Physique Statistique I, 007-008 8 Ensemble grand-canonique 8.1 Calcul de la densité de probabilité On adopte la même approche par laquelle on a établi la densité de probabilité de l ensemble canonique, mais cette fois, on considère un système Σ ouvert qui peut échanger de l énergie mais aussi de la matière), en équilibre avec un réservoir R de particules et de température. Ce dernier est par définition très grand, donc les échanges de chaleur et de particules avec le système ne changent pas sa température ni son potentiel chimique µ, par conséquent, le potentiel chimique et la température du système Σ sont fixés. Le nombre de particules par contre devient une variable aléatoire. On procède de la même manière, en considérant le système total du réservoir R et du système Σ dans l ensemble microcanonique : E tot = E Σ + E R = const tot = Σ + R = const Comme pour l ensemble canonique, la probabilité de trouver le système dans un état particulier est proportionnelle au nombre d états du réservoir correspondant : p E Σ, Σ )=cte ρ R E tot E Σ, tot Σ ) ln ρ R est une grandeur extensive l entropie S). E tot, tot ): ln ρ R E tot E Σ, tot Σ )) ln ρ 0 R E Σ U On peut la linéariser en E Σ, Σ ) Σ, U, or du = ds pd + µd U = 1, = µ U, et on retrouve la distribution de Gibbs pour l ensemble grand-canonique p E,)=const e µ E 8. Fonction de partition grand-canonique Comme auparavant, on note la constante 1 Z gc l ensemble grand-canonique : Z gc,µ)= toutes les valeurs de E et de où Z gc,µ) est la fonction de partition de exp E µ ) 1
Z gc,µ)= e βµ 1 d pi d q i e βhp,q)! h } 3 {{ } Z c,) =0 où Z c,) est la fonction de partition de l ensemble canonique, et le facteur 1! est introduit pour les particules indiscernables. 8.3 Grand potentiel On remarque qu on a un potentiel thermodynamique qui joue le même rôle que l énergie libre F dans l esemble canonique; c est le grand potentiel : Φ,µ)=E S µ Z gc contient à nouveau toute l information sur la thermodynamique du système : On en tire E µ = β ln Z gc = ln Z gc S = p i ln p i = p i [ ln Z gc + E i µ i ] =lnz gc + E µ Φ,,µ)= ln Z gc comparer avec F,,)= ln Z c ) outes les grandeurs thermodynamiques peuvent être exprimées à partir de Φ : = = Φ E = + µ =Φ Φ β µ Φ = Φ S = Φ 1 β on retrouve les relations thermodynamiques standard. 8.4 Equivalence avec l ensemble canonique Dans la limite thermodynamique, les fluctuations du nombre de particules sont petites, et l ensemble grand-canonique est équivalent à l ensemble canonique de la même mainıère que l ensemble canonique est équivalent à l ensemble microcanonique).
Si on note P ) la probabilité d avoir particules, alors P ) e µ Zc,) Or donc Le point selle 0 est donné par: F = ln Z c =énergie libre extensive µ F ) P ) e 1) µ = F,) ) 0 Cette équation établit la relation entre le potentiel chimique µ dans l ensemble grandcanonique et le nombre de particules 0 dans l ensemble canonique correspondant. On peut également reformuler la preuve dans le sens opposé similaire à la preuve d équivalence entre les ensembles microcanonique et canonique discutée dans les exercices). Dans ce cas, le potentiel chimique µ de l ensemble grand-canonique correspondant à l ensemble canonique avec particules est determiné par la condition µ = où la moyenne est calculée dans l ensemble grand-canonique. 8.5 Fluctuations du nombre de particules dans l ensemble grandcanonique D une manière similaire à notre discussion de l ensemble cnaonique, on peut calculer les fluctuations du nombre de particules dans l ensemble grand-canonique. On développe l énergie libre dans 1) : F ) = F 0 + 0 ) F + 1 0 0) F = F 0 + 0 ) µ + 1 0) 0 3
et on obtient immédiatement [en utilisant la relation donnant le point selle )] P ) =const e 1 0) 0 correspondant à la loi normale en accord avec le théorème de la limite centrale). L écart quadratique moyen est donc donné par On peut relier ), σ = ) 1 1 = ci-dessus à la compressibilité isothermedu système : κ := 1 ) p, qui décrit la réponse du volume ) à un) changement de pression. La relation entre et dorénavant, toutes les dérivées sont calculées à p = const, et on ommet l indice dans les dérivées) peut être comprise comme deux façons équivalentes de décrire une compression du gaz : 1. Garder le nombre de particules constant, et réduire le volume.. Augmenter le nombre de particule tout en gardant le volume constant. On peut dériver cette rélation à partir de l extensivité de l énergie U : voir exercices). Par conséquent, du = ds pd + µd U = S p + µ F = U S = p + µ est simultanément df = pd + µd à = const D une manière symmétrique, on obtient les deux relations : ) ) ) F p p = = p + ) ) ) F p µ = = µ + et on en tire ) ) p + Finalement, on remarque que ) =0= ) ) = F p = 4 ) p
et donc ) p = ) qui résulte dans deux expressions équivalentes pour κ : κ = 1 p ), = Les fluctuations du nombre de particules dans l ensemble grand-canonique sont donc : σ = κ Les fluctuations relatives sont petites : σ = 1 ρ κ 1 On trouve un résultat similaire à celui des fluctuations de l énergie dans l ensemble canonique : dans la limite thermodynamique, on tombe sur la loi normale avec les fluctuations relatives proportionnelles à1/. Ceci confirme le résultat énoncé audébut de ce paragraphe, c est à dire que dans la limite thermodynamique, l ensemble grand-canonique est équivalent à l ensemble canonique qui est àsontouréquivalent à l ensemble microcanonique). On peut par ailleurs montrer directement que les fluctuations d énergie dans l ensemble grand-canonique sont aussi proportionnelles à 1 voir exercices). 8.6 Exemple : Le gaz parfait monoatomique dans l ensemble grand-canonique Z gc,µ, )= Pour des particules indiscernables ), e βµ Z c,, ) =0 Z c,, )= 1! d pi d q i h 3 e βhp,q) p i H p, q) = m i=1 Z c,, ) = 1! h 3 1 Z gc,µ, ) =! =0 [ πm = exp e βµ ) d 3 p e p m = 1! [Z c =1,,)] e βµ h 3 πm)3 h 5 ) ] 3 )
Le grand potentiel : Φ= ln Z gc = e µ πm Et on peut en déduire les grandeurs thermodynamiques : h ) 3 S = Φ ) 3 = e µ πm 5 h µ ) p = Φ ) 3 = e µ πm h = Φ = e µ πm Si on réexprime S et p en fonction de à laplacedeµ), alors on retrouve les mêmes résultats que pour l ensemble canonique : 5 S = µ ) [ ) ]) 3 5 = +ln πm h p = h ) 3 6