III CRITERES POUR CHOISIR UN COUPLE DE FLUOROPHORES



Documents pareils
Fluorescent ou phosphorescent?

ANALYSE SPECTRALE. monochromateur

Nouvelles techniques d imagerie laser

Chapitre II PHÉNOMÈNES RADIATIFS: PROPRIÉTÉS D EMISSION. f AB = mc 2 e 2. β 1 k(υ)dυ N

Application à l astrophysique ACTIVITE

pka D UN INDICATEUR COLORE

Mesures de PAR. Densité de flux de photons utiles pour la photosynthèse

Spectrophotométrie - Dilution 1 Dilution et facteur de dilution. 1.1 Mode opératoire :

TP 2: LES SPECTRES, MESSAGES DE LA LUMIERE

Mise en pratique : Etude de spectres

Microscopie de fluorescence Etat de l art

Spectrophotomètre double faisceau modèle 6800

Chapitre 02. La lumière des étoiles. Exercices :

Elvire Guiot. To cite this version: HAL Id: tel

Objectifs pédagogiques : spectrophotomètre Décrire les procédures d entretien d un spectrophotomètre Savoir changer l ampoule d un

PRINCIPE MICROSCOPIE CONFOCALE

TP 03 B : Mesure d une vitesse par effet Doppler

La fluorescence, les fluorophores

Séquence 9. Étudiez le chapitre 11 de physique des «Notions fondamentales» : Physique : Dispersion de la lumière

FORMATION ASSURANCE QUALITE ET CONTROLES DES MEDICAMENTS QUALIFICATION DES EQUIPEMENTS EXEMPLE : SPECTROPHOTOMETRE UV/VISIBLE

TEMPÉRATURE DE SURFACE D'UNE ÉTOILE

La spectrophotométrie

PHYSIQUE-CHIMIE. Partie I - Spectrophotomètre à réseau

101 Adoptée : 12 mai 1981

Niveau 2 nde THEME : L UNIVERS. Programme : BO spécial n 4 du 29/04/10 L UNIVERS

Sujet. calculatrice: autorisée durée: 4 heures

EXERCICE 2 : SUIVI CINETIQUE D UNE TRANSFORMATION PAR SPECTROPHOTOMETRIE (6 points)

Perrothon Sandrine UV Visible. Spectrophotométrie d'absorption moléculaire Étude et dosage de la vitamine B 6

Correction ex feuille Etoiles-Spectres.

Dr E. CHEVRET UE Aperçu général sur l architecture et les fonctions cellulaires

Partie Observer : Ondes et matière CHAP 04-ACT/DOC Analyse spectrale : Spectroscopies IR et RMN

TP 3 diffusion à travers une membrane

RDP : Voir ou conduire

SUIVI CINETIQUE PAR SPECTROPHOTOMETRIE (CORRECTION)

Spectrophotomètres. Spectrophotomètres modèle Les spectrophotomètres Série 67 : 3 modèles uniques

Une nouvelle technique d'analyse : La spectrophotométrie

Spectrophotométrie. Spectrophotomètre CCD2. Réf : Version 1.0. Français p 2. Version : 4105

Présentation du programme. de physique-chimie. de Terminale S. applicable en septembre 2012

A chaque couleur dans l'air correspond une longueur d'onde.

SPECTROSCOPIE D ABSORPTION DANS L UV- VISIBLE

Comprendre l Univers grâce aux messages de la lumière

Activité 1 : Rayonnements et absorption par l'atmosphère - Correction

(aq) sont colorées et donnent à la solution cette teinte violette, assimilable au magenta.»

Visite à l ICV. En 2009, la création du GIE ICV-VVS permet de franchir un cap en regroupant toutes les ressources disponibles aux filiales ICV et VVS.

EFFET DOPPLER EXOPLANETES ET SMARTPHONES.

Un spectromètre à fibre plus précis, plus résistant, plus pratique Concept et logiciel innovants

Les impulsions laser sont passées en quarante ans de la

Résonance Magnétique Nucléaire : RMN

Si la source se rapproche alors v<0 Donc λ- λo <0. La longueur d onde perçue est donc plus petite que si la source était immobile

Interactions des rayonnements avec la matière

Chapitre 7 Les solutions colorées

GAMME UVILINE 9100 & 9400

TP : Suivi d'une réaction par spectrophotométrie

Indicateur d'unité Voyant Marche/Arrêt

Microscopie Multiphotonique

Microscopie de fluorescence

GAMME UviLine 9100 & 9400

D ETECTEURS L UXMETRE SUR TIGE C OMPTEUR DE FRANGES A FIBRE OPTIQUE. Détecteurs

Rayonnements dans l univers

Microscopie de fluorescence

INTRODUCTION À LA SPECTROSCOPIE

LE SPECTRE D ABSORPTION DES PIGMENTS CHLOROPHYLLIENS

ÉPREUVE COMMUNE DE TIPE Partie D. TITRE : Comment s affranchir de la limite de la diffraction en microscopie optique?

EXERCİCE N 1 : «Synthèse de l éthanamide» (7 pts)

UviLight XTW Spectrophotomètre UV-Vis

LABORATOIRES DE CHIMIE Techniques de dosage

Biologie Appliquée. Dosages Immunologiques TD9 Mai Stéphanie Sigaut INSERM U1141

LE COSMODETECTEUR : UN EXEMPLE DE CHAÎNE DE MESURE

Microscopie Confocale. Principes de base & Applications en Biologie Cellulaire

Sensibilisation à la Sécurité LASER. Aspet, le 26/06/2013

TPG 12 - Spectrophotométrie

Caractérisation de défauts par Magnétoscopie, Ressuage, Courants de Foucault

DIFFRACTion des ondes

NUAGES INTERSTELLAIRES ET NEBULEUSES

Module HVAC - fonctionnalités

ANTICORPS POLYCLONAUX ANTI IMMUNOGLOBULINES

Fiche 19 La couleur des haricots verts et cuisson

Laboratoire de Photophysique et de Photochimie Supra- et Macromoléculaires (UMR 8531)

Chapitre 6 La lumière des étoiles Physique

SESSION 2013 ÉPREUVE À OPTION. (durée : 4 heures coefficient : 6 note éliminatoire 4 sur 20) CHIMIE

Meine Flüssigkeit ist gefärbt*, comme disaient August Beer ( ) et Johann Heinrich Lambert ( )

TRAVAUX PRATIQUESDE BIOCHIMIE L1

Fluorescence de la substance dentaire dure et des matériaux d obturation

TP Détection d intrusion Sommaire

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. - Section Orthoptiste / stage i-prépa intensif -

β-galactosidase A.2.1) à 37 C, en tampon phosphate de sodium 0,1 mol/l ph 7 plus 2-mercaptoéthanol 1 mmol/l et MgCl 2 1 mmol/l (tampon P)

Observer TP Ondes CELERITE DES ONDES SONORES

Chapitre 10 : Radioactivité et réactions nucléaires (chapitre 11 du livre)

Les rayons X. Olivier Ernst

LAMPES FLUORESCENTES BASSE CONSOMMATION A CATHODE FROIDE CCFL

Professeur Eva PEBAY-PEYROULA

1STI2D - Les ondes au service de la santé

Étude et modélisation des étoiles

1 Culture Cellulaire Microplaques 2 HTS- 3 Immunologie/ HLA 4 Microbiologie/ Bactériologie Containers 5 Tubes/ 6 Pipetage

Synthèse de sondes fluorescentes photo-activables pour le marquage et l'étude de la dynamique de protéines cellulaires.

Rapport. Mesures de champ de très basses fréquences à proximité d antennes de stations de base GSM et UMTS

K W = [H 3 O + ] [OH - ] = = K a K b à 25 C. [H 3 O + ] = [OH - ] = 10-7 M Solution neutre. [H 3 O + ] > [OH - ] Solution acide

- MANIP 2 - APPLICATION À LA MESURE DE LA VITESSE DE LA LUMIÈRE

PRISE EN MAIN DU SPECTROPHOTOMETRE UV-VISIBLE SHIMADZU U.V. 240

Transcription:

Page : 17/ 77 III CRITERES POUR CHOISIR UN COUPLE DE FLUOROPHORES Le choix d un couple donneur-accepteur dépend de la technique utilisée (FRET, TR- FRET, BRET, etc.) et des molécules disponibles pour ces méthodes (protéines fluorescentes, fluorophores organiques, enzymes, etc.). Dans l exemple présenté ciaprès, deux couples de fluorophores organiques (donneur-accepteur) sont comparés sur la base de leurs propriétés optiques et physiques (photo-physiques). Pour des raisons de simplification nous avons choisi deux couples de fluorophores formés d un même accepteur () et de deux donneurs différents (Alexa488 et ). A/ QUALITES REQUISES POUR UN BON FLUOROPHORE Nous avons vu précédemment les conditions qui régissent le transfert d énergie entre deux fluorophores ainsi que certains facteurs qui modulent l efficacité du transfert d énergie. Lors du choix des fluorophores pour des expériences de RET, d autres facteurs, comme les propriétés optiques et physiques des fluorophores sont essentiels à prendre en compte. Ces propriétés vont non seulement déterminer si un RET entre les fluorophores est possible mais vont surtout influer sur la qualité des mesures de fluorescence. Un bon candidat fluorophore doit avoir : - Un coefficient d extinction molaire ε (M -1.cm -1 ) le plus élevé possible. C est la capacité d un fluorophore à absorber l énergie apportée par un photon à une longueur d onde. - Un rendement quantique (Φ) élevé. C est la capacité du fluorophore à ré-émettre sous forme de lumière, l énergie absorbée. Il est défini comme étant le rapport du nombre de photons émis sur le nombre de photons absorbés (Φ = 1 pour 100 %). - Une brillance (M -1.cm -1 ) élevée. Elle est le produit du coefficient d extinction molaire ε et du rendement quantique Φ du fluorophore. Plus un fluorophore est brillant, plus il sera facile de le détecter à de faibles concentrations dans la cellule.

Page : 18/ 77 - Une photostabilité 9 élevée avec une faible sensibilité au photo-blanchiment. Le photo-blanchiment intervient lorsqu un fluorophore perd sa capacité à fluorescer. Ceci est la conséquence de réactions chimiques intervenant entre le fluorophore et des molécules de son environnement comme l oxygène. - Un déplacement de Stokes (nm) le plus grand possible afin de s affranchir de la contamination due à la source d excitation (voir II-B et IV-D). - Une durée de vie de fluorescence élevée (valable pour certaines techniques de transfert d énergie) : la durée de vie correspond à la durée moyenne pendant laquelle un fluorophore reste à l état excité. Classiquement la durée de vie d un fluorophore est de l ordre de quelques nanosecondes. Toutefois certaines molécules ont des durées de vie beaucoup plus longues, de plusieurs microsecondes à millisecondes. Certaines techniques de transfert d énergie, qui seront décrites dans le chapitre IV, tirent profit de ces propriétés originales. Comparaison des propriétés photo-physiques de trois fluorophores Alexa488, et qui sont classiquement utilisés en biologie : ε (M -1 cm -1 ) * Φ Brillance Déplacement de Stokes Photo-stabilité (M -1.cm -1 ) (nm) Alexa488 71,000 0,92 6.5 x 10 4 30 +++ 150,000 0,04 0.6 x 10 4 13 ++ 250,000 0,28 7 x 10 4 18 + * la valeur du coefficient d extinction molaire est donnée pour le pic d absorption. Sur la base des caractéristiques décrites précédemment, les fluorophores qui présentent la plus grande brillance sont l Alexa488 et le. Toutefois, l Alexa488 présente une meilleure photo-stabilité et un déplacement de Stokes plus important que le ce qui permet de réduire les contaminations dues à la source d excitation (voir ci-après). 9 La photo-stabilité correspond au nombre d excitations que peut subir une molécule fluorescente avant de perdre ses propriétés d émission de photons de fluorescence.

Page : 19/ 77 B/ PROPRIETES REQUISES POUR UN BON COUPLE DE FLUOROPHORES Pour former un bon couple de fluorophores en RET il faut, un donneur et un accepteur d énergie avec des propriétés optiques et physiques optimales : bonne compatibilité énergétique et bonne sélectivité spectrale. Pour illustrer ces différents paramètres, les couples Alexa488- et - seront analysés et comparés. Condition 1 : comme nous l avons vu précédemment, le spectre d émission du donneur doit recouvrir au moins partiellement celui de l accepteur pour qu un transfert d énergie soit permis. Cette surface de recouvrement (ou intégrale de recouvrement J) est représentée en gris sur la Figure 11 pour les deux couples de fluorophores. Alexa488 500 600 700 Figure 11. Intégrale de recouvrement. D après la Figure 11, l intégrale de recouvrement J pour le couple - est supérieure à celle du couple Alexa488-. Cela signifie que la probabilité pour qu un transfert d énergie ait lieu avec le couple - est plus grande que pour le couple Alexa488-.

Page : 20/ 77 Condition 2 : les spectres d absorption du donneur et de l accepteur doivent être suffisamment séparés pour que l accepteur ne soit pas excité directement par la source lumineuse d excitation du donneur. Alexa488 Absorption Absorption excitation 500 600 700 excitation 800 Figure 12. La sélectivité spectrale 10 (absorption). Selon le décalage entre les spectres d absorption du donneur et de l accepteur, la source d excitation du donneur pourra aussi exciter l accepteur directement. d excitation correspond à la longueur d onde de la source lumineuse d excitation. On peut observer sur la Figure 12 que le est directement excité par la source lumineuse servant à exciter le alors que son excitation directe à la longueur d onde d excitation de l Alexa488 est négligeable. Cela a plusieurs conséquences : - D une part, si l accepteur est directement excité par la source lumineuse, il ne pourra pas, dans le même temps, être excité par le donneur via un transfert d énergie. - D autre part, la fluorescence due au RET sera «contaminé» par la fluorescence de l accepteur directement excité par la source lumineuse. 10 Le terme sélectivité spectrale (ou fuite spectrale) fait référence à la capacité de séparation des différents signaux provenant spécifiquement soit du donneur soit de l accepteur.

Page : 21/ 77 Condition 3 : l accepteur doit émettre à des longueurs d ondes où le donneur émet peu ou pas. Alexa488 Emission Emission 500 600 700 800 Figure 13. La sélectivité spectrale (émission). Selon le décalage entre les spectres d émission du donneur et de l accepteur, le signal d émission du donneur excité par la source lumineuse pourra contaminer celui de l accepteur (dû au RET) en émettant aux mêmes longueurs d ondes. La contamination du par l émission du donneur (Figure 13, zone hachurée) est plus importante que celle avec le donneur Alexa488 du fait de la plus forte proximité entre les spectres d émission du et du (Figure 13). Une petite partie du signal mesuré aux longueurs d ondes de l accepteur pourra donc avoir pour origine le fluorophore donneur lors de l utilisation du couple -. Expérimentalement la sélectivité (ou fuite) spectrale des fluorophores peut être vérifiée : 1) En excitant à la longueur d onde du donneur un échantillon ne contenant soit que le donneur soit que l accepteur et en mesurant le signal d émission à la longueur d onde de l accepteur (Figure 14A et 14B).

Page : 22/ 77 Exc. Exc. excitation émission excitation émission A Fuite spectrale du donneur = émission aux longueurs d ondes de l accepteur B Excitation directe de l accepteur à la longueur d onde du donneur Donneur seul () Accepteur seul () Figure 14. Analyse de la fuite spectrale. La mesure est effectuée à la longueur d onde d émission de l accepteur (670 nm). Si le donneur émet à la longueur d onde d émission de l accepteur et/ou que l accepteur est excité directement par la longueur d onde d excitation du donneur (535 nm), le signal de RET mesuré sera contaminé par ces signaux parasites qu il sera nécessaire de soustraire. d excitation correspond à la longueur d onde de la source lumineuse d excitation. d émission correspond aux longueurs d ondes pour lesquelles le signal est mesuré. 2) Si les contrôles qui précédent révèlent une fuite spectrale, il sera nécessaire d enlever les signaux contaminant au signal mesuré en présence du donneur et de l accepteur (Figure 15).

Page : 23/ 77 Exc. Exc. Accepteur seul Donneur seul B Excitation directe de l accepteur A Fuite spectrale du donneur C Donneur + Accepteur signal spécifique RET de C = signal total mesuré (signal A + signal B) Figure 15. Correction de la fuite spectrale. Le signal (fluorescence émise) spécifique de RET mesuré à 670 nm correspond au signal total mesuré en présence du donneur et de l accepteur auquel sont soustraits les signaux des conditions A et B. La correction de la fuite spectrale n est applicable que dans des conditions expérimentales où tous les échantillons (donneur seul, accepteur seul, donneur + accepteur) contiennent les mêmes quantités de fluorophores donneur et accepteur. Si cette condition n est pas remplie, il sera nécessaire d appliquer d autres facteurs de correction dont nous ne parlerons pas ici. Condition 4 : il est préférable que le rayon de Förster R 0 du couple de fluorophores se situe dans la gamme de distance donneur-accepteur analysée. Dans des systèmes d interactions dynamiques, la variation de l efficacité du transfert d énergie est maximale pour des distances donneur-accepteur oscillant autours du R 0 (Figure 16). Cependant, cette condition est difficile à satisfaire car la variation de

Page : 24/ 77 distance réelle entre les fluorophores est le plus souvent inconnue (voir chapitre II-C- Influence du facteur d orientation). Si la technique de RET utilisée le permet, il est souhaitable de tester différents couples de fluorophores avec des R 0 variables ou de modifier la position des fluorophores au niveau des protéines d intérêt. Dans l exemple de la Figure 16, une variation de distance de 1 nm à des effets très variables sur l efficacité du transfert d énergie selon que la distance entre les fluorophores est proche ou éloignée du R 0. 1 nm 1 nm 1 nm Efficacité de RET 0.8 0.4 0 0 2 4 R 6 8 10 0 Distance (nm) Figure 16. Impact de la distance entre les fluorophores et du rayon de Förster du couple sur l efficacité du transfert d énergie. Bilan des deux couples de fluorophores Alexa488- et - : Les deux couples de fluorophores présentés dans ce chapitre sont classiquement utilisés en biologie dans des analyses de RET. Intuitivement le couple - semble plus intéressant que le couple Alexa488- du fait de son plus important recouvrement spectral entre le spectre d émission du et le spectre d absorption du. En analysant plus en détail les caractéristiques de ces deux couples de fluorophores, il apparait pourtant que leurs rayons de Förster (R 0 ) sont sensiblement - A488- identiques, R 0 = 5,5 nm et R 0 = 5,6 nm (voir II-B). Ceci est dû au plus grand rendement quantique de l Alexa488. D autre part, bien que le signal de l Alexa488 soit émis à des longueurs d ondes où les cellules fluorescent 11, les propriétés photo-physiques du couple Alexa488- permettent une meilleure séparation des composantes spectrales des fluorophores donneur et accepteur d énergie. 11 Un élément important à prendre en compte dans les expériences de fluorescence est l auto-florescence naturelle des cellules due à certains acides aminés, NADPH, flavines, au milieu, etc.