Modèle quantique de Bohr

Documents pareils
1.2 Coordinence. Notion de liaison de coordinence : Cas de NH 3. et NH 4+ , 3 liaisons covalentes + 1 liaison de coordinence.

CHAPITRE VI : HYBRIDATION GEOMETRIE DES MOLECULES

Généralités. Chapitre 1

Molécules et Liaison chimique

Enseignement secondaire

CHAPITRE 2 : Structure électronique des molécules

BTS BAT 1 Notions élémentaires de chimie 1

Contenu pédagogique des unités d enseignement Semestre 1(1 ère année) Domaine : Sciences et techniques et Sciences de la matière

1 ère partie : tous CAP sauf hôtellerie et alimentation CHIMIE ETRE CAPABLE DE. PROGRAMME - Atomes : structure, étude de quelques exemples.

LES ELEMENTS CHIMIQUES

Résonance Magnétique Nucléaire : RMN

Qu est-ce qu un ordinateur quantique et à quoi pourrait-il servir?

La fonction d onde et l équation de Schrödinger

LES COMPLEXES. Description orbitalaire, Structure, Réactivité, Spectroscopie. Martin VÉROT

THEME 2. LE SPORT CHAP 1. MESURER LA MATIERE: LA MOLE

Effets électroniques-acidité/basicité

Plan du chapitre «Milieux diélectriques»

TD 9 Problème à deux corps

Atelier : L énergie nucléaire en Astrophysique

NOTICE DOUBLE DIPLÔME

EXERCICE II. SYNTHÈSE D UN ANESTHÉSIQUE : LA BENZOCAÏNE (9 points)

La physique quantique couvre plus de 60 ordres de grandeur!

Physique Chimie. Utiliser les langages scientifiques à l écrit et à l oral pour interpréter les formules chimiques

Interactions des rayonnements avec la matière

Etrangeté et paradoxe du monde quantique

Partie Observer : Ondes et matière CHAP 04-ACT/DOC Analyse spectrale : Spectroscopies IR et RMN

Chap 1: Toujours plus vite... Introduction: Comment déterminer la vitesse d une voiture?

4 ème PHYSIQUE-CHIMIE TRIMESTRE 1. Sylvie LAMY Agrégée de Mathématiques Diplômée de l École Polytechnique. PROGRAMME 2008 (v2.4)

LES SUBSTITUTIONS NUCLÉOPHILES EN SÉRIE ALIPHATIQUE S N 1 ET S N 2

Cours d électricité. Introduction. Mathieu Bardoux. 1 re année. IUT Saint-Omer / Dunkerque Département Génie Thermique et Énergie

ANALYSE SPECTRALE. monochromateur

TD1 PROPAGATION DANS UN MILIEU PRESENTANT UN GRADIENT D'INDICE

Application à l astrophysique ACTIVITE

LABORATOIRES DE CHIMIE Techniques de dosage

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que

Principe de fonctionnement des batteries au lithium

Fiche professeur. L analyse spectrale : spectroscopies IR et RMN

Comment réaliser physiquement un ordinateur quantique. Yves LEROYER

PHYSIQUE-CHIMIE. Partie I - Propriétés de l atome

ACIDES BASES. Chap.5 SPIESS

K W = [H 3 O + ] [OH - ] = = K a K b à 25 C. [H 3 O + ] = [OH - ] = 10-7 M Solution neutre. [H 3 O + ] > [OH - ] Solution acide

PHYSIQUE-CHIMIE. Partie I - Spectrophotomètre à réseau

Quelleestlavaleurdel intensitéiaupointm?

Transformations nucléaires

Puissance et étrangeté du quantique Serge Haroche Collège de France et Ecole Normale Supérieure (Paris)

Chapitre I- Le champ électrostatique. I.1.1- Phénomènes électrostatiques : notion de charge électrique

Physique quantique et physique statistique

Structure quantique cohérente et incohérente de l eau liquide

Théorie des multiplets! appliquée à! la spectroscopie d ʼabsorption X!

PHYSIQUE QUANTIQUE ET STATISTIQUE PHYS-H-200

Photons, expériences de pensée et chat de Schrödinger: une promenade quantique

PHYSIQUE CHIMIE. Notions de première indispensables. Table des matières. pour la Terminale S 1 LE PHOTON 2 LES SOLUTIONS COLORÉES

Energie nucléaire. Quelques éléments de physique

La gravure. *lagravureparvoiehumide *lagravuresèche

Marine PEUCHMAUR. Chapitre 4 : Isomérie. Chimie Chimie Organique

C3. Produire de l électricité

Modélisation moléculaire

Chapitre 6 : les groupements d'étoiles et l'espace interstellaire

UE 503 L3 MIAGE. Initiation Réseau et Programmation Web La couche physique. A. Belaïd

Procédés plasmas à faisceau d ions. P.Y. Tessier

Aucune frontière entre. Jean-Louis Aimar

1 ère Partie : Concepts de Base

INTRODUCTION À LA SPECTROSCOPIE

Chapitre 11 Bilans thermiques

EXERCICES SUPPLÉMENTAIRES

Les travaux doivent être remis sous forme papier.

TABLE DES MATIÈRES CHAPITRE I. Les quanta s invitent

Premier principe de la thermodynamique - conservation de l énergie

Rayonnements dans l univers

Professeur Eva PEBAY-PEYROULA

Épreuve collaborative

SYSTEME DE PARTICULES. DYNAMIQUE DU SOLIDE (suite) Table des matières

Dr E. CHEVRET UE Aperçu général sur l architecture et les fonctions cellulaires

Transport des gaz dans le sang

Transport des gaz dans le sang

Le monde nano et ses perspectives très prometteuses.

INFORMATION DEUX/13 ÉDITION SPÉCIALE NIRS. Solutions en spectroscopie proche infrarouge par Metrohm NIRSystems. Théorie de la spectroscopie NIR

CHAPITRE 10. Jacobien, changement de coordonnées.

Lycée Galilée Gennevilliers. chap. 6. JALLU Laurent. I. Introduction... 2 La source d énergie nucléaire... 2

Différents types de matériaux magnétiques

5.5.5 Exemple d un essai immunologique

EXERCİCE N 1 : «Synthèse de l éthanamide» (7 pts)

Le ph, c est c compliqué! Gilbert Bilodeau, agr., M.Sc.

Les Prix Nobel de Physique

Chapitre 6. Réactions nucléaires. 6.1 Généralités Définitions Lois de conservation

Caractéristiques des ondes

G.P. DNS02 Septembre Réfraction...1 I.Préliminaires...1 II.Première partie...1 III.Deuxième partie...3. Réfraction

Cisco Certified Network Associate

Module d Electricité. 2 ème partie : Electrostatique. Fabrice Sincère (version 3.0.1)

Voir un photon sans le détruire

Séquence 5 Réaction chimique par échange de protons et contrôle de la qualité par dosage

Metrohm. ph-mètre 780 ph-/ionomètre 781. Un nouveau concept qui fait référence. Analyse des ions

L énergétique Une question d équilibre

PROGRAMME DE PHYSIQUE - CHIMIE EN CLASSE DE SECONDE GÉNÉRALE ET TECHNOLOGIQUE

Rappels sur les couples oxydantsréducteurs

Chapitre II PHÉNOMÈNES RADIATIFS: PROPRIÉTÉS D EMISSION. f AB = mc 2 e 2. β 1 k(υ)dυ N

BACCALAURÉAT GÉNÉRAL PHYSIQUE-CHIMIE

IMMUNOLOGIE. La spécificité des immunoglobulines et des récepteurs T. Informations scientifiques

SECTEUR 4 - Métiers de la santé et de l hygiène

Exercices sur le thème II : Les savons

Transcription:

Séance n 2

Modèle quantique de Bohr INSUFFISANT : Ne permet pas d expliquer certaines caractéristiques des liaisons chimiques : Leur orientation géométrique La différence de comportement entre les liaisons L équivalence des liaisons dans certaines structures moléculaires Le paramagnétisme de certaines molécules Le modèle ondulatoire complète le modèle quantique L électron est considéré non plus comme une particule mais comme une onde électromagnétique.

Modèle ondulatoire de l atome Fondée sur le fait qu à toute particule en mouvement peut être associée une onde électromagnétique de longueur d onde : λ = h mv h, constante de Planck m, masse de la particule v, vitesse de la particule L électron est une onde électromagnétique qui obéit aux lois de la mécanique ondulatoire

L onde électromagnétique est une onde stationnaire Son amplitude est une fonction mathématique appelée «Fonction d onde» ou «Orbitale» : Ψ = f(x, y, z) Il existe différents types d orbitales. La probabilité de présence d un électron dans l espace entourant le noyau diffère selon l orbitale.

Heisenberg et Schrödinger Principe d incertitude d Heisenberg : «Soit une masse (m) en mouvement sur une trajectoire avec une vitesse (v). Au même instant, on ne peut pas connaitre à la fois sa position (x) et sa quantité de mouvement (p).» Equation de Schrödinger : Les fonctions d onde ou orbitales sont solutions d une équation différentielle d ordre 2 appelée «équation de Schrödinger» : HΨ = EΨ L équation n a de solution que pour les systèmes à un électron, (on se contente de solutions approchées pour les autres systèmes).

Les orbitales Elles sont nommées de la même façon que les cases quantiques du modèle de Bohr : s, p, d, f Une orbitale définit à la fois un niveau énergétique, et la géométrie de la région de l espace où se trouve le plus souvent l électron. Schématiquement représentée par une enveloppe virtuelle dans laquelle la probabilité de présence de l électron 0, 9

Représentation Elle donne une idée de la symétrie des orbitales Plusieurs types d orbitales : s p d 1 seule 3 : p x, p y, p z 5 : d xy, d yz, d xz d x²-y², d z²

Orbitales s Symétrie sphérique centrée sur le noyau

Orbitales p Il y en a 3 : p x, p y, p z Elliptiques (haltères) Symétrie de révolution autour des axes x, y et z Probabilité de présence d un électron est nulle dans le plan nodal Ont toutes la même énergie Antisymétriques par rapport au noyau Coexistent

Orbitales d Il y en a 5 : dx²-y², dz² sym. de révolution dxy, dyz, dxz sym. dans le plan Présente une sym. radiale Elliptiques (haltères croisées) Antisymétriques par rapport au noyau Proba. de présence d un électron est nulle dans le plan nodal Coexistent Sur le plan énergétique : DEGENERESCENCE Levée de dégénérescence

Rappels n : nombre quantique principal l : nombre quantique secondaire (ou azimutal) m : nombre quantique magnétique : 2l+1 s : nombre quantique de spin (valeur : ±1/2) Valeur de l Orbitale Nombre d orbitale (2 l+1) Symétrie des Orbitales 0 s 1 Sphérique 1 p 3 Haltères 2 d 5 Haltères croisées 3 f 7 Multilobes complexes

Liaisons entre atomes, Orbitales moléculaires La liaison est la conséquence de la mise en commun d électrons pour former un doublet électronique. Il y a un recouvrement des orbitales atomiques (s, p, d, f) pour donner des orbitales moléculaires, de telle sorte que l énergie de la liaison soir minimale (stabilité +++) et que la probabilité de trouver les 2 électrons formant la liaison soit égale à 1 dans l espace entier. Les orbitales moléculaires sont représentées dans un diagramme moléculaire.

Diagramme moléculaire Molécules diatomiques homonucléaires Fait apparaitre les niveaux d énergie des électrons de liaison Les électrons de liaisons sont placés prioritairement sur le niveau de plus basse énergie en respectant les règle de Pauli et Hund. Exemple du dihydrogène : H 2 La combinaison linéaire des 2 orbitales atomiques conduits à 2 solution pour les orbitales moléculaires : σ : orbitale liante σ* : orbitale antiliante

L ordre de liaison L ordre de liaison (OL) est égal à la moitié de la différence entre le nombre d électrons liants et le nombre d électrons anti-liants. OL = ½ (liant antiliant) Valeur de l ordre de liaison : Lorsque OL=0, la liaison n existe pas. Au plus OL est élevé, au plus la liaison est stable. H 2 : OL = 1 He 2 : OL = 0 Liaison n apporte aucune stabilité par rapport à l état de non liaison He 2 n existe pas.

Autre molécules homonucléaires Il y a 3 types de combinaisons d orbitale atomique : s-s s-p p-p symétrie axiale symétrie axiale symétrie axiale ou de réflexion par rapport à un plan

OM conservant une sym. axiale Combinaison s-s : L OM formée conduit à une liaison σ très stable. Combinaison s-p : Combinaison p-p :

OM conservant une sym. de réflexion par rapport à un plan L OM formée conduit à une liaison π relativement faible.

Exemple du difluor : F 2 F(Z=9) a pour configuration : 1s² 2s² 2p 5 Seuls les électrons de la couche externe sont pris en compte, les autres n apporte aucune contribution à l ordre de liaison. Il s agit ici de la couche n=2 (on considère donc les orbitales 2s et 2p) 2s 2p x 2p y 2p z 2 OA 2s se combinent pour former 2 OM : σ 2s et σ 2s * 2 OA 2p z par convention coaxiale forme 2OM : σ z et σ z * 2 OA 2p x se combinent latéralement pour former 2 OM : π x et π x * 2 OA 2p y se combinent latéralement pour former 2 OM : π y et π y *

Diagramme moléculaire de F 2 Rappel : F(Z=9) n=2 : 2s 2p x 2p y 2p z 14 électrons appariés 8 électrons occupent des OM liantes 6 électrons occupent des OM antiliantes Seul σ z * reste inoccupée OL = ½ (8-6) = 1 La molécule existe

Molécules diatomiques hétéronucléaire Exemple de l acide fluorhydrique : HF

Hybridation des Orbitales Concerne les molécules polyatomiques (H 2 O, BeH 2, BH 3, CH 4, etc.) C est la recherche d une combinaison linéaire de 2 ou plusieurs orbitales atomiques d un même atome. Obtention d orbitales «hybrides» qui répondent à des conditions d équivalence énergétique et d orientation spatiale. Il y a 3 cas possibles d hybridation : 1 OA s + 1 OA p 1 OA s + 2 OA p 1 OA s + 3 OA p

Combinaison d 1 OA s + 1 OA p 2 orbitales hybrides sp Angle entre les deux axes : 180 Hybridation digonale => molécule linéaire

Combinaison d 1 OA s + 2 OA p 3 orbitales hybrides sp 2 Angle entre les deux axes : 120 Hybridation trigonale => molécule plane

Combinaison d 1 OA s + 3 OA p 4 orbitales hybrides sp 3 Angle entre les deux axes : 109 Molécule tétraédrique

Exemple du Borane : BH 3 Molécule polyatomique à liaisons simple. Les 3 liaisons B-H sont identiques, la molécule est plane (angle entre les liaisons : 120 ). B (Z=5), configuration : 1s 2 2s 2 2p 1 1 électron célibataire pour former 3 liaisons : Impossible Configuration envisageable : 3 électrons célibataires pour former les 3 liaisons avec H, mais les liaisons ne seront pas identiques (car formées avec 2s ou 2p) Solution : hybrider 1 OA 2s avec 2 OA 2p pour former 3 orbitales hybrides sp² 3 e - célibataires (sp²) pour former les 3 liaisons identiques B-H Hybridation trigonale molécule plane

Exemple du Méthane : CH 4 Molécule polyatomique à liaisons simple. Les 4 liaisons C-H sont identiques, orientées vers les sommets d un tétraèdre régulier (angle entre les liaisons : 109 ). C (Z=6), configuration : 1s 2 2s 2 2p 2 2 électron célibataire pour former 4 liaisons : Impossible Configuration envisageable : aucune autre possible Solution : hybrider 1 OA 2s avec 3 OA 2p pour former 4 orbitales hybrides sp 3 4 e - célibataires (sp 3 ) pour former les 4 liaisons identiques C-H Molécule tétraédrique

Cas particulier : Exemple de l H 2 O Molécule polyatomique à liaisons simple. Les 2 liaisons O-H sont identiques, l angle entre les liaisons vaut 104 5 O (Z=8), configuration : 1s 2 2s 2 2p 4 2 électron célibataire pour former 2 liaisons : MAIS l angle entre les liaisons serait de 90, ce qui pose problème (elle font normalement 104 5) Configuration envisageable : aucune autre possible La seule façon d expliquer un angle de liaison de 104 5 est ici l hybridation de l OA 2s avec les OA 2p Solution : hybrider 1 OA 2s avec 3 OA 2p pour former 4 orbitales hybrides sp 3 2 e - célibataires (sp 3 ) pour former les 2 liaisons identiques O-H Structure tétraédrique avec angle de 104 5 au lieu de 109, en raison de la présence des doublets libres. Ces e - repoussent les liaisons.

Complexes métalliques C est l association d un métal ou d un ion métallique avec des espèces moléculaires ou ioniques appelées ligands. Les ligands sont des molécules (H 2 O, NH 3, etc.) ou des anions (Cl -, Br -, CN -, etc.). Le métal ou l ion métallique est en position centrale, il est uni aux ligands par des liaisons de coordination. La plupart des métaux ou ions métalliques peuvent former des complexes.

Liaison de coordination Elle se forme entre deux atomes, respectivement appelés : Le donneur : il possède sur sa couche de valence un doublet d électrons libre qu il fournit à l accepteur pour former la liaison (il s agit ici du ligand) L accepteur : il reçoit le doublet d électrons libre dans une orbitale ou case quantique libre située sur sa couche de valence (il s agit ici du métal) Pas de liaisons de coordinations par mise en commun d électrons!

Charge électrique La charge électrique globale d un complexe est égale à la somme algébrique des charges de l espèce métallique et de celles des ligands (si ceux-ci sont ioniques) Cette charge est indiquée par un exposant à l extérieur de crochets encadrant la formule du complexe : [Complexe] charge La charge électrique globale permet de calculer le degré ou nombre d oxydation (NO) de l espèce métallique du complexe. Ce NO correspond à la charge électrique initiale de l espèce métallique.

Nombre d oxydation et Indice de Coordination Nombre d oxydation : Connaissant les NO des ligands, le NO de l espèce métallique se calcule par simple différence en considérant que dans le cas : D un complexe neutre : la somme de tous les NO est nulle D un complexe ionique : la somme de tous les NO est égale à la charge de cet ion Indice de coordination : C est le nombre de liaisons formées entre l atome central (le métal) et les ligands.

Exemple [Pt(NH 3 ) 2 Cl 2 ] Métal Ligands Charge globale : aucune (0), le complexe est moléculaire NO (Pt) : NH 3 non chargé, Cl - NO Pt + 2 (0) + 2 (-1) = 0 Donc : NO Pt = +2 => Pt 2+ ou Pt II Indice de coordination : 2(NH 3 ) + 2(Cl) = 4 liaisons de coordination Le platine est donc oxydé

Structure électronique et Géométrie Les ligands entourant l atome central créent un champ électrique : il y a alors modification des niveau d énergie des orbitales d de l atome central A l état fondamental : orbitales d => Niveau d énergie dégénéré Levée de dégénérescence (Δ)

Ligand à champ faible ou à champ fort Série spectrochimique

Exemple : Atome de configuration d 5 Il s agit d un atome tel que : 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 5 Lorsque le spin 0, le complexe est paramagnétique Lorsque le spin = 0, le complexe est diamagnétique La géométrie du complexe varie en fonction du type de ligand (champ fort ou faible).

Exemple de complexe métallique [Fe(H 2 O) 6 ] 2+ Il y a 6 liaisons de coordination Le ligand (H 2 O) est neutre car il est moléculaire La charge totale est +2 Fe (Z=26) a pour configuration : 1s² 2s² 2p 6 3s² 3p 6 4s² 3d 6 Or, dans ce complexe le nombre d oxydation de Fe est : NO Fe + 6 0 = +2 => Fe 2+ ou Fe II Ici, Fe a donc perdu 2 électron de valence par oxydation. Les électrons de la couche de valence (n=4) sont perdus. La configuration de Fe dans le complexe est donc : 1s² 2s² 2p 6 3s² 3p 6 3d 6 (4s 0 ). H 2 O étant situé au centre de la série spectrochimique, il peut à la fois être considéré comme un ligand à champ faible ou un ligand à champ fort.

Exemple avec H 2 O :ligand à champ faible [Fe(H 2 O) 6 ] 2+ Configuration de Fe : 1s² 2s² 2p 6 3s² 3p 6 3d 6 (4s 0 ) (4p 0 ) (4d 0 ) Ligand à champ faible donc faible levée de dégénérescence Δ : Le spin (S) est fort : S = 4/2 Complexe paramagnétique Fe est l accepteur. Il faut 6 orbitales (cases) libres pour accueillir les 6 doublets électroniques du donneur (le ligand : H 2 O). Or ici, toutes les orbitales sont occupées Il faut donc créer ces 6 orbitales. On va utiliser les orbitales 4s, 4p et 4d vides de Fe. Les 6 orbitales à créer doivent être de même énergie (pour former 6 liaisons identiques), les orbitales sont donc hybridées pour fournir 6 orbitales libres équivalentes. 1 OA 4s 3 OA 4p 2 OA 4d 6 orbitales hybrides sp 3 d² Géométrie : octaédrique

Exemple avec H 2 O : ligand à champ fort [Fe(H 2 O) 6 ] 2+ Configuration de Fe : 1s² 2s² 2p 6 3s² 3p 6 3d 6 (4s 0 ) (4p 0 ) (4d 0 ) Ligand à champ fort donc forte levée de dégénérescence Δ : Le spin (S) est faible : S = 0 Complexe diamagnétique Les 6 orbitales (cases) libres pour accueillir les 6 doublets électroniques du donneur (H 2 O) sont obtenues par hybridation. 2 OA 3d libres 1 OA 4s 3 OA 4p 6 orbitales hybrides d²sp 3 Géométrie : octaédrique

QCM A. Dans le modèle quantique, l électron est considéré comme une onde électromagnétique. B. Lorsque l ordre de liaison est nul, la molécule existe. C. La combinaison d 1 orbitale atomique s avec 2 orbitales atomiques p, permet d obtenir 3 orbitales hybrides sp 2. D. La molécule de BH 3 possède un angle de liaisons de 120. E. Dans un complexe métallique, le ligand est accepteur d électrons.

QCM Réponses : CD A. Dans le modèle quantique, l électron est considéré comme une onde électromagnétique. Faux : C est le cas dans le modèle ondulatoire. /!\ Modèle quantique = modèle de Bohr B. Lorsque l ordre de liaison est nul, la molécule existe. Faux : Si son ordre de liaison (OL) = 0, la molécule n existe pas, c est le cas de He 2. C. La combinaison d 1 orbitale atomique s avec 2 orbitales atomiques p, permet d obtenir 3 orbitales hybrides sp 2. Vrai D. La molécule de BH 3 possède un angle de liaisons de 120. Vrai, elle est hybridée sp², donc trigonale avec un angle de liaisons de 120. E. Dans un complexe métallique, le ligand est accepteur d électrons. Faux : Au sein d un complexe métallique, le ligand donne le doublet d électrons (liaison de coordination). Il est donneur.

FIN Merci pour votre écoute :D Bonne continuation! linda.khafif@gmail.com