AQUEUSE I) Action des ions hydronium sur un métal : 1) Réaction sur le fer : a) Expérience : Dans un tube à essai contenant de la poudre de fer, versons 3 cm 3 d'une solution d'acide chlorhydrique molaire. Nous observons un dégagement gazeux de dihydrogène qui donne une petite explosion, produisant un léger chuintement caractéristique lorsqu'on approche une flamme. Prélevons un peu de mélange obtenu, et ajoutons de l'eau pour le diluer, et faire augmenter le ph (qui est très acide). Ajoutons, dans la solution limpide ainsi obtenue, un peu de solution d'hydroxyde de sodium. Un précipité vert apparaît, mettant en évidence la présence d'ions fer II. b) Interprétation : Dans cette expérience on peut considérer que tout se passe comme si des ions hydronium (H 3 O + ) captaient des électrons (e ) pour former du dihydrogène. On peut traduire cette réaction par une demi-équation qui met en évidence le rôle des électrons : 2 H 3 O + + 2 e H 2 (g) + 2 H 2 O Le fer métallique a été transformé en ion fer II : Fe Fe 2+ + 2 e c) Equation-bilan : Les électrons n'existent pas à l'état libre dans l'eau, il y a transfert direct d'électrons du fer aux ions hydronium. L'équation-bilan de cette réaction est la somme des deux demi-équations : 2 H 3 O + + Fe Fe 2+ + H 2 (g) + 2 H 2 O 2) Action sur d'autres métaux : a) Le zinc : Nous pouvons réaliser le même type d'expérience avec le zinc en poudre (pas trop fine). Nous observons un dégagement gazeux de dihydrogène (petite explosion à la flamme). Des ions zinc II se forment, ils donnent un précipité blanc d'hydroxyde de zinc, si nous ajoutons à la solution quelques gouttes de soude. On peut écrire : 2 H 3 O + + 2 e H 2 (g) + 2 H 2 O Zn Zn 2+ + 2 e soit 2 H 3 O + + Zn Zn 2+ + H 2 (g) + 2 H 2 O Ecole Européenne de Francfort Page 63

b) Le plomb : Oxydoréduction en solution aqueuse Avec le plomb en grenaille, nous réalisons la même expérience. Nous observons un dégagement gazeux très faible de dihydrogène (nécessité d'utiliser un bouchon sur le tube pour accumuler le gaz et obtenir la petite explosion à la flamme). Des ions plomb II se forment, mais ils réagissent avec les ions chlorure et protègent ainsi le plomb d'une attaque en profondeur. Il faut utiliser de l'acide éthanoïque pour pouvoir mettre en évidence la formation des ions plomb II. On peut écrire : 2 H 3 O + + 2 e H 2 (g) + 2 H 2 O Pb Pb 2+ + 2 e soit 2 H 3 O + + Pb Pb 2+ + H 2 (g) + 2 H 2 O c) Le cuivre : Dans un tube à essai contenant des copeaux de cuivre on verse 3 cm 3 d'acide chlorhydrique ou d'acide sulfurique. Rien ne se produit! Même en attendant longtemps, une solution normale de chlorure d'hydrogène ou d'acide sulfurique ne donne pas de réaction. Les ions hydronium sont sans action sur le cuivre. 3) Conclusion : Les ions hydronium réagissent sur certains métaux (Zn, Fe, Pb...) pour donner du dihydrogène et des ions métalliques. Les ions hydronium sont sans action sur d'autres métaux comme le cuivre. II) Réaction entre un ion métallique et un métal : 1) Métaux, ions métalliques : La structure des solides métalliques peut sembler être la plus simple à comprendre, puisque chaque nœud du cristal est occupé par un atome du même métal. En fait seule la mécanique quantique permet de comprendre la cohésion du cristal métallique. Dans les métaux, les électrons liants sont distribués ou délocalisés dans le cristal tout entier. En fait, on peut considérer que dans un cristal métallique, les atomes constituent un réseau d'ions positifs (cations) baignant dans une mer d'électrons de valence, délocalisés, qui assurent la cohésion du cristal. 2) Action du zinc sur les ions cuivre II : a) Expériences : Dans un bécher contenant une lame de zinc, versons une solution de sulfate de cuivre. La lame de zinc se recouvre rapidement d'une pellicule brun-rouge de cuivre sous forme naissante, et la solution de sulfate de cuivre se décolore, ce qui indique la disparition des ions cuivre II. Page 64 Christian BOUVIER

Chimie - 7 ème année - Ecole Européenne Nous réalisons également une autre expérience : nous plaçons une bourre de coton au fond d'une ampoule à décanter. Sur le coton, nous déposons un peu de poudre de zinc. Nous versons alors quelques cm 3 de solution de sulfate de cuivre. Au bout de quelques instants, la solution de sulfate de cuivre commence à s'écouler lentement. Il se forme, peu à peu, un dépôt de cuivre en poudre sur le zinc (couleur brunrougeâtre), c'est du cuivre naissant (dont les atomes sont peu organisés). La solution qui tombe dans le bécher est décolorée. Nous pouvons montrer que la solution décolorée contient des ions zinc II, qui donnent un précipité blanc d'hydroxyde de zinc lorsque nous ajoutons de la soude. Les ions cuivre II (Cu 2+ ) se sont transformés en cuivre métallique (Cu) alors que le métal zinc (Zn) s'est transformé en zinc II (Zn 2+ ). b) Interprétation : Nous dirons qu'il se produit un transfert d'électrons du zinc aux ions cuivre II. D'où : Pour l'élément cuivre : Cu 2+ + 2 e Cu Pour l'élément zinc : Zn Zn 2+ + 2 e Les électrons n'existant pas à l'état libre dans l'eau, on a en fait : Cu 2+ + Zn Zn 2+ + Cu La réaction inverse ne se produit pas : le cuivre est sans action sur les ions zinc. 3) Réaction entre les ions argent et le cuivre : Dans un bécher contenant une lame de cuivre, versons une solution de nitrate d'argent. La lame de cuivre se recouvre rapidement d'une poudre grise d'argent métallique sous forme naissante, les ions argent sont passés sous forme métallique. Dans le même temps, du cuivre passe sous forme d'ions cuivre II, la solution se teinte légèrement en bleu. Ecole Européenne de Francfort Page 65

Oxydoréduction en solution aqueuse Nous pouvons mettre en évidence la formation d'ions cuivre II par précipitation. De l'argent métallique se dépose sur le cuivre : Ag + + e Ag Le cuivre métallique s'est transformé en ions cuivre II : Cu Cu 2+ + 2 e On peut résumer les deux demi-équations par une équation bilan : 2 x (Ag + + e Ag) Cu Cu 2+ + 2 e 4) Réaction entre les ions cuivre et l'argent : 2 Ag + + Cu Cu 2+ + 2 Ag Nous pouvons réaliser l'expérience suivante : dans un tube à essai contenant un fil d'argent nous versons jusqu'à la moitié du fil, une solution de sulfate de cuivre. Rien ne se produit! Les ions cuivre II n'attaquent pas le métal argent. III) Oxydoréduction : 1) Définition : Une réaction dans laquelle il y a un transfert d'électrons d'un réactif à un autre est une réaction d'oxydoréduction. Au cours de la réaction d'oxydoréduction : - le réducteur est une espèce chimique qui cède des électrons - l'oxydant est une espèce chimique qui capte des électrons. Exemple : On peut mettre en évidence l'oxydation et la réduction : r é d c ti n Cu 2+ + Zn Cu + Zn 2+ x y da ti n Dans une réaction d'oxydoréduction, il y a simultanément une oxydation et une réduction. Le réducteur réduit l'oxydant en s'oxydant et l'oxydant oxyde le réducteur en se réduisant! 2) Couple oxydoréducteur : Un couple oxydoréducteur est l'ensemble composé d'un oxydant et d'un réducteur, formés à partir d'un même élément. Exemple : L'ion cuivre II (Cu 2+ ) et le cuivre (Cu) forme un couple oxydoréducteur qu'on notera Cu 2+ /Cu. Conventionnellement l'oxydant est écrit en premier. Le passage de l'oxydant au réducteur dépend de la réaction mise en jeu. La demi-équation montre le rôle des électrons qui transforment l'oxydant en réducteur. Exemple : Cu 2+ + 2 e Cu D'une façon générale, on peut écrire : c è d e de s e Oxydant + n e Réducteur capte des e Nous avons déjà étudié les couples oxydoréducteurs : H 3 O + /H 2 ; Zn 2+ /Zn; Fe 2+ /Fe; Cu 2+ /Cu; Ag + /Ag et Pb 2+ /Pb Page 66 Christian BOUVIER

3) Comparaison des couples : Chimie - 7 ème année - Ecole Européenne On a vu que le zinc réduit les ions cuivre II : Cu 2+ + Zn Zn 2+ + Cu L'argent ne peut réduire les ions cuivre II (une solution d'ions Cu 2+ est sans effet sur l'argent) Le métal zinc est un réducteur plus fort que le métal argent. De même, les ions argent oxydent le cuivre : 2 Ag + + Cu Cu 2+ + 2 Ag Les ions zinc ne peuvent le faire (une solution d'ions Zn 2+ est sans effet sur le cuivre). Les ions argent sont plus oxydants que les ions zinc. Dans les couples Zn 2+ /Zn et Ag + /Ag, le zinc est le réducteur le plus fort associé à l'ion zinc, oxydant le plus faible. La force des réducteurs varie en sens inverse de la force des oxydants associés. 4) Sens d'une réaction d'oxydoréduction : a) Prévision : On étudie la réaction faisant intervenir les couples Zn 2+ /Zn et Ag + /Ag. Les résultats des expériences précédentes suggèrent que les ions argent sont plus oxydants que les ions zinc et donc que le métal zinc est plus réducteur que le métal argent. La réaction des ions argent sur le métal zinc doit avoir lieu. b) Expérience : Dans un bécher contenant une lame de zinc, versons une solution de nitrate d'argent. La lame de zinc se recouvre rapidement d'une poudre grise d'argent métallique sous forme naissante, les ions argent sont passés sous forme métallique. Dans le même temps, du zinc passe sous forme d'ions zinc II que nous pouvons mettre en évidence. Nous pouvons écrire : 2 Ag + + Zn Zn 2+ + 2 Ag La réaction inverse n'a pas du tout lieu comme on peut s'y attendre. IV) Classification des couples oxydoréducteurs : 1) Généralisation : Dans une réaction d'oxydoréduction qui fait intervenir deux couples, l'oxydant le plus fort réagit avec le réducteur le plus fort pour donner le réducteur et l'oxydant les plus faibles : Oxydant 1 fort + réducteur 2 fort réducteur 1 faible + oxydant 2 faible Le sens des réactions d'oxydoréduction nous permet de classer les différents couples d'oxydoréduction les uns par rapport aux autres. 2) Classification de Zn, Cu et H 2 : a) Classement des réducteurs : Classons les réducteurs Zn, Cu, H 2 en faisant appel aux réactions déjà effectuées : Cu 2+ + Zn Zn 2+ + Cu et 2 H 3 O + + Zn Zn 2+ + H 2 (g) + 2 H 2 O On obtient le classement : Cu H 2 Zn p vo ir ré d c te r cr i s sa n t Ecole Européenne de Francfort Page 67

b) Classement des oxydants : Oxydoréduction en solution aqueuse Le pouvoir oxydant varie en sens inverse. On obtient le classement : Zn 2+ H 2 O + Cu 2+ p vo ir x y d a nt c r i s sa n t 3) Place du fer : On considère les couples Zn 2+ /Zn; Fe 2+ /Fe; H 3 O + /H 2. Dans un bécher contenant une lame de zinc, versons une solution de sulfate de fer. Du fer métallique se dépose sur la lame de zinc. Les ions fer II se transforment en métal. Simultanément le zinc a produit des ions que nous pouvons mettre en évidence. Nous pouvons écrire l'équation bilan : Fe 2+ + Zn Zn 2+ + Fe Le sens de la réaction montre que le zinc est plus réducteur que le fer, et que les ions fer sont plus oxydants que les ions zinc. On a vu, par ailleurs, que le fer réagit avec les ions hydronium pour donner du dihydrogène et des ions fer II. Les ions hydronium sont plus oxydants que les ions fer II. Les ions fer II étant plus oxydant que les ions zinc, on obtient : Zn 2+ Fe 2+ H 3 O + Cu 2+ pouvoir oxydant croissant On a le classement des réducteurs : Cu H 2 Fe Zn p vo ir ré d c te r cr i s sa n t On peut vérifier l'ordre ainsi obtenu à travers la réaction suivante : Dans un bécher contenant un clou, versons jusqu'à la moitié du clou, une solution de sulfate de cuivre. Du cuivre métallique se dépose sur le clou qui noircit. Les ions cuivre II se sont transformés en métal, simultanément le fer a produit des ions. Nous pouvons écrire : Cu 2+ + Fe Fe 2+ + Cu Le fer est plus réducteur que le cuivre. Inversement une lame de cuivre ne produit aucune action sur une solution d'ions fer II. 4) Classification plus complète : Nous pourrions établir une classification qualitative plus complète, en réalisant différentes réactions d'oxydoréduction et en vérifiant si elles sont possibles ou non : p vo ir x y d a nt c r i s sa n t Au 3+ Pt 2+ Hg 2+ Ag + Cu 2+ H 3 O + Pb 2+ Ni 2+ Fe 2+ Zn 2+ Au Pt Hg Ag Cu H 2 Pb Ni Fe Zn p vo ir ré d c te r cr i s sa n t Page 68 Christian BOUVIER

Chimie - 7 ème année - Ecole Européenne V) Couple oxydoréducteur, généralisation : 1) Couples du fer : a) Les ions du fer : Le fer donne deux types d'ions en solution les ions fer II (Fe 2+ ) et les ions fer III (Fe 3+ ). Lorsqu'on verse quelques gouttes d'une solution d'hydroxyde de sodium dans une solution d'ions fer III, il se forme un précipité rouille d'hydroxyde de fer III, Fe(OH) 3. Si l'on verse quelques gouttes d'une solution d'hydroxyde de sodium dans une solution d'ions fer II, il se forme un précipité vert d'hydroxyde de fer II, Fe(OH) 2, qui permet de caractériser les ions Fe 2+. b) Couple Fe 3+ /Fe 2+ : Pour passer d'un ion fer III à un ion fer II il faut un transfert d'électron : Fe 3+ + e Fe 2+ Les ions Fe 3+ et Fe 2+ forment donc un couple oxydoréducteur. Pour réduire les ions Fe 3+ en ions Fe 2+, on peut utiliser un réducteur comme Fe, Cu, Ni, Pb, etc. Choisissons le fer. Versons quelques ml d'une solution aqueuse de chlorure de fer III sur un peu de poudre de fer et agitons vigoureusement, puis laissons reposer. Lorsqu'on verse dans le mélange une solution de soude, il apparaît un précipité vert qui met en évidence la présence d'ions fer II (Fe 2+ ) et une absence d'ion fer III (Fe 3+ ). Au départ, deux couples sont présents dans le tube à essais : le couple Fe 3+ /Fe 2+ et le couple Fe 2+ /Fe. Les demi-équations correspondant aux transformations chimiques sont : 2 x (Fe 3+ + e Fe 2+ ) Fe Fe 2+ + 2 e L'équation-bilan s'écrit : 2 Fe 3+ + Fe 3 Fe 2+ 2) Réaction entre ions permanganate et ions fer II : a) Expérience : Une solution de permanganate de potassium est constituée d'ions potassium (K + ) et d'ions permanganate (MnO 4 ) qui donnent à la solution une couleur violette. Lorsqu'on verse une solution d'ions fer II, dans une solution acidifiée, de permanganate de potassium, la solution de permanganate se décolore. Ecole Européenne de Francfort Page 69

b) Interprétation : Oxydoréduction en solution aqueuse Si nous versons une solution d'hydroxyde de sodium dans la solution finale contenue dans le tube à essai, on obtient un précipité rouille caractérisant la présence d'ion fer III. On a donc : Fe 2+ Fe 3+ + e L'espèce formée à partir des ions permanganate (MnO 4 ) est l'ion manganèse (Mn 2+ ), comme le montre la solution finale incolore. Comment tenir compte de la présence d'atomes d'oxygène? Nous savons que dans les solutions aqueuses, les molécules d'eau, les ions hydronium et les ions hydroxyde sont en équilibre selon l'équation bilan : 2 H 2 O OH + H 3 O + En solution aqueuse, dans les demi-équations électroniques, les atomes d'hydrogène et d'oxygène qui existent dans les réactifs et les produits peuvent se retrouver, selon les conditions expérimentales, dans des molécules d'eau H 2 O, dans ions hydronium H 3 O +, dans des ions hydroxyde OH. Nous allons procéder par étapes successives pour équilibrer la demi-équation concernant le manganèse. * conservation du manganèse : MnO 4 Mn 2+ * conservation de l'oxygène : MnO 4 Mn 2+ + 4 H 2 O * conservation de l'hydrogène : MnO 4 + 8 H + Mn 2+ + 4 H 2 O * transformation de H + en H 3 O + : MnO 4 + 8 H + + 8 H 2 O Mn 2+ + 4 H 2 O + 8 H 2 O soit MnO 4 + 8 H 3 O + Mn 2+ + 12 H 2 O * conservation de la charge électrique : MnO 4 + 8 H 3 O + + 5 e Mn 2+ + 12 H 2 O c) Equation-bilan : d) Action sur l'éthanol : (Fe 2+ Fe 3+ + e ) x 5 MnO 4 + 8 H 3 O + + 5 e Mn 2+ + 12 H 2 O soit MnO 4 + 8 H 3 O + + 5 Fe 2+ Mn 2+ + 12 H 2 O + 5 Fe 3+ On peut aussi utiliser l'action des ions permanganate sur l'éthanol. A une solution aqueuse contenant de l'éthanol acidifié par l'acide sulfurique, on ajoute lentement du permanganate de potassium. Un papier imbibé de réactif de Schiff rosit et caractérise la formation d'un aldéhyde, l'éthanal (odeur). Un papier ph, mouillé, rougit et indique la présence d'acide volatil : l'acide éthanoïque (odeur). L'éthanol (C 2 H 5 OH) donne l'éthanal (C 2 H 4 O) puis l'acide éthanoïque (CH 3 CO 2 H). On peut dire que l'on a deux réactions : - l'action du couple MnO 4 /Mn 2+ sur le couple C 2 H 4 O/C 2 H 5 OH (éthanal/éthanol) et - l'action du couple MnO 4 /Mn 2+ sur le couple CH 3 CO 2 H/C 2 H 4 O (éthanoïque/éthanal). Page 70 Christian BOUVIER

Chimie - 7 ème année - Ecole Européenne On a donc d'une part : pour le couple MnO 4 /Mn 2+ : (MnO 4 + 8 H 3 O + + 5 e Mn 2+ + 12 H 2 O) x 2 et pour le couple C 2 H 4 O/C 2 H 5 OH : (C 2 H 5 OH + 2 H 2 O C 2 H 4 O + 2 H 3 O + + 2 e ) x 5 soit l'équation-bilan : 2 MnO 4 + 5 C 2 H 5 OH + 6 H 3 O + 2 Mn 2+ + 5 C 2 H 4 O + 14 H 2 O et d'autre part : pour le couple MnO 4 /Mn 2+ : (MnO 4 + 8 H 3 O + + 5 e Mn 2+ + 12 H 2 O) x 2 et pour le couple CH 3 CO 2 H/C 2 H 4 O : (C 2 H 4 O + 3 H 2 O CH 3 CO 2 H + 2 H 3 O + + 2 e ) x 5 soit l'équation-bilan : 2 MnO 4 + 5 C 2 H 4 O + 6 H 3 O + 2 Mn 2+ + 5 CH 3 CO 2 H + 9 H 2 O 3) Autres couples : a) Couple ion bichromate/ion chrome : On utilise l'action des ions fer II (Fe 2+ ) sur les ions bichromate (Cr 2 O 7 2 ). Lorsqu'on verse une solution d'ions fer II, dans une solution acidifiée, par de l'acide sulfurique, de bichromate de potassium, la solution de bichromate, initialement de couleur orangée, se colore en vert, couleur des ions chrome III (Cr 3+ ). Un test avec l'hydroxyde de sodium vérifie la présence des ions fer III en fin de réaction. Nous allons procéder par étapes pour équilibrer la demi-réaction concernant le chrome : * conservation du chrome : Cr 2 O 2 7 2 Cr 3+ * conservation de l'oxygène : Cr 2 O 2 7 2 Cr 3+ + 7 H 2 O * conservation de l'hydrogène : Cr 2 O 2 7 + 14 H + 2 Cr 3+ + 7 H 2 O * transformation de H + en H 3 O + : Cr 2 O 2 7 + 14 H + + 14 H 2 O 2 Cr 3+ + 7 H 2 O + 14 H 2 O soit Cr 2 O 2 7 + 14 H 3 O + 2 Cr 3+ + 21 H 2 O * conservation de la charge électrique : Cr 2 O 2 7 + 14 H 3 O + + 6 e 2 Cr 3+ + 21 H 2 O On a d'autre part, en multipliant par 6 la demi-équation concernant le couple Fe 3+ /Fe 2+ : (Fe 2+ Fe 3+ + e ) x 6 soit Cr 2 O 2 7 + 14 H 3 O + + 6 Fe 2+ 2 Cr 3+ + 21 H 2 O + 6 Fe 3+ b) Couple ion nitrate/monoxyde d'azote : L'ion nitrate NO 3 est l'oxydant et le monoxyde d'azote gazeux NO est le réducteur. Nous voulons réduire les ions NO 3 d'une solution d'acide nitrique en gaz NO. Il faut trouver un réducteur plus fort que NO : le cuivre convient, car, comme nous l'avons déjà vu, le métal cuivre n'est pas attaqué par les ions H 3 O + de la solution d'acide nitrique. Ecole Européenne de Francfort Page 71

Oxydoréduction en solution aqueuse Dans une solution d'acide nitrique très concentrée, déposons quelques copeaux de cuivre recouverts par un entonnoir renversé. Il se dégage un gaz qui se s'échappe par le goulot de l'entonnoir et qui est recueilli dans un tube à essais plein d'eau. Le gaz recueilli est incolore c'est du monoxyde d'azote NO. Lorsqu'on met le monoxyde d'azote au contact de l'air, il se transforme en dioxyde d'azote NO 2, gaz roux, par réaction avec le dioxygène de l'air : 2 NO + O 2 2 NO 2 On peut alors écrire les demi-équations correspondant à chaque couple. pour le couple NO 3 /NO : (NO 3 + 4 H 3 O + + 3 e NO + 6 H 2 O) x 2 pour le couple Cu 2+ /Cu : (Cu Cu 2+ + 2 e ) x 3 Soit l'équation bilan : 2 NO 3 + 8 H 3 O + + 3 Cu 3 Cu 2+ + 2 NO + 12 H 2 O Page 72 Christian BOUVIER

III) Oxydoréduction : 1) Définition : Chimie - 7 ème année - Ecole Européenne A RETENIR Une réaction dans laquelle il y a un transfert d'électrons d'un réactif à un autre est une réaction d'oxydoréduction. - le réducteur est une espèce chimique qui cède des électrons - l'oxydant est une espèce chimique qui capte des électrons. 2) Couple oxydoréducteur : c è d e de s e Oxydant + n e Réducteur capte des e Un couple d'oxydoréduction est l'ensemble composé d'un oxydant et d'un réducteur, formés à partir d'un même élément : Oxydant/Réducteur. II) Classification des couples d'oxydoréduction : 1) Définition : La force des réducteurs varie en sens inverse de la force des oxydants associés. Dans une réaction d'oxydoréduction qui fait intervenir deux couples, l'oxydant le plus fort réagit avec le réducteur le plus fort pour donner le réducteur et l'oxydant les plus faibles : Oxydant 1 fort + réducteur 2 fort réducteur 1 faible + oxydant 2 faible 2) En solution aqueuse En solution aqueuse, dans les demi-équations électroniques, les atomes d'hydrogène et d'oxygène qui existent dans les réactifs et les produits peuvent se retrouver, selon les conditions expérimentales, dans des molécules d'eau H 2 O, dans ions hydronium H 3 O +, dans des ions hydroxyde OH. Exemple : MnO 4 + 8 H 3 O + + 5 e Mn 2+ + 12 H 2 O Ecole Européenne de Francfort Page 73

Oxydoréduction en solution aqueuse POUR S'ENTRAÎNER I) Réaction des ions argent sur l'aluminium a) On prépare une solution de nitrate d'argent en dissolvant une masse m de cristal de nitrate d'argent (AgNO 3 ), pur et anhydre, dans 1 L d'eau. i. Ecrire l'équation de dissolution du cristal. ii. On fait réagir un volume V = 50 ml de cette solution avec un excès d'une solution de chlorure de sodium. On obtient une masse m 1 = 2,87 g d'un précipité blanc de chlorure d'argent. Ecrire l'équation de précipitation. Quelle est la concentration C de la solution de nitrate d'argent? iii. Quelle est la masse m de cristal de nitrate d'argent qui a été dissoute? b) Dans V' = 150 ml de la solution de nitrate d'argent précédente, on verse m 2 = 0,405 g de poudre d'aluminium. i. Ecrire les demi-équations puis l'équation bilan de la réaction. ii. Reste-t-il des ions argent en solution à la fin? Si oui, calculer leur concentration. Masses molaires atomiques : M N = 14,0 g.mol 1 ; M O = 16,0 g.mol 1, M Al = 27,0 g.mol 1, M Cl = 35,5 g.mol 1, M Ag = 107,9 g.mol 1. II) Réaction des ions nickel sur l'aluminium Un fil d'aluminium est plongé dans un volume V = 250 cm 3 d'une solution de sulfate de nickel (Ni 2+, SO 2 4 ). Une réaction a lieu. a) Ecrire les demi-réactions, puis l'équation-bilan de la réaction. b) Le dépôt métallique obtenu a une masse m = 1,76 g. Quelle est la concentration des ions Al 3+ en fin de réaction? c) En déduire la concentration des ions Ni 2+ initialement présents. Masses molaires atomiques : M Ni = 58,7 g.mol 1. III) Protection de la coque d'un bateau Le contact de la coque métallique d'un bateau avec l'eau saline de mer provoque des phénomènes de pile qui nuisent à la tenue des métaux. Pour protéger la coque d'un bateau en fer, on fixe sur cette coque, sous la ligne de flottaison, des blocs de zinc. a) Ecrire la demi-équation d'oxydation du zinc en ion zinc II. b) Une masse m Zn = 50 kg de zinc ayant disparu en t = 6 mois, calculer la quantité d'électricité Q ayant traversé la coque? c) En l absence de protection, le fer s oxyde en en ions fer II. Ecrire la demi-equation correspondante. Déterminer la masse de fer qui aurait été oxydée en ions fer (II) en l'absence de protection (on supposera que la quantité d'électricité ayant traversé la coque est la même que précédemment). d) Les ions fer (II) apparaissent sous forme de rouille. Quelle serait alors la masse de rouille formée? (On considérera que la formule chimique de la rouille est Fe(OH) 2 ). Nombre d'avogadro : N A = 6,02.10 23. Charge élémentaire : e = 1,6.10 19 C. Masses molaires : M Fe = 55,8 g.mol 1 ; M Zn = 65,4 g.mol 1 ; M O = 16 g.mol 1 ; M H = 1 g.mol 1. Page 74 Christian BOUVIER