Les surfaces d échanges nutritifs des plantes

Documents pareils
Correction TP 7 : L organisation de la plante et ses relations avec le milieu

ne définition de l arbre.

LA A RESPIRATION CELLULAIRE

Prix Pierre Potier L innovation en chimie au bénéfice de l environnement

La notion de croissance (végétale) en sixième et en première S.

TP N 3 La composition chimique du vivant

Végétaux Exemples d individus

Le ph, c est c compliqué! Gilbert Bilodeau, agr., M.Sc.

Compléments ments alimentaires Les règles du jeu - SCL / Strasbourg-Illkirch 14 octobre 2011

Sciences de la vie et de la Terre

Chapitre 6 : coloniser de nouveaux milieux

Activité 38 : Découvrir comment certains déchets issus de fonctionnement des organes sont éliminés de l organisme


Chapitre 2 : Respiration, santé et environnement.

Fertiliser le maïs autrement

Séquence 7. Les relations entre organisation et mode de vie, résultat de l évolution : exemple de la vie fixée chez les plantes à graines.

Comment utiliser les graines de soja à la cuisine

Chapitre 7 Les solutions colorées

Fiche 19 La couleur des haricots verts et cuisson

Fonctionnement de l organisme et besoin en énergie

L évidence écologique Une station d assainissement où il fait bon se

JOURNÉE D ANIMATION TERMINALE S

LES POILS ET LES CHEVEUX SONT-ILS PAREILS?

«Cette action contribue au PNNS». À CHÂTEAU THIERRY

THEME 2. LE SPORT CHAP 1. MESURER LA MATIERE: LA MOLE

SPECIALITE : RESTAURATION À LIRE ATTENTIVEMENT AVANT DE TRAITER LE SUJET

Les Énergies Capter et Stocker le Carbone «C.C.S»

Environnement, économie, société : le maïs sur tous les fronts

Ressources pour l école élémentaire

1.2. REALISATION DES OPERATIONS DE PRELEVEMENTS ET D ANALYSES

Semis direct: de l essai à la pratique

L équilibre alimentaire.

Valérie Roy-Fortin, agr. Bio pour tous! - 6 mars 2015

Pour une meilleure santé

SECTEUR 4 - Métiers de la santé et de l hygiène

AGRÉGATION DE SCIENCES DE LA VIE - SCIENCES DE LA TERRE ET DE L UNIVERS

Informations techniques sur la culture de l ananas

Contexte : Objectif : Expérimentation :

Comment prouver que les végétaux ont besoin d eau, de minéraux, d air et de lumière pour se développer normalement?

Influence du changement. agronomiques de la vigne

Sport et alpha ANNEXES

Génétique et génomique Pierre Martin

Questionnaire Lycée SALLE DES EAUX DU MONDE

10 en agronomie. Domaine. Les engrais minéraux. Livret d autoformation ~ corrigés. technologique et professionnel

Sorgho grain sucrier ensilage L assurance sécheresses

LE MONITORING DE LA BIODIVERSITE EN SUISSE. Hervé LETHIER, EMC2I

Biomasse forestière et bioénergie: Danger ou solution?

Que sont les sources d énergie renouvelable?

Dr E. CHEVRET UE Aperçu général sur l architecture et les fonctions cellulaires

Suivi d une réaction lente par chromatographie

Niveau CEl CE2. Le grand dauphin ou dauphin souffleur Tursiops truncatus

CHAPITRE 8 PRODUCTION ALIMENTAIRE ET ENVIRONNEMENT

2 e partie de la composante majeure (8 points) Les questions prennent appui sur six documents A, B, C, D, E, F (voir pages suivantes).

Bleu comme un Schtroumpf Démarche d investigation

Le développement durable peut-il se passer d engrais minéraux?

Le compost. Un petit écosystème au jardin

Le réchauffement climatique, c'est quoi?

Tâche : Comparer l étiquette de produits alimentaires afin de connaître leur valeur nutritive.

Oléagineux, Corps Gras, Lipides. Volume 9, Numéro 5, 296-8, Septembre - Octobre 2002, La filière

Le miscanthus : opportunités énergétiques à la ferme. Laurent Somer, ValBiom asbl Sankt Vith / Saint-Vith 13 juin 2014

Comment la sève monte-t-elle dans les arbres?

«L énergie la moins chère et la moins polluante est celle qu on ne consomme pas»

Qui sont-ils? Pedro. Tamacha. 9 En quantité, Tamacha mange suffisamment, mais son alimentation n est pas satisfaisante en qualité.

Commentaires sur les épreuves de Sciences de la Vie et de la Terre

L ensilage de maïs en Ardenne? D un point de vue alimentaire. Isabelle Dufrasne Ferme expérimentale Service de Nutrition FMV Université de Liège

Exemple de cahier de laboratoire : cas du sujet 2014

ACIDES BASES. Chap.5 SPIESS

Application à l astrophysique ACTIVITE

Protéines. Pour des Canadiens actifs. De quelle quantité avez-vous besoin?

Grandes cultures Engrais liquides ou granulaires?

Produire avec de l'herbe Du sol à l'animal

La modélisation, un outil pour reconstituer (et prédire) climat et végétation

Quoi manger et boire avant, pendant et après l activité physique

FICHE N 8 Photodiversité, d une banque d images à un portail d activités en ligne Anne-Marie Michaud, académie de Versailles

Planches pour le Diagnostic microscopique du paludisme

La production énergétique à partir de la biomasse forestière : le devenir des nutriments et du carbone

Nutrition et santé : suivez le guide

SP. 3. Concentration molaire exercices. Savoir son cours. Concentrations : Classement. Concentration encore. Dilution :

LISTE V AU PROTOCOLE A MAROC. Description des produits

PROPOSITION TECHNIQUE ET FINANCIERE

Bilan Carbone des interventions viticoles

2 C est quoi la chimie?

Revenu agricole 2013 : une année délicate pour les productions céréalières

MYCOTOXINES : changements règlementaires et analytiques

Cellules procaryotes Service histologie Pr.k.mebarek

Une nouvelle écologie des parcs et des jardins

Chapitre 02. La lumière des étoiles. Exercices :

Epreuve de biologie... 2 Annexe : Liste des sujets de la session

les cinq étapes pour calculer les jours d avance

LA PHYLLOTAXIE SPIRALE

pka D UN INDICATEUR COLORE

Eléments de caractérisation des diamants naturels et synthétiques colorés


Abschlusskonferenz OUI Biomasse / Conférence de clôture OUI Biomasse

L ÉNERGIE C EST QUOI?

Séquence 4. La nature du vivant. Sommaire. 1. L unité structurale et chimique du vivant. 2. L ADN, support de l information génétique

Ventilation : Mesure et réglage des débits

FICHE 1 Fiche à destination des enseignants

FORD C-MAX + FORD GRAND C-MAX CMAX_Main_Cover_2013_V3.indd /08/ :12

Transcription:

TP8 Les surfaces d échanges nutritifs des plantes Comme tout être vivant, les plantes prélèvent dans leur milieu les éléments nutritifs nécessaire à leur survie et leur croissance. Cependant, elles ne peuvent se déplacer pour aller à la recherche des nutriments car elles sont en général fixées entre 2 milieu : l air et le sol. Au niveau de leurs racines, elles prélèvent l eau et les sels minéraux du sol. Au niveau des feuilles, elles prélèvent le CO 2 et captent l énergie lumineuse, les 2 indispensables à la photosynthèse qui produit des molécules organiques et du O 2. Problème : Quelles sont les structures présentes au niveau des racines et des feuilles permettant un prélèvement suffisant d éléments nutritifs? Matériel : - plantes fraiches (lentilles fraichement germées, feuille de lierre) - racine de fève avec nodosités - caméra et logiciel d acquisition Picturio - logiciel Mesurim - pipette, verre de montre, eau distillée, aiguille lancéolée - microscope + lames et lamelles - loupe binoculaire - bleu de méthylène et rouge neutre Activités proposées L objectif des manipulations suivantes est de montrer quelles structures de la plante permettent de très grandes surfaces d échanges avec le lieu extérieur. A. Observation des zones d échanges des gaz de l atmosphère : les feuilles (40 min) Les échanges gazeux de CO 2 et d eau, entre l atmosphère et les cellules des feuilles, se réalisent au niveau de structures microscopiques dans l épiderme des feuilles, appelées stomates. Les stomates sont de petites ouvertures capables de s ouvrir et se fermer en fonction des conditions environnementales et laissant entrer et sortir les gaz et l eau. L action directe du soleil sur la face supérieure des feuilles peut entraîner des pertes d eau excessives. On cherche à comprendre comment la répartition des stomates de certaines feuilles permet l approvisionnement en CO 2 des cellules chlorophylliennes tout en limitant les pertes d eau. 1- Prendre connaissance des documents 3 puis émettre une hypothèse sur la répartition attendue des stomates entre la face inférieure et la face supérieure de la feuille, permettant l approvisionnement en CO 2 tout en limitant les pertes d eau. 2- Réaliser et observer au microscope 2 empreintes foliaires en suivant le protocole proposé sur la «fiche protocole candidat». (page suivante) 3- Après avoir réalisé une prise de vue que vous légendez, réaliser un comptage des stomates sur chaque face à l aide de Mesurim. Coller vos photos dans un fichier open office et légender. Appeler l examinateur pour vérification et impression 4- Utiliser vos observations pour vérifier votre hypothèse. A partir des documents 3, montrez que la structure de la feuille permet de capter le maximum d énergie lumineuse tout en limitant les pertes d eau et que la plante met en place des stratégies pour vivre dans un milieu variable au cours de la journée. B. Observation des zones d échanges nutritifs du sol : les racines (20 min) 5- Observez à la loupe binoculaire la jeune racine de pois pour voir la zone pilifère (voir document 1) 6- Réalisez ensuite une observation microscopique de la zone pilifère de la racine. Dans un premier temps, prélevez la racine et posez-la sur une lame puis observez. Dans un deuxième temps, prélevez uniquement la zone pilifère, ajoutez une goutte d eau et écrasez délicatement la racine avec une lamelle. Eliminez l excédent de liquide si nécessaire. 7- Réalisez un schéma légendé d une de vos observations. 8- A partir des résultats expérimentaux des documents 1a et 1b déterminez le rôle des poils absorbants racinaires et montrez que, malgré sa vie fixée, la plante est capable de puiser tous les éléments nutritifs même dans un milieu carencé.

C. Rôle de la symbiose plante/bactérie au niveau de la racine : les nodosités (25 min) 9- Exploitez les documents 2a, 2b et 2c afin de préciser les intérêts communs à la bactérie et à la plante, ainsi que les échanges qui s opèrent entre les deux organismes. 10- Montrez que cette association symbiotique entre une plante et une bactérie est une source de diversification des êtres vivants sans modification du génome. D. Estimation de la surface d échange totale et comparaison avec un mammifère (10 min) 11- A partir des documents 4 et 5, comparez les surfaces d échanges nutritifs d un végétal et d un mammifère. 12- A partir de l ensemble de vos observations, rédigez un bilan montrant que les végétaux ont mis en place des structures permettant une nutrition suffisante malgré leur vie fixée dans un milieu changeant au cours du temps et complétez le schéma-bilan.

Document 1 : Rôle des racines : Document 1a : La zone pilifère des racines : La zone pilifère est une partie de la racine présentant à sa surface de très nombreux poils absorbants. Chacun est constitué une seule cellule à la paroi fine. Zone pilifère Document 1b : Modifications du système racinaire dans un environnement variable :

Document 2 : Observation d une association symbiotique entre une plante (famille des Fabacées) et des bactéries (genre Rhizobium) Document 2a : Les nodosités : Les Fabacées constituent une importante famille de plantes. Beaucoup d'espèces ont un grand intérêt alimentaire. Citons les arachides, les fèves, les lentilles, les haricots, les pois ou encore le soja. Plusieurs de ces aliments sont considérés comme des légumes, d'où un des anciens noms de cette famille, Légumineuses. On cultive plusieurs espèces pour l'alimentation du bétail, comme le trèfle ou la luzerne. Ces dernières sont capables de fixer l'azote atmosphérique, comme la plupart des plantes de cette famille, grâce à des bactéries au nom de rhizobia qu'elles hébergent dans leurs racines ce qui conduit à la formation de nouveaux organes appelés nodosités racinaires. Photographie des nodosités sur une racine de soja (Fabacées) Photographie de l observation microscopique d une lame de CT de nodosités Comme le montre les photographies du document 1, les rhizobiums sont des bactéries endosymbiotes qui se développent dans les racines à l intérieur du cytoplasme des cellules végétales. L observation microscopique montre qu elles sont nombreuses par cellules. C est l association des deux cellules qui forme de nouveaux organes : les nodosités. Les rhizobiums assurent la transformation de l azote atmosphérique N 2 en ions Ammonium NH 4+. Ces ions sont utilisés par la cellule végétale pour la synthèse des acides aminés et de ses protéines. Ils seront transportés dans le végétal par les faisceaux conducteurs. En contrepartie la photosynthèse réalisée par les tissus chlorophylliens des feuilles fournit les glucides nécessaires au métabolisme énergétique des rhizobiums. Les nodosités permettent donc à la plupart des Fabacées de s approvisionner en matière minérale azotée, sans apports venant du sol. Les fabacées ont donc la capacité de coloniser des milieux pauvres en nitrates ce qui accentue encore l autotrophie du végétal face à son biotope. Les nodosités c est-à-dire la symbiose ont un impact de sur le processus évolutif parce qu elles permettent l acquisition de nouvelles capacités. Document 2c : Mise en évidence expérimentale de l importance des nodosités pour la plante et les bactéries : Document 2b : Schéma des échanges réciproques entre Rhizobium et les fabacées. La bactérie produit une protéine dans les nodosités, la nitrogénase, qui est capable de transformer l azote atmosphérique N 2 en NH 4+ utilisable par la plante. La nitrogénase n est pas produite lorsque la bactérie vit seule dans le sol. Sans cette protéine, la plante ne prélève l azote que sous la forme de nitrates présents dans le sol. En revanche, les bactéries ont besoin de carbone notamment sous forme de glucide pour vivre. Grossissement X 1000 La croissance des plants inoculés ou non avec des bactéries a été mesurés ; La masse totale d azote dans ces plants a été également déterminée. Plants Longueur totale des Masse de la plante sèche Masse totale d azote (en pousses (en cm) (en mg) mg) Sans nodules 68.5 0.42 0.0034 Avec nodules 225.5 9.51 0.1012 Des plants de soja (Fabacées) contenant des nodosités ont été cultivés dans un milieu contenant du carbone radioactif sous la forme de CO 2. Ce carbone est absorbé par la plante qui le transforme ensuite en glucides. La radioactivité est recherchée dans les racines et dans les bactéries.

Document 3a : La surface de la feuille (épiderme) est recouverte d une cire (cuticule) qui la rend presque imperméable à l eau et au CO 2. Des structures spécialisées, essentiellement présents sur la face inférieure de la feuille, assurent donc les échanges gazeux et hydriques entre la plante et son environnement : les stomates. Ce sont des structures composées de 2 cellules en forme de haricot : les cellules stomatiques (ou cellules de garde) délimitant une ouverture : l ostiole. L ostiole peut être ouvert ou fermé en fonction des conditions du milieu (période sèche : fermé, période humide : ouvert). Sous chaque stomate se trouve un vaste espace : la chambre sous-stomatique. Ainsi, l atmosphère interne de la feuille est en relation directe avec l atmosphère externe par les stomates. Le CO 2 pénètre dans la feuille par les stomates et rejoint les cellules de la feuille réalisant la photosynthèse. L O 2 produit par la photosynthèse est rejeté, en même temps que l eau, par les stomates. Document 3b : Coupe transversale d une feuille à gauche Vocabulaire et rôle des différents tissus de la feuille : - L épiderme des 2 côtés de la feuille est recouvert d une cuticule qui ne laisse pas passer l eau, ni le CO 2. - Le parenchyme palissadique (chlorophyllien) contient de nombreuses cellules chlorophylliennes réalisant la photosynthèse. - Le parenchyme lacuneux où les cellules chlorophylliennes sont très éloignées les unes des autres facilitant le passage des gaz. - Des tissus conducteurs des sèves : xylème (sève brute) a. Ostiole fermé b : Ostiole ouvert Document 3c : Stomate vu de dessus 3d Document 4 : Estimation des surfaces d échanges des végétaux : Extrait du livre : Eloge de la plante de F HALLE - La plante, une vaste surface fixe (p 42 à 44) Une plante est donc essentiellement un volume modeste, une vaste surface aérienne et souterraine, portée par une infrastructure linéaire de très grande dimension. Mesurer la surface d un végétal n est pas chose facile. Dans le cas d un arbre, il faut évaluer le nombre de rameaux, et celui des feuilles, mesurer la surface de la feuille recto-verso, et celle d un rameau, cumuler ces différentes surfaces partielles avec celles du tronc. On comprend que ce travail n ait été fait que sur des arbres jeunes et de hauteur modeste. Les données sont rares : - 340 m² pour un jeune châtaignier de 8 m de haut ; - 400 m² pour un petit palmier à huile de 3 m ; - 530 m² pour un épicéa de 12 m. Il manque une loi qui permettrait de passer des mesures sur un jeune arbre à une approximation pour les plus grands. Quelle peut-être la surface aérienne d un arbre de 40 m de haut? Une estimation de 10 000m² (1 ha) n est certainement pas exagérée ; peut-être est-elle largement sous estimée ; il faut reconnaître que nous ignorons presque tout de la surface aérienne des plantes, d autant que la surface externe ne représente qu un aspect de la question. Il a été suggéré de considérer aussi la surface interne permettant les échanges gazeux dans les poches sous-stomatiques, qui serait 30 fois supérieure à la précédente : pour un jeune oranger portant 2 000 feuilles, la surface externe est de 200 m² et la surface interne s élèverait à 6 000 m². En ce qui concerne les surfaces racinaires, les investigations sont encore plus difficiles et les données encore plus rares. La surface d un simple plan de seigle s élèverait à un total de 639 m² ; sa surface souterraine serait 30 fois plus grande que la surface aérienne, et ses racines mises bout à bout représenteraient 622 km, avec un accroissement quotidien de 5 km. Pour les poils absorbants, les chiffres deviennent énormes 10 620 km de longueur cumulée avec un accroissement de 90 km par jour. On ignore si les 2 facteurs indiqués ici ont une valeur générale. En admettant que ce soit le cas et en estimant à 1ha la surface aérienne externe d un grand arbre, la surface interne est de 30 ha, la surface racinaire de 130 ha et le total des surfaces d échanges avec le milieu se monte à 160 ha!

Document 5 : Comparaison des surfaces d échanges animal/végétal : «Une homologie fonctionnelle indiscutable unit la surface interne et digestive de l animal à la surface externe et assimilatrice de la plante. Sur le plan de l appropriation de l énergie, ces deux surfaces s équivalent. L animal? Une plante ahurissante retournée comme un gant, qui aurait enfoui ses feuilles et ses racines dans son tube digestif La plante? Une sorte d animal fabuleux retourné dedans dehors, et qui porterait ses entrailles en guise de pelage.» F. HALLE, Eloge de la plante Quelques estimations de surface d échanges Arbre de 40 m de haut Feuilles : 30 000 m 2 Racines : 130 000 m 2 Homme de 1,70 m et 70 kg 2 Poumons : 100 m Intestins : 200 m 2