LES NAVETTES & LA PHOSPHORYLATION OXYDATIVE LA RESPIRATION CELLULAIRE AÉROBIEA

Documents pareils
1. Principes de biochimie générale. A. Bioénergétique et dynamique. a) Intro: Les mitochondries passent leur temps à fabriquer de l énergie.

Respiration Mitochondriale

Utilisation des substrats énergétiques

1 ère partie : Enzymologie et Métabolisme

Partie 1. Addition nucléophile suivie d élimination (A N + E) 1.1. Réactivité électrophile des acides carboxyliques et groupes dérivés

INTRODUCTION À L'ENZYMOLOGIE

Les plantes et la lumière

Production d hydrogène par électrolyse de l eau sur membrane acide

Méthodes de mesure des activités enzymatiques

AGREGATION DE BIOCHIMIE GENIE BIOLOGIQUE

Molécules et Liaison chimique

Transport des gaz dans le sang

Transport des gaz dans le sang

- pellicule de fruits qui a un rôle de prévention contre l'évaporation, le développement de moisissures et l'infection par des parasites

EXERCICES SUPPLÉMENTAIRES

REACTIONS D OXYDATION ET DE REDUCTION

K W = [H 3 O + ] [OH - ] = = K a K b à 25 C. [H 3 O + ] = [OH - ] = 10-7 M Solution neutre. [H 3 O + ] > [OH - ] Solution acide

TD de Biochimie 4 : Coloration.

École secondaire Mont-Bleu Biologie générale

Effets électroniques-acidité/basicité

1 ère partie : tous CAP sauf hôtellerie et alimentation CHIMIE ETRE CAPABLE DE. PROGRAMME - Atomes : structure, étude de quelques exemples.

Présentation générale des principales sources d énergies fossiles.

EXERCICE II. SYNTHÈSE D UN ANESTHÉSIQUE : LA BENZOCAÏNE (9 points)

ULBI 101 Biologie Cellulaire L1. Le Système Membranaire Interne

Lycée français La Pérouse TS. L énergie nucléaire CH P6. Exos BAC

Le Test d effort. A partir d un certain âge il est conseillé de faire un test tous les 3 ou quatre ans.

Intoxications collectives en entreprise après incendies de locaux Proposition d une conduite à tenir

SOLUTIONS TECHNOLOGIQUES D AVENIR

présentée à l Institut National des Sciences Appliquées de Toulouse par Marlène COT

ACIDES BASES. Chap.5 SPIESS

THEME 2. LE SPORT CHAP 1. MESURER LA MATIERE: LA MOLE

Biochimie I. Extraction et quantification de l hexokinase dans Saccharomyces cerevisiae 1. Assistants : Tatjana Schwabe Marcy Taylor Gisèle Dewhurst

CORRIGE. CHAP 04-ACT PB/DOC Electrolyse de l eau 1/12 1. ALIMENTATION ELECTRIQUE D'UNE NAVETTE SPATIALE

BASES DE L ENTRAINEMENT PHYSIQUE EN PLONGEE

Compétence 3-1 S EXPRIMER A L ECRIT Fiche professeur

Exemple de cahier de laboratoire : cas du sujet 2014

C. Magdo, Altis Semiconductor (Corbeil-Essonne) > NOTE D APPLICATION N 2

Les Énergies Capter et Stocker le Carbone «C.C.S»

CENTRE INTERNATIONAL D ETUDES SUPERIEURES EN SCIENCES AGRONOMIQUES MONTPELLIER SUPAGRO THESE. Pour obtenir le grade de

Compléments - Chapitre 5 Spectroscopie

5.5.5 Exemple d un essai immunologique

TP N 3 La composition chimique du vivant

Chapitre 10 : Radioactivité et réactions nucléaires (chapitre 11 du livre)

ANALYSE SPECTRALE. monochromateur

LES BASES PHYSIOLOGIQUES DE L EXERCICE MUSCULAIRE

ne définition de l arbre.

La reconnaissance moléculaire: la base du design rationnel Modélisation moléculaire: Introduction Hiver 2006

Chapitre II La régulation de la glycémie

L'ÉNERGIE ET LA MATIÈRE PETITE EXPLORATION DU MONDE DE LA PHYSIQUE

Physique Chimie. Utiliser les langages scientifiques à l écrit et à l oral pour interpréter les formules chimiques

LA A RESPIRATION CELLULAIRE

La vie des étoiles. La vie des étoiles. Mardi 7 août

Qu'est-ce que la biométhanisation?

I. Introduction: L énergie consommée par les appareils de nos foyers est sous forme d énergie électrique, facilement transportable.

2 C est quoi la chimie?

Concours du second degré Rapport de jury. Session 2013 CERTIFICAT D'APTITUDE AU PROFESSORAT DE L'ENSEIGNEMENT TECHNIQUE (CAPET)

Notions de Chimie Générale - 4. Sommaire

Interactions des rayonnements avec la matière

VARIATIONS PHOTO-INDUITES DE LA FLUORESCENCE DU NADPH CHLOROPLASTIQUE

Lorsque l'on étudie les sciences de la nature, deux grands axes de raisonnement

L ÉNERGIE C EST QUOI?

Synthèse et propriétés des savons.

Exercices sur le thème II : Les savons

Annales de Biologie Cellulaire QCM (niveau SVT 1 er année)

Biologie Appliquée. Dosages Immunologiques TD9 Mai Stéphanie Sigaut INSERM U1141

A retenir : A Z m n. m noyau MASSE ET ÉNERGIE RÉACTIONS NUCLÉAIRES I) EQUIVALENCE MASSE-ÉNERGIE

ANTICORPS POLYCLONAUX ANTI IMMUNOGLOBULINES

Partie Observer : Ondes et matière CHAP 04-ACT/DOC Analyse spectrale : Spectroscopies IR et RMN

Chapitre 11: Réactions nucléaires, radioactivité et fission

TS1 TS2 02/02/2010 Enseignement obligatoire. DST N 4 - Durée 3h30 - Calculatrice autorisée

TS 31 ATTAQUE DE FOURMIS!

Enseignement secondaire

4 ème PHYSIQUE-CHIMIE TRIMESTRE 1. Sylvie LAMY Agrégée de Mathématiques Diplômée de l École Polytechnique. PROGRAMME 2008 (v2.4)

Formavie Différentes versions du format PDB Les champs dans les fichiers PDB Le champ «ATOM» Limites du format PDB...

BTS BAT 1 Notions élémentaires de chimie 1

AIDE-MÉMOIRE LA THERMOCHIMIE TABLE DES MATIERES

Chapitre 02. La lumière des étoiles. Exercices :

Application à l astrophysique ACTIVITE

Sport et Me decine - Enseignement e me anne e.

Commentaires sur les épreuves de Sciences de la Vie et de la Terre

Chap 1: Toujours plus vite... Introduction: Comment déterminer la vitesse d une voiture?

CHAPITRE VI : HYBRIDATION GEOMETRIE DES MOLECULES

Chapitre n 6 MASSE ET ÉNERGIE DES NOYAUX

8/10/10. Les réactions nucléaires

Chapitre 7 : Structure de la cellule Le noyau cellulaire

carburant au soleil et à l'eau Premiers essais d'une voiture s I.

Les biopiles enzymatiques pour produire de l électricité

Atelier : L énergie nucléaire en Astrophysique

Animations. Liste des 114 animations et 145 vidéos présentes dans la Banque de Ressources Physique Chimie Lycée. Physique Chimie Seconde

LABORATOIRES DE CHIMIE Techniques de dosage

Energie nucléaire. Quelques éléments de physique

BACCALAURÉAT GÉNÉRAL PHYSIQUE-CHIMIE

La voiture électrique. Cliquez pour modifier le style des sous-titres du masque

C3. Produire de l électricité

BAC BLANC SCIENCES PHYSIQUES. Durée : 3 heures 30

Conditions de culture Consommation d O 2 (nmoles O 2 /min)

LES PNEUS SONT-ILS DANGEREUX POUR LA SANTÉ ET L ENVIRONNEMENT? Les pneus sont dangereux dans des piles, pas dans des Earthships.

La gravure. *lagravureparvoiehumide *lagravuresèche

A B C Eau Eau savonneuse Eau + détergent

Transcription:

LES NAVETTES & LA PHOSPHORYLATION OXYDATIVE LA RESPIRATION CELLULAIRE AÉROBIEA

La respiration cellulaire aérobie a comprend 3 stades métaboliques: 1. La glycolyse CYTOSOL 2. Le cycle de Krebs MATRICE MITOCHONDRIALE 3. La chaîne de transport d électrons et phosphorylation oxydative MEMBRANE INTERNE DE LA MITOCHONDRIE LA RESPIRATION CELLULAIRE AÉROBIEA

Glycolyse Phase d investissement d d éd énergie Le glucose entre dans la cellule par une perméase. Deux phosphorylation se succèdent. La molécule résultante est scindée en 2. On obtient 2 molécules de phosphoglycéraldéhyde (PGAL) qui vont prendre part à la deuxième phase. Phase de libération d éd énergie Il y a une réaction d oxydation qui réduit le NAD + en NADH + H + (x2). On attache du P i au PGAL. Il y a création de 2 molécules d ATP. On réarrange les électrons du substrat. Il y a création de 2 autres molécules d ATP.

Bilan total de la glycolyse Glucose 2 PGAL 2 Pyruvate + 2 ATP + 2 NADH + 2 H + LA RESPIRATION CELLULAIRE AÉROBIEA

DECARBOXYLATION OXYDATIVE Le pyruvate entre dans la mitochondrie grâce à une perméase Les groupements carboxyles des pyruvates sont éliminés et libérés sous forme de CO 2. Les fragments restants sont oxydés et le NAD + est réduit en NADH + H + (x2). La coenzyme A s unit avec les molécules formées. On obtient 2 molécules d acétyl-coa qui peuvent entrer dans le cycle de Krebs.

Cycle de Krebs L acétyl-coa entre dans le cycle en se liant à l oxaloacétate pour former du citrate. Il y a 3 oxydations qui réduisent le NAD+ en NADH + H+ (x2). Il y a 1 oxydation qui réduit le FAD en FADH2 (x2). Il y a création de 2 ATP. Bilan total du cycle de Krebs 2Pyruvates 2acétyl-CoA + 2oxaloacétates 2citrates 2oxaloacétates + 2 ATP + 8 NADH + 8 H + + 2 FADH 2 + 6 CO 2

LA RESPIRATION CELLULAIRE AÉROBIEA

Chaîne de transport d éd électrons et phosphorylation oxydative La majeure partie de l énergie extraite des nutriments est libéré par le NADH + H + et la FADH 2. le NADH + H + et la FADH 2 relient la glycolyse et le cycle de Krebs à la machinerie de la phosphorylation oxydative, qui alimente la synthèse de l ATP avec l énergie libérée par la chaîne de transport d électrons.

L'oxydation d'une substance organique consiste dans la plupart des cas en une perte d'hydrogène (déshydrogénation). Un atome d'hydrogène (H) extrait d'une molécule organique peut être imaginé comme décomposé en un ion hydrogène, un proton (H + ) et un électron (e - ). C'est pour cette raison qu'une molécule qui perd de l'hydrogène perd un électron, et donc s'oxyde. Au cours de la respiration, l'hydrogène finit toujours par se lier à l'oxygène pour former de l'eau. NADH 2 ou FADH 2 sont des donneurs d'hydrogènes. L'hydrogène cédé passe avec son électron le long d'une chaîne d'au moins cinq composés, les transporteurs d'électrons, à travers une succession de réactions d'oxydoréduction, avant de se lier à l'oxygène. Chacune de ces réactions de déshydrogénation libère une certaine quantité d'énergie, qui est utilisée pour former l'atp, une molécule qui fonctionne comme une réserve d'énergie.

NADH + ½ O 2 + H + NAD + + H 2 O NADH et FADH 2 formés au cours de la glycolyse et le cycle de Krebs sont des molécules «riches en énergie» car elles possèdent une paire d électrons à haut potentiel de transfert. Quand ces électrons sont donnés à une molécule d oxygène, une grande quantité d énergie libre est libérée. L énergie libre de la réoxydation des coenzymes est utilisable pour créer de l ATP.

Le NADH (ou le FADH 2 ) cède ses électrons riches en énergie à un transporteur d'électrons de la membrane interne de la mitochondrie. Les électrons passent d'un transporteur à l'autre. À chaque transfert, ils perdent de l'énergie. L'oxygène accepte les électrons à la fin de la chaîne et se combine aux 2 H + pour former de l'eau. Des atomes d hydrogènes sont arrachés à NADH, H+ ou (FADH 2 ). Ces atomes pénètrent dans la chaîne respiratoire où ils sont dissociés en protons et électrons. Des coenzymes à l oxygène, les protons et électrons sont transportés à travers une chaîne d oxydoréduction constituée par les composants de la chaîne respiratoire. Les électrons sont transférés via le Coenzyme Q et une série d enzymes, les cytochromes, jusqu à l oxygène moléculaire. Ils réagissent avec l oxygène et les protons pour former de l eau. Les protons passent de la membrane interne à l espace intermembranaire via les complexes 1, 3 et 4 fonctionnant comme des pompes.

La CRM et phosphorylation oxydative Navette Glycérol 3P Gly3 P DHAP 4H+ Espace IntermbR 4H+ 2H+ Cyt c (Fe2+) FeS FMN FADH2 FeS FeS FADH2 FeS FADH2 CoE Q CoE QH2 Cyt C1 Cyt b FeS Cyt c (Fe3+) Cyt a Cu2+ Cyt a3 Cu2+ α β NADH+H+ NAD+ Succinate Fumarate AcylcoA Δacyl coa 2H+ + ½O2 + 2e H2O ADP + Pi H+ C1 C2 Acyl CoA DH C3 C4 C5 ATP Matrice mito H+,H+ H +,H + FMNH 2 2Fe 3+ 2Fe 2+ Q FMN QH 2 QH 2 QH 2 NADH+H + NAD + 4H + COMPLEXE I

H +,H + H +,H + cytb e-,e- L H+ e-,e-,h+ e-,e- QH 2 cytc 1 cytc QH QH 2 2 cytb H QH 2 FeS COMPLEXE III H +,H + cytb L H+,H+ cytc cytc cytc cytc cytc cytc cytc 1 QH 2 cytb H FeS H+,H+ COMPLEXE III

cytc cytc cytc H + H + Cyta cytb H Cyta 3 H + H + 1/2 O 2 H 2 O 4H+ H + H + COMPLEXE IV H+ H+ H+ H+ H+ H + H + H+ H+ NADH + H + 1/2 O 2 I III IV H +

3H + F 0 F 1 matrice ADP Pi ATP L'énergie provenant des électrons transférés sert à "pomper" des ions H + dans l'espace intermembranaire de la mitochondrie (entre la membrane externe et l'interne)

Le ph dans l espace intermembranaire est de 7, et celui dans la matrice mitochondriale est de 8. Formation d'un gradient électrochimique Accumulation d'ions H + dans l'espace intermembranaire Gradient de concentration : l'espace intermembranaire devient plus concentré en ions H + (plus acide). Gradient électrique : un côté de la membrane devient positif (accumulation d'ions +) et l'autre, négatif (déficit en ions + par rapport aux ions -).

Gradient électrochimique ==> les ions H + ont tendance à diffuser vers la matrice (= force protomotrice). Ils le font en passant par des ATP synthétases.

Le réel potentiel énergétique pour la synthèse d'atp provient de la FORCE PROTON MOTRICE C'est le retour des protons vers la matrice, qui est le moteur de la machinerie de la synthèse de l'atp. Il faut 3 protons pour synthétiser une molécule d'atp et lors de ce transfert : 10 protons sont expulsés pour deux électrons fournis par le (NADH + H+) réoxydé 6 protons sont expulsés pour deux électrons fournis par le (FADH2) réoxydé.

Chaque NADH + H + libère assez d énergie pour la formation de 3 ATP. Chaque FADH 2 libère assez d énergie pour la formation de 2 ATP. La CRM et phosphorylation oxydative But: - Réoxydation de NADH+ et FADH2 - Utilisation du pouvoir réducteur de ces co-enzymes pour la synthèse d ATP La synthèse d ATP se fait grâce: - Force proton motrice du au passage des protons à travers F1 - Gradient de ph ( ph(espace intermembranaire) < ph(matrice) ) - Potentiel électrique (accumulation de charges + dans l espace intermembranaire) La vitesse de phosphorylation oxydative dépend: - De l apport en NADH - De l apport en oxygène

Réoxydation des NADH,H+ cytosoliques / Régénération du pouvoir oxydant de la glycolyse : les navettes Le NADH,H+ a deux origines : cytosolique : Il est formé essentiellement dans la réaction d'oxydoréduction de la glycolyse, par consommation de NAD+ (pouvoir oxydant de la glycolyse). Mitochondriale : Il est formé dans les réactions d'oxydation du pyruvate, des acides gras et du cycle de Krebs. Le NADH,H+ formé dans ces conditions est déjà à l intérieur de la mitochondrie et sa réoxydation est assurée par le transport des électrons jusqu à l oxygène par la chaîne respiratoire. La réoxydation de NADH,H+ en NAD+, indispensable au maintien de l activitl activité glycolytique, n est n pas assurée dans le cytosol des organismes aérobies a et n est n possible que si ses électrons sont transportés s dans la mitochondrie et jusqu à l oxygène. La difficulté vient du fait que le NADH,H+ cytosolique ne peut pas traverser la membrane mitochondriale interne qui ne dispose pas de transporteur pour les coenzymes nicotiniques (NADH,H+ et NAD+). Pour contourner ces difficultés, la cellule a développd veloppé des navettes qui assurent le transport des électrons et des protons du cytosol dans la matrice à travers la membrane mitochondriale.

Le principe est simple. La navette est assurée par des composés qui peuvent être transportés, sous forme oxydée ou réduite, à travers la membrane mitochondriale interne grâce à des transporteurs spécifiques. Elle utilise l interconversion des fonctions cétone c et alcool secondaire. Le composé transporteur oxyde, dans le cytosol, le NADH,H+ en récupérant les électrons et les protons. Il traverse la membrane interne et restitue, en se réoxydant, les électrons et les protons à NAD+ ou FAD mitochondrial. Il retourne ensuite dans le cytosol.

Navette 3-P P Glycérol/3 rol/3-p dihydroxyacétone La navette utilise l interconversion du 3-P dihydroxyacétone et du 3-P glycérol. La réaction est catalysée par la 3-P glycérol déshydrogénase à NADH,H + /NAD + dans le cytoplasme et à FADH 2 /FAD dans la matrice mitochondriale. Deux glycérol phosphate déshydrogénases différentes participent à cette navette : une, cytosolique, coenzyme NAD + ; l'autre, mitochondriale, située sur la face externe de la membrane interne, coenzyme FAD. Les équivalents réducteurs du NADH cytosolique se retrouvent par le jeu de ces deux enzymes au niveau du FADH 2 dans la membrane interne mitochondriale. Puis, ces deux électrons sont transférés, via l'ubiquinone, au complexe III de la chaîne respiratoire. Donc, la réoxydation du NADH cytosolique par cette navette a un coût énergétique ; elle ne permet la synthèse que de 2 ATP au lieu des 3 produits par la réoxydation d'un NADH mitochondrial.

Navette pour le NADH

Navette Aspartate/malate La navette est plus compliquée car elle suppose d abord la formation de l oxaloacétate par une réaction de transamination entre l aspartate et l alphacétoglutarate. L oxaloacétate formé ne dispose pas de transporteur. Il est réduit en malate par les électrons et les protons de NADH,H+ cytosolique. Le malate, l aspartate et l alpha-cétoglutarate sont capables de traverser la membrane mitochondriale interne. L interconversion du malate et de l oxaloacétate est catalysée par la malate déshydrogénase.

Malate-Aspartate Shuttle (liver, kidney, heart) α-ketoglutarate Glutamate 52

Summary Glucose ATP Fig. 16-9

A RETENIR Le métabolisme est l'ensemble des réactions chimiques de la cellule, il est composé du catabolisme (dégradations) et de l'anabolisme (synthèses). La glycolyse est la transformation du glucose en deux molécules d'acide pyruvique, elle se déroule dans le cytoplasme. L'acide pyruvique est transformé en acétylcoenzyme A, qui sera totalement dégradé dans la matrice de la mitochondrie. La chaîne respiratoire oxyde les coenzymes réduits au cours des réactions précédentes, et permet à l'atpase de produire de l'atp, au niveau des crêtes mitochondriales. Le bilan global de la combustion d'une molécule de glucose est la production de 36 ou 38 molécules d'atp selon les navettes et de chaleur. F I N