Le modèle ondulatoire de la lumière

Documents pareils
DIFFRACTion des ondes

Comprendre l Univers grâce aux messages de la lumière

Chapitre 02. La lumière des étoiles. Exercices :

EXERCICE 2 : SUIVI CINETIQUE D UNE TRANSFORMATION PAR SPECTROPHOTOMETRIE (6 points)

TP 2: LES SPECTRES, MESSAGES DE LA LUMIERE

Niveau 2 nde THEME : L UNIVERS. Programme : BO spécial n 4 du 29/04/10 L UNIVERS

La spectrophotométrie

Séquence 9. Étudiez le chapitre 11 de physique des «Notions fondamentales» : Physique : Dispersion de la lumière

Chapitre 6 La lumière des étoiles Physique

Caractéristiques des ondes

TEMPÉRATURE DE SURFACE D'UNE ÉTOILE

Chapitre 2 : Caractéristiques du mouvement d un solide

L Évolution de la théorie d élasticité au XIX e siècle

PROPRIÉTÉS D'UN LASER

ANALYSE SPECTRALE. monochromateur

Pour commencer : Qu'est-ce que la diffraction? p : 76 n 6 : Connaître le phénomène de diffraction

L histoire de la Physique, d Aristote à nos jours: Evolution, Révolutions

Correction ex feuille Etoiles-Spectres.

TP 03 B : Mesure d une vitesse par effet Doppler

SUIVI CINETIQUE PAR SPECTROPHOTOMETRIE (CORRECTION)

G.P. DNS02 Septembre Réfraction...1 I.Préliminaires...1 II.Première partie...1 III.Deuxième partie...3. Réfraction

Champ électromagnétique?

Sujet. calculatrice: autorisée durée: 4 heures

PRODUIRE DES SIGNAUX 1 : LES ONDES ELECTROMAGNETIQUES, SUPPORT DE CHOIX POUR TRANSMETTRE DES INFORMATIONS

OPTIQUE GEOMETRIQUE POLYCOPIE DE COURS

Mécanique Quantique EL OUARDI EL MOKHTAR LABORATOIRE MÉCANIQUE & ÉNERGÉTIQUE SPÉCIALITÉ : PROCÈDES & ÉNERGÉTIQUE. dataelouardi@yahoo.

Objectifs pédagogiques : spectrophotomètre Décrire les procédures d entretien d un spectrophotomètre Savoir changer l ampoule d un

Q6 : Comment calcule t-on l intensité sonore à partir du niveau d intensité?

Chapitre 2 Les ondes progressives périodiques

La chanson lumineuse ou Peut-on faire chanter la lumière?

AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x =

Université Bordeaux 1 MIS 103 OPTIQUE GÉOMÉTRIQUE

Mise en pratique : Etude de spectres

1STI2D - Les ondes au service de la santé

Meine Flüssigkeit ist gefärbt*, comme disaient August Beer ( ) et Johann Heinrich Lambert ( )

BACCALAURÉAT GÉNÉRAL

I - Quelques propriétés des étoiles à neutrons

Spectrophotométrie - Dilution 1 Dilution et facteur de dilution. 1.1 Mode opératoire :

Les interférences lumineuses

QUELQUES ACTIVITES RELATIVES A LA PARTIE A Propagation d une onde ; onde progressive. Comment installer le format de compression divx?

Comment voit-on les objets qui nous entourent? À la découverte de la lumière. Cécile de Hosson, avec la collaboration de Véronique Delaye

Un spectromètre à fibre plus précis, plus résistant, plus pratique Concept et logiciel innovants

Didier Pietquin. Timbre et fréquence : fondamentale et harmoniques

Chapitre 2 Caractéristiques des ondes

Application à l astrophysique ACTIVITE

Ecole Centrale d Electronique VA «Réseaux haut débit et multimédia» Novembre 2009

TP Détection d intrusion Sommaire

Sujet. calculatrice: autorisée durée: 4 heures

INTRODUCTION À LA SPECTROSCOPIE

Ni tout noir, ni tout blanc Consignes Thème I - Observer

PHYSIQUE Discipline fondamentale

Chapitre 22 : (Cours) Numérisation, transmission, et stockage de l information

La lumière. Sommaire de la séquence 10. t Séance 4. Des lumières blanches. Des lumières colorées. Les vitesses de la lumière

1S9 Balances des blancs

Module HVAC - fonctionnalités

PHOTO PLAISIRS. La Lumière Température de couleur & Balance des blancs. Mars 2011 Textes et Photos de Bruno TARDY 1

Sensibilisation à la Sécurité LASER. Aspet, le 26/06/2013

FICHE 1 Fiche à destination des enseignants

Les rayons X. Olivier Ernst

PHYSIQUE-CHIMIE. Partie I - Spectrophotomètre à réseau

ÉPREUVE COMMUNE DE TIPE Partie D. TITRE : Comment s affranchir de la limite de la diffraction en microscopie optique?

TD1 PROPAGATION DANS UN MILIEU PRESENTANT UN GRADIENT D'INDICE

pka D UN INDICATEUR COLORE

Le second nuage : questions autour de la lumière

Etrangeté et paradoxe du monde quantique

EFFET DOPPLER EXOPLANETES ET SMARTPHONES.

(aq) sont colorées et donnent à la solution cette teinte violette, assimilable au magenta.»

Fluorescent ou phosphorescent?

Chapitre 1 : Qu est ce que l air qui nous entoure?

Étude et modélisation des étoiles

Cercle trigonométrique et mesures d angles

ÉNERGIE : DÉFINITIONS ET PRINCIPES

PROGRAMME D HABILETÉS EN FAUTEUIL ROULANT (WSP-F)

LES LOIS PHYSIQUES APPLIQUÉES AUX DEUX-ROUES : 1. LA FORCE DE GUIDAGE

LES CARACTERISTIQUES DES SUPPORTS DE TRANSMISSION

Les moyens d observations en astronomie & astrophysique

Interférences et applications

La Fibre Optique J BLANC

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. - Section Orthoptiste / stage i-prépa intensif -

PHYSIQUE 2 - Épreuve écrite

TSTI 2D CH X : Exemples de lois à densité 1

Mesure de la dépense énergétique

Mesure d angles et trigonométrie

Sommaire de la séquence 10

PRINCIPE MICROSCOPIE CONFOCALE

«Tous les sons sont-ils audibles»

LA PUISSANCE DES MOTEURS. Avez-vous déjà feuilleté le catalogue d un grand constructeur automobile?

Quelleestlavaleurdel intensitéiaupointm?

Rayonnements dans l univers

Programmes des classes préparatoires aux Grandes Ecoles

C est un mouvement plan dont la trajectoire est un cercle ou une portion de cercle. Le module du vecteur position OM est constant et il est égal au

GELE5222 Chapitre 9 : Antennes microruban

Celestia. 1. Introduction à Celestia (2/7) 1. Introduction à Celestia (1/7) Université du Temps Libre - 08 avril 2008

L inégale répartition de l énergie solaire est à l origine des courants atmosphériques

Séquence 1. Physique Couleur, vision et image Chimie La réaction chimique. Sommaire

CHAPITRE IX : Les appareils de mesures électriques

Mesures de très faibles vitesses instantanées par échographie Doppler

Transcription:

Le modèle ondulatoire de la lumière en finir avec le modèle du rayon de lumière?? 1 La lumière est-elle une onde? La nature de la lumière n apparaît pas de façon évidente : est-ce une onde? est-ce un ensemble de particules qui se déplacent en ligne droite? Des faits expérimentaux ont tranché en faveur de la première hypothèse (Grimaldi, 1665 puis Young et Fresnel au début du XIX ème siècle) et ont montré la nature ondulatoire de la lumière. Chronologie 600 : Pythagore suppose que la lumière est émise par l œil. 400 : Démocrite suggère que la lumière est «une impression dans l air due à l œil et à l objet». 300 : pour Euclide, les rayons de lumière, émis par l œil, sont des lignes droites ; il énonce les lois de la réflexion sur un miroir. Ces remarques avaient été faites vers 400 par le chinois Mo Di. 1000 : le cairote Alhazen (ou Ibn-Al-Haitam) suggère que la lumière est quelque chose émis par l objet. 1600 : Johannes Kepler indique que «dans la lumière, le mouvement se fait le long d une droite, et ce qui se déplace est une sorte de surface». Il énonce une loi approchée de la réfraction, les lois des lentilles et de formation des images après que Galilée a inventé la lunette. 1625 : Snell donne les lois de la réfraction et pose des bases solides pour l optique géométrique (comme Descartes en 1637 et Fermat en 1667). 1665 : Grimaldi découvre la diffraction sur le bord des ombres. 1675 : Römer donne une valeur finie à la vitesse de la lumière en observant les satellites galiléens de Jupiter. 1678 : pour Huyghens, la lumière est une sorte d ébranlement qui se propage en cercles à partir de la source, et qui est capable de se renforcer par addition. Il explique la propagation rectiligne, et démontre les lois de la réflexion et de la réfraction. 1704 : Newton explique les couleurs et pose des questions sur une nature corpusculaire de la lumière. 1800 : Young découvre le phénomène d interférences : «de la lumière plus de la lumière peut donner de l obscurité». Pour lui, la lumière monochromatique est une onde sinusoïdale. 1814 1820 : Fresnel donne une théorie mathématique de la diffraction et des interférences. 1840 1860 : naissance de l électromagnétisme avec Faraday et Maxwell. 1900 : Planck découvre la répartition spectrale du rayonnement thermique. Grâce à Einstein notamment, la mécanique quantique se développe 2005 : tous les phénomènes lumineux observables sont expliqués Il ne reste qu à se donner de nouveaux challenges! 1.1 Lumière monochromatique et lumière polychromatique 1

En 1665, Isaac Newton a fait l une des expériences les plus importantes en Physique, en mesurant l action d un prisme sur la lumière du Soleil. Transposons un peu cette expérience. Observer : dispersion.swf Un faisceau laser est seulement dévié par le prisme, sans changement de couleur : il s agit simplement d un phénomène de réfraction. Un faisceau de lumière blanche est non seulement dévié, mais aussi décomposé en différentes lumières colorées. Une lumière non décomposable par un prisme (ou tout système dispersif, comme le réseau) est une lumière dite monochromatique. Une lumière décomposable par un prisme est une lumière polychromatique. 1.2 La diffraction de la lumière : une preuve expérimentale Le phénomène de diffraction a été observé lors de notre étude des ondes mécaniques progressives. Par exemple, ce phénomène peut être observé sur l eau. Faisons une expérience similaire sur la lumière d un faisceau laser. On observe une tache lumineuse centrale, étalée dans une direction perpendiculaire à la fente. De part et d autre de cette tache, symétriquement, on observe d autres taches, moins lumineuses et plus petites. 2

Chose très étrange, des zones sombres (non lumineuses) s intercalent entre des franges lumineuses La lumière contient-elle de l ombre?? On obtient exactement la même figure si l on remplace la fente par un fil opaque de même diamètre (très fin, donc). Profil de l intensité lumineuse de la figure de diffraction d un laser par une fente fine On peut réitérer l expérience avec d autres formes d obstacles : un trou, ou bien encore un tissu serré (type tergal). Figure observée sur l écran avec un trou : la tache lumineuse centrale est circulaire, plus large que le faisceau émis, et entourée de quelques anneaux moins lumineux. Figure observée avec du tergal (mailles rectangulaires). Figure observée avec de la lumière blanche sur du tergal : des irisations apparaissent, la lumière est donc en plus décomposée. Lorsqu un faisceau rencontre une ouverture qui n est pas très étroite, le modèle de la propagation rectiligne suffit pour expliquer le résultat : si le faisceau est simplement diaphragmé, on n observe pas de figure particulière. Lorsque l ouverture est suffisamment petite, le modèle de la propagation rectiligne ne suffit pas pour expliquer la figure observée : il se produit une diffraction de la lumière. Ces expériences montrent que, lorsque la lumière rencontre des obstacles ou des ouvertures de petite dimension (de l ordre du dixième de millimètre ou inférieures), il se produit un étalement des directions de propagation de la lumière ; ce phénomène s accentue lorsque les dimensions de l obstacle ou de l ouverture diminuent. Il y a de fortes analogies avec la diffraction des ondes mécaniques. A la rencontre d un obstacle ou d une ouverture, les ondes lumineuses monochromatiques sont diffractées : il y a étalement des directions de propagation sans changement de fréquence ni de célérité. 3

1.3 Conclusion : la lumière est une onde! L existence du phénomène de diffraction de la lumière montre que la lumière est de nature ondulatoire. Les rayons lumineux constituent dans ce modèle les directions de propagation de la lumière. Une question (pas si) bête : pourquoi les étoiles ont-elles des branches? Il existe d autres analogies avec les ondes mécaniques qui confirment la nature ondulatoire de la lumière : réfraction, décomposition ou encore interférences. Cependant, la lumière se propageant dans le vide, ce n est pas une onde mécanique : la lumière fait partie d un type d ondes regroupées sous le nom d ondes électromagnétiques. NB : expérience des trous d Young : le phénomène d interférences. A gauche, le principe de l expérience, et à droite, ce que l on observe réellement à l écran Troublant, non? Comme le phénomène de diffraction, où la lumière semble cesser de se propager en ligne droite, celui d interférences se caractérise par un écart à un résultat attendu. 2 Propriétés des ondes lumineuses 2.1 Couleur, fréquence et longueur d onde dans le vide La lumière se propage dans le vide avec la célérité c = 299 792 458 m.s 1 3,00.10 8 m.s 1 Dans le modèle ondulatoire de la lumière, on associe à toute lumière monochromatique une onde sinusoïdale appelée radiation électromagnétique, de fréquence déterminée notée ν (le «nu» grec, qui se distingue du f utilisé pour les ondes mécaniques). Cependant, les physiciens préfèrent le plus souvent utiliser sa longueur d onde dans le vide notée λ o et donnée par c o où λ o est donnée en mètres (m) si c est exprimée en mètres par seconde (m.s 1 ) et ν en hertz (Hz). La couleur d une lumière monochromatique est définie de façon équivalente par la fréquence ν ou sa longueur d onde dans le vide λ o de la radiation qui lui est associée ; ces grandeurs sont des propriétés intrinsèques de la lumière en particulier, elles ne dépendent pas du milieu de propagation. Dans ce cadre, une lumière polychromatique s interprète comme étant la superposition d ondes lumineuses monochromatiques. 4

Les longueurs d onde dans le vide des radiations du spectre visible sont comprises approximativement entre 400 nm (radiations violettes) et 800 nm (radiations rouges). Il existe d autres radiations lumineuses, invisibles : c est le cas des radiations infrarouges (λ o > 800 nm) ou encore des radiations ultraviolettes (λ o < 400 nm). Couleur et longueur d onde dans le vide des radiations monochromatiques du spectre visible. 2.2 Longueur d onde et diffraction par une fente Dans le cas d une fente de largeur a (ou d un fil de diamètre a), la figure de diffraction s étale dans une direction perpendiculaire à la fente (ou au fil). L écart angulaire θ entre les directions passant par le centre de la tache centrale et la première extinction est donné par la relation a où λ et a ayant même dimension, θ est donné en radians (unité angulaire sans dimension elle aussi, contrairement au degré). La mesure de l s entend entre les milieux des deux premières extinctions, de part et d autre de la tache centrale Remarque : la diffraction des ondes lumineuses reste visible même si les dimensions des obstacles sont largement supérieures aux longueurs d onde : c est une différence de taille avec les ondes mécaniques. Rappel : définition des mesures d angle. Le quadrant correspond au quart de tour : on calcule l angle en quadrants en faisant le rapport entre la longueur de l arc intercepté et celle du cercle (ou des surfaces couvertes) qui donne le nombre de tour et en multipliant le tout par 4 (puisque le quadrant représente ¼ de tour). Le grade (1 grad) est la partie centésimale du quadrant. 5

Le degré (1 ) est la 90 ème partie du quadrant : un tour correspond alors à 360 degrés. La minute d arc (1 ) est la 60 ème partie du degré, la seconde d arc (1 ) la 60 ème partie de la minute (soit la 3 600 ème partie du degré). Le radian (rad), unité du système international, se définit comme le rapport de la longueur de l arc intercepté par l angle et la circonférence du cercle : 1 tour correspond à 2π rad. La dénivellation mesure un angle correspondant à la longueur (en mètres) parcourue sur le trajet (montée ou descente) lorsque l on parcourt 100 m selon l horizontale : elle s exprime donc en %. 3 Propagation de la lumière dans les milieux transparents 3.1 Fréquence et changement de milieu La couleur d une radiation lumineuse comme la fréquence qui la caractérise ne dépend pas du milieu de propagation et n est pas modifiée par changement de milieu transparent. Attention : la longueur d onde, elle, est modifiée par changement de milieu et ne caractérise pas la couleur de la radiation! C est la longueur d onde dans le vide qui caractérise la couleur. 3.2 Indice de réfraction La célérité v d une onde est une propriété intrinsèque du milieu dans lequel elle se propage. Introduit étrangement en classe de Seconde avec les lois de Descartes-Snell sur la réfraction de la lumière, l indice de réfraction d un milieu transparent permet de comparer la vitesse de propagation v de la lumière dans ce milieu et celle, notée c, de la lumière dans le vide. c n v C est un nombre sans dimension, toujours supérieur ou égal à 1 (la vitesse de la lumière dans le vide étant, par postulat de la relativité d Einstein, une limite supérieure infranchissable). Exemple : pour l air, on admet généralement que n air 1. Pour l eau, en revanche, n eau = 1,33 : cela signifie que dans l eau, la lumière se propage à 2,00.10 8 m.s 1, soit 2/3 c. Les verres ont des indices proches de 1,5 ; le diamant a un indice très élevé, supérieur à 2. 3.3 Dispersion de la lumière Dans le modèle ondulatoire de la lumière, la décomposition de la lumière par un prisme s interprète de la façon suivante. Les milieux transparents sont généralement dispersifs : la célérité v d une radiation dépend de sa fréquence ν il en est de même pour l indice de réfraction du milieu. Chaque radiation peut donc subir une déviation différente. La traversée du prisme représente des changements de milieu transparent pour la lumière blanche ; ces changements de 6

direction se font selon les lois de réfraction de Descartes-Snell, dont la 2 ème dépend de l indice des milieux considérés à l interface n 1 sin i 1 = n 2 sin i 2 Si, par exemple, le milieu 1 est le verre et le milieu 2 l air, il faudra tenir compte du caractère dispersif du verre dans la valeur de n1, qui dépend de la fréquence de l onde lumineuse considérée. Pour un prisme en plexiglas, n(violet) = 1,528 n(rouge) = 1,511 ce qui explique que le violet soit plus dévié que le rouge! Remarque : on peut modéliser simplement la dépendance n( ) par la relation de Cauchy (cf. figure précédente), n( ) = n o + B ², où n o et B sont des coefficients fonction du matériau. 7