4.3. Les transporteurs secondaires

Documents pareils
ULBI 101 Biologie Cellulaire L1. Le Système Membranaire Interne

Respiration Mitochondriale

1. Principes de biochimie générale. A. Bioénergétique et dynamique. a) Intro: Les mitochondries passent leur temps à fabriquer de l énergie.

Chapitre 7 : Structure de la cellule Le noyau cellulaire

La séparation membranaire : comment maintenir la performance des membranes?

Transport des gaz dans le sang

Partie 1. Addition nucléophile suivie d élimination (A N + E) 1.1. Réactivité électrophile des acides carboxyliques et groupes dérivés

Transport des gaz dans le sang

COUSIN Fabien KERGOURLAY Gilles. 19 octobre de l hôte par les. Master 2 MFA Responsable : UE Incidence des paramètres environnementaux

École secondaire Mont-Bleu Biologie générale

ACIDES BASES. Chap.5 SPIESS

1 ère partie : tous CAP sauf hôtellerie et alimentation CHIMIE ETRE CAPABLE DE. PROGRAMME - Atomes : structure, étude de quelques exemples.

Les plantes et la lumière

Utilisation des substrats énergétiques

Allégations relatives à la teneur nutritive

Les cytokines et leurs récepteurs. Laurence Guglielmi

Le trajet des aliments dans l appareil digestif.

Dr E. CHEVRET UE Aperçu général sur l architecture et les fonctions cellulaires

TD de Biochimie 4 : Coloration.

Annales de Biologie Cellulaire QCM (niveau SVT 1 er année)

ELECTROPHYSIOLOGIE: PRINCIPES ET TECHNIQUES. Fabrice DUPRAT, Chargé de Recherche

CHAPITRE 3 LA SYNTHESE DES PROTEINES

A N A L Y S E U R E N L I G N E D A G V D E S B I C A R B O N A T E S D E L A L C A L I N I T E

1 ère partie : Enzymologie et Métabolisme

BASES DE L ENTRAINEMENT PHYSIQUE EN PLONGEE

Commentaires sur les épreuves de Sciences de la Vie et de la Terre

Exemple de cahier de laboratoire : cas du sujet 2014

Structure quantique cohérente et incohérente de l eau liquide

INTRODUCTION À L'ENZYMOLOGIE

3: Clonage d un gène dans un plasmide

1ST2S Biophysiopathologie : Motricité et système nerveux La physiologie neuro-musculaire :

AGREGATION DE BIOCHIMIE GENIE BIOLOGIQUE

Les systèmes à deux composants chez les bactéries. Les systèmes à deux composants chez les bactéries. UE BIO24c Cours Dominique Schneider

Calcaire ou eau agressive en AEP : comment y remédier?

Fiche de révisions sur les acides et les bases

STRUCTURE ET FONCTION DES PLURICELLULAIRES

β-galactosidase A.2.1) à 37 C, en tampon phosphate de sodium 0,1 mol/l ph 7 plus 2-mercaptoéthanol 1 mmol/l et MgCl 2 1 mmol/l (tampon P)

MAÎTRISER LA LECTURE DES ÉTIQUETTES NUTRITIONNELLES

Formavie Différentes versions du format PDB Les champs dans les fichiers PDB Le champ «ATOM» Limites du format PDB...

Concours du second degré Rapport de jury. Session 2013 CERTIFICAT D'APTITUDE AU PROFESSORAT DE L'ENSEIGNEMENT TECHNIQUE (CAPET)

4 : MÉTHODES D ANALYSE UTILISÉES EN ÉCOLOGIE MICROBIENNE

BREVET DE TECHNICIEN SUPÉRIEUR QUALITÉ DANS LES INDUSTRIES ALIMENTAIRES ET LES BIO-INDUSTRIES

Université Louis Pasteur Strasbourg I Ecole Doctorale des Sciences de la Vie et de la Santé THESE. En vue de l obtention du grade de

Tâche : Comparer l étiquette de produits alimentaires afin de connaître leur valeur nutritive.

Biochimie I. Extraction et quantification de l hexokinase dans Saccharomyces cerevisiae 1. Assistants : Tatjana Schwabe Marcy Taylor Gisèle Dewhurst

La gravure. *lagravureparvoiehumide *lagravuresèche

Le rôle de l endocytose dans les processus pathologiques

Cellules procaryotes Service histologie Pr.k.mebarek

Tableau récapitulatif : composition nutritionnelle de la spiruline

IMMUNOLOGIE. La spécificité des immunoglobulines et des récepteurs T. Informations scientifiques

Quel sirop choisir pour le nourrissement d hiver.

5.5.5 Exemple d un essai immunologique

Capteur à CO2 en solution

SOLUTIONS TECHNOLOGIQUES D AVENIR

THEME 2. LE SPORT CHAP 1. MESURER LA MATIERE: LA MOLE

FORD C-MAX + FORD GRAND C-MAX CMAX_Main_Cover_2013_V3.indd /08/ :12

Science et technique. La température et la durée de stockage sont des facteurs déterminants. Viande bovine et micro-organisme pathogène

I. La levure Saccharomyces cerevisiae: mode de vie

- pellicule de fruits qui a un rôle de prévention contre l'évaporation, le développement de moisissures et l'infection par des parasites

Energie nucléaire. Quelques éléments de physique

CONCOURS DE L INTERNAT EN PHARMACIE

TEST ELISA (ENZYME-LINKED IMMUNOSORBENT ASSEY)

Origine du courant électrique Constitution d un atome

10 en agronomie. Domaine. Les engrais minéraux. Livret d autoformation ~ corrigés. technologique et professionnel

présentée à l Institut National des Sciences Appliquées de Toulouse par Marlène COT

SESSION 2013 ÉPREUVE À OPTION. (durée : 4 heures coefficient : 6 note éliminatoire 4 sur 20) CHIMIE

Développement des saveurs. Contenu

Séquence 4. La nature du vivant. Sommaire. 1. L unité structurale et chimique du vivant. 2. L ADN, support de l information génétique

Titre alcalimétrique et titre alcalimétrique complet

pka D UN INDICATEUR COLORE

TS 31 ATTAQUE DE FOURMIS!

K W = [H 3 O + ] [OH - ] = = K a K b à 25 C. [H 3 O + ] = [OH - ] = 10-7 M Solution neutre. [H 3 O + ] > [OH - ] Solution acide

Chapitre 5 : Noyaux, masse et énergie

CLINIMIX AVIS DE LA COMMISSION DE LA TRANSPARENCE

Effets électroniques-acidité/basicité

Vue d ensemble de la vie microbienne

BREVET D ÉTUDES PROFESSIONNELLES AGRICOLES SUJET

VI- Expression du génome

GUIDE D INFORMATIONS A LA PREVENTION DE L INSUFFISANCE RENALE

Travaux dirigés de Microbiologie Master I Sciences des Génomes et des Organismes Janvier 2015

ÉCOLES NORMALES SUPÉRIEURES ÉCOLE NATIONALE DES PONTS ET CHAUSSÉES CONCOURS D ADMISSION SESSION 2013 FILIÈRE BCPST COMPOSITION DE BIOLOGIE

Energie Nucléaire. Principes, Applications & Enjeux. 6 ème /2015

A retenir : A Z m n. m noyau MASSE ET ÉNERGIE RÉACTIONS NUCLÉAIRES I) EQUIVALENCE MASSE-ÉNERGIE

Résonance Magnétique Nucléaire : RMN

(72) Inventeur: Baijot, Bruno Faculté des Se. Agronom. de l'etat Dép. de Technol. agro-alimentaire et forestière groupe Ceteder B5800 Gembloux(BE)

5. Matériaux en contact avec l eau

ANTICORPS POLYCLONAUX ANTI IMMUNOGLOBULINES

Programme de réhabilitation respiratoire

Enseignement secondaire

Banque Agro-Veto Session 2014 Rapport sur les concours A filière BCPST

Transformations nucléaires

Sérodiagnostic de la polyarthrite rhumatoïde

Critères pour les méthodes de quantification des résidus potentiellement allergéniques de protéines de collage dans le vin (OIV-Oeno )

Fiches techniques Alimentation par sonde Nutrison

Hépatite chronique B Moyens thérapeutiques

Présentations GTF. Point de vue d un utilisateur final. Durée de vie des ouvrages : Approche Prédictive, PerformantielLE et probabiliste

Maîtrise des phases critiques en élevage porcin : Comment améliorer la santé digestive du porcelet?

SECTEUR 4 - Métiers de la santé et de l hygiène

La reconnaissance moléculaire: la base du design rationnel Modélisation moléculaire: Introduction Hiver 2006

Transcription:

4.3. Les transporteurs secondaires 4. 3.1. Généralités - Le transport actif primaire fournit un gradient électrochimique d ion ou de soluté utilisé par le transporteur secondaire (primaire = flux d électrons de la chaîne respiratoire qui crée le gradient de H+). - Le transporteur secondaire permet le passage de deux solutés, l un qui diffuse spontanément (Na+, H+) et fournit de l énergie à l autre qui lui, est transporté activement. S/S - H + /Na + S + H + /Na + S/S - H + /Na + S + H + /Na + Symport Antiport

- Molécules transportées : ions, sucres, aa, peptides, acides carboxyliques, nucléosides - Système de transport très répandu chez les bactéries, 77 familles répertoriées (selon similarités de séquences) - La famille la plus importante, MFS (Major Facilitator Superfamilly) 400 à 600 aa, 12, 14, 24 hélices transmembranaires Un membre bien étudié : La lactose perméase d E. coli

Le transport primaire permet de créer et de maintenir le gradient de proton ext/int = différence de potentiel électrochimique ext ph7 Membrane (0.5) (150mV) int ph7.5 Le gradient de Na+ est créé par des transporteurs antiport H+/Na+ ou par des transporteur à ATP Membrane plasmique H + H + H + H + H + Na + Na + Na + Na + Na + H + Na + Na +

4.3.2 Organisation structurale de LacY - Située dans la membrane cytoplasmique de E. coli - Spécificité pour le lactose et le galactose - Ratio : 1 proton transporté pour 1 lactose, en symport - Semble agir à l état monomérique - 12 hélices α transmembranaires

4.3.3 Mécanisme proposé du symport Périplasme Cytoplasme LacY LacY 6 H+ 1 5 H+ H-LacY LacY-H L 2 4 L 3 H-L-LacY LacY-H-L

La lactose perméase fonctionne selon plusieurs modes : b Entrée ou sortie des solutés, toujours en symport, dépendant de la direction de la «force conductrice» issue du gradient, soit de H + ou soit du gradient de lactose. (b et c en absence de ΔH+ au départ, mais en forte concentration de lactose, la lactose perméase génère alors un gradient de H+)

4.4. Gradient de sodium et température - L augmentation de la température augmente la fluidité membranaire et donc la perméabilité de la membrane au protons = problème pour le maintient de la PMF - Adaptation aux changements de température par un contrôle de la composition lipidique : * Augmentation de la longueur des chaînes carbonées des lipides * Saturation des chaînes carbonées des lipides Ceci permet de maintenir la perméabilité aux protons constante = Homéostasie de la perméabilité du proton sur la gamme de température de croissance Au-delà d une certaine T C, la PMF ne peux plus être maintenue = mort cellulaire

- Températures extrêmes: les archées - Contrôle lipidique : = présence de lipides tetraether traversant la bicouche la fluidité (archées) - Malgré tout, la perméabilité du proton est très forte aux températures de croissance = Maintient de la PMF difficile - Solution : SMF = sodium motive force La composition lipidique affecte peu la perméabilité du sodium Et comme la perméabilité des membranes au Na + << au H +, le maintient d une SMF est plus facile à haute T C

Des exemples : Bacillus steaorothemophilus (60 C : limite inférieure des thermophiles ) 1- Taux de respiration augmenté = expulsion forte de protons 2- A cause de la fuite de protons due à la haute perméabilité de la membrane aux protons : conversion de la PMF en SMF via antiport H+/Na+ 3- Utilisation de SMF pour le transport secondaire

Caloramator fervidus : anaérobie, ne peut pas contrôler son ph intracellulaire 1- Energie produite par fermentation est convertie en SMF via ATPase de type V 2- Utilisation de SMF pour le transport secondaire

4.4. Le transport dépendant du système TonB : le cas du fer Ce type de système est décrit pour le transfert de nutriments tels que le fer, la vitamine B12, le nickel. Le fer est très important pour la cellule (transport d électrons ) mais il est peu biodisponible Stratégies de capture du fer : - capture directe du fer ou d hème à partir de protéines de l hôte chez les bactéries pathogènes (récepteurs) - sécrétion de molécules de capture comme les sidérophores

Les sidérophores sont des chélateurs qui piègent le fer Fe 3+ avec une très haute affinité (K D =10-22 à 10-49 M) permettant de l extraire. Exemples de sidérophores bactériens et fongiques (italique, sans fer)

1-Sécrétion sidérophores 4-Dans la cellule le fer est délivré du sidérophore 2-Capture du fer 3 - T r a n s p o r t d u sidérophore complexé au fer dans la cellule Peptide backbone Hexacoordonné avec Fe 3+ Comment le fer complexé au sidérophore passe t il les membranes?

Membrane externe : une porine spécifique des sidérophores : Pore large monomérique (tonneau, 22 feuillets β) Très affin (nm). Fermé par un domaine N-terminal (plug ou cork en jaune sur le schéma). Ouverture? Il n y a pas d énergie au niveau de la membrane externe! Porine Transporteur ABC Complexe TonB H + La protéine TonB interagit avec la boîte TonB de la porine (5 à 7 AA en N term). ExbB et D formeraient le canal à protons qui fournit l énergie au système Membrane interne : un transporteur ABC prend alors en charge le complexe sidérophore + fer

Utilisation de xenosidérophores possible.

4.5 Bacterial PhosphoTransferase System : PTS 1. Généralités - Bactéries à Gram + et Gram -, pas de système homologue décrit chez les archées et eucaryotes : évolution tardive - C est un système dédié au transport des sucres - Rôle dans la régulation du métabolisme du carbone - Transport et modification simultanés du soluté à transporter - Modification selon une chaîne réactionnelle à partir du PEP phosphoenolpyruvate = donneur initial du groupement phosphate et d énergie (d où le terme PTS) IIC HPr

2. Intérêt énergétique du PTS - Potentiel énergétique du PEP est équivalent à l ATP car pendant la glycolyse: A partir d une molécule de PEP, une molécule d ATP est produite sous l action de la pyruvate kinase Phosphoenolpyruvate (PEP) ADP Pyruvate kinase ATP pyruvate Dernière étape de la glycolyse. - Mais la déphosphorylation du PEP libère 61,5kJ/mol, c est plus que l ATP (30,5) = gaspillage? - Pour une molécule de glucose tranportée : Le PTS effectue à la fois l étape de transport et de phosphorylation, avec un PEP contre - 2 à 3 ATP pour les transporteurs ABC (transport + phosphorylation du sucre) - 1,3 ATP/sucre par le symporteur à proton (0,3 (1 ATP pour au mieux 3 H + + 1 ATP pour la phosphorylation du sucre) Transport PTS est économique pour le transport des sucres simples

3. Description générale du PTS Il est composé de composantes générales et de protéines cytoplasmiques solubles, communes à tous les sucres et de composantes spécifiques à chaque sucre HPr EI Réactions de phosphotransfert réversibles 21 complexes EII ont été identifiés (20 sucres), codés dans le génome chez E. coli

Autophosphorylation de EI = étape limitante, lente Transfert sur His15 de HPr Transfert sur EIIA Transfert sur EIIB Phosphotranslocation du sucre via IIC (la perméase du système) IIC transporte le sucre et le présente à IIB qui le phosphoryle

Le PTS permet de coupler la glycolyse au transport de sucres : ratio des différentes protéines dans leurs formes phosphorylées ou non phosphorylées (HPr, EIIA, EI). Le système PTS est à la fois un système de transport de sucres, et un réseau global de régulation contrôlant l utilisation des sucres et influençant les réponses de la cellule : - préférence pour un sucre, comme le glucose (répression catabolique, exclusion de l inducteur), selon l état de phosphorylation de EIIA glc, lié à la présence de glucose dans le milieu et à son transport - chimiotactisme (EI) - biofilms - Glu: EIIA glc -P/EIIA glc est grand EIIA glc -P Activation de l adénylate cyclase Production d AMPc, se complexe avec CRP (camp receptor protein, ou CAP pour catabolique gene activator protein), Influence l expression de certains gènes (régulon Crp) utilisation du lactose, maltose, biofilm (131 unités transcriptionelles régulées) + Glu: EIIA glc /EIIA glc P est grand EIIA glc : bloque directement la lactose perméase, le transporteur ABC du maltose (exclusion de l inducteur)

V- Bilan - diversité des transporteurs Les transporteurs rencontrés : - Transport facilité - Pores (membranes externe) - Canaux (membrane interne) - Transport actif : le transport secondaire (synport/antiport) le transport ATP-dépendent (ABC) le système PTS (phosphotransférase system)

Comparaison fonctionnelle Le transport actif est couplé à une source d énergie Propriétés Diffusion passive Diffusion facilitée Diffusion active Translocation de groupe Médiateur/ Protéine - + + + Concentration contre un gradient - - + + Spécificité +/- + + + Dépenses énergétiques - - + + Modification du substrat dans le transport - - - +

- Transporteurs secondaires et ABC sont ubiquitaires et majoritaires, et en proportion inverses - La bactérie peut utiliser l ATP ou le gradient de ph/na+ comme source d énergie préférentiellement - Chez les hyperthermophiles les transporteurs ABC sont plus importants : source de nutriments faibles dans les environnements extrêmes : ABC plus adapté (KmABC < Km des transporteurs secondaires

Conclusions Souvent un microorganisme possède plus d un transporteur pour chaque nutriment Par exemple E. coli a au moins 5 transporteurs pour le galactose 3 pour glutamate et leucine 2 pour le potassium Les systèmes de transport pour chaque nutriment peuvent différer du point de vue de la source d énergie, de leur affinité, de leur régulation Cette diversité permet à la bactérie de s adapter aux différents environnements rencontrés