R. Liu 1, M. Hou 2, P. Evesque Lab MSSMat, UMR 8579 CNRS, Ecole Centrale Paris 92295 CHATENAY-MALABRY, France, e-mail: pierre.evesque@ecp.



Documents pareils
Exemple PLS avec SAS

Instructions Mozilla Thunderbird Page 1

DOCUMENTATION - FRANCAIS... 2

Application Form/ Formulaire de demande

English Q&A #1 Braille Services Requirement PPTC Q1. Would you like our proposal to be shipped or do you prefer an electronic submission?

Gestion des prestations Volontaire

APPENDIX 6 BONUS RING FORMAT

Cheque Holding Policy Disclosure (Banks) Regulations. Règlement sur la communication de la politique de retenue de chèques (banques) CONSOLIDATION

COPYRIGHT Danish Standards. NOT FOR COMMERCIAL USE OR REPRODUCTION. DS/EN 61303:1997

PARIS ROISSY CHARLES DE GAULLE

INSTITUT MARITIME DE PREVENTION. For improvement in health and security at work. Created in 1992 Under the aegis of State and the ENIM

0 h(s)ds et h [t = 1 [t, [ h, t IR +. Φ L 2 (IR + ) Φ sur U par

Calculation of Interest Regulations. Règlement sur le calcul des intérêts CONSOLIDATION CODIFICATION. Current to August 4, 2015 À jour au 4 août 2015

Utiliser une WebCam. Micro-ordinateurs, informations, idées, trucs et astuces

Tex: The book of which I'm the author is an historical novel.

NORME INTERNATIONALE INTERNATIONAL STANDARD. Dispositifs à semiconducteurs Dispositifs discrets. Semiconductor devices Discrete devices

LOI SUR LA RECONNAISSANCE DE L'ADOPTION SELON LES COUTUMES AUTOCHTONES ABORIGINAL CUSTOM ADOPTION RECOGNITION ACT

ETABLISSEMENT D ENSEIGNEMENT OU ORGANISME DE FORMATION / UNIVERSITY OR COLLEGE:

I. COORDONNÉES PERSONNELLES / PERSONAL DATA

Support Orders and Support Provisions (Banks and Authorized Foreign Banks) Regulations

THÈSE. présentée à TÉLÉCOM PARISTECH. pour obtenir le grade de. DOCTEUR de TÉLÉCOM PARISTECH. Mention Informatique et Réseaux. par.

THE LAW SOCIETY OF UPPER CANADA BY-LAW 19 [HANDLING OF MONEY AND OTHER PROPERTY] MOTION TO BE MOVED AT THE MEETING OF CONVOCATION ON JANUARY 24, 2002

Le passé composé. C'est le passé! Tout ça c'est du passé! That's the past! All that's in the past!

Revision of hen1317-5: Technical improvements

SCHOLARSHIP ANSTO FRENCH EMBASSY (SAFE) PROGRAM APPLICATION FORM

APPENDIX 2. Provisions to be included in the contract between the Provider and the. Holder

First Nations Assessment Inspection Regulations. Règlement sur l inspection aux fins d évaluation foncière des premières nations CONSOLIDATION

Credit Note and Debit Note Information (GST/ HST) Regulations

Interest Rate for Customs Purposes Regulations. Règlement sur le taux d intérêt aux fins des douanes CONSOLIDATION CODIFICATION

The assessment of professional/vocational skills Le bilan de compétences professionnelles

RULE 5 - SERVICE OF DOCUMENTS RÈGLE 5 SIGNIFICATION DE DOCUMENTS. Rule 5 / Règle 5

Improving the breakdown of the Central Credit Register data by category of enterprises

Loi sur l aide financière à la Banque Commerciale du Canada. Canadian Commercial Bank Financial Assistance Act CODIFICATION CONSOLIDATION

Data issues in species monitoring: where are the traps?

Archived Content. Contenu archivé

DOCUMENTATION - FRANCAIS... 2

1.The pronouns me, te, nous, and vous are object pronouns.

Soumission des articles pour l ICOFOM Study Series

RAPID Prenez le contrôle sur vos données

POLICY: FREE MILK PROGRAM CODE: CS-4

Règlement relatif à l examen fait conformément à la Déclaration canadienne des droits. Canadian Bill of Rights Examination Regulations CODIFICATION

Monitor LRD. Table des matières

How to Login to Career Page

Le No.1 de l économie d énergie pour patinoires.

RISK-BASED TRANSPORTATION PLANNING PRACTICE: OVERALL METIIODOLOGY AND A CASE EXAMPLE"' RESUME

Ships Elevator Regulations. Règlement sur les ascenseurs de navires CODIFICATION CONSOLIDATION. C.R.C., c C.R.C., ch. 1482

BILAN du projet PEPS 1 EOLIN (Eolien LMI INSA)

Macro-to-Microchannel Transition in Two-Phase Flow and Evaporation

INVESTMENT REGULATIONS R In force October 1, RÈGLEMENT SUR LES INVESTISSEMENTS R En vigueur le 1 er octobre 2001

The space to start! Managed by

Motivations (many2many) Motivations (many2one) Sur le thème de la Version. La gestion de version. La gestion de configuration.

Modélisation 3D par le modèle de turbulence k-ε standard de la position de la tête sur la force de résistance rencontrée par les nageurs.

General Import Permit No. 13 Beef and Veal for Personal Use. Licence générale d importation n O 13 bœuf et veau pour usage personnel CONSOLIDATION

3615 SELFIE. HOW-TO / GUIDE D'UTILISATION

EN UNE PAGE PLAN STRATÉGIQUE

Bourses d excellence pour les masters orientés vers la recherche

Loi sur la remise de certaines dettes liées à l aide publique au développement. Forgiveness of Certain Official Development Assistance Debts Act

COUNCIL OF THE EUROPEAN UNION. Brussels, 18 September 2008 (19.09) (OR. fr) 13156/08 LIMITE PI 53

Instructions pour mettre à jour un HFFv2 v1.x.yy v2.0.00

Notice Technique / Technical Manual

Photoactivatable Probes for Protein Labeling

MELTING POTES, LA SECTION INTERNATIONALE DU BELLASSO (Association étudiante de lʼensaparis-belleville) PRESENTE :

INSERTION TECHNIQUES FOR JOB SHOP SCHEDULING

AMENDMENT TO BILL 32 AMENDEMENT AU PROJET DE LOI 32

Contents Windows

setting the scene: 11dec 14 perspectives on global data and computing e-infrastructure challenges mark asch MENESR/DGRI/SSRI - France

Natixis Asset Management Response to the European Commission Green Paper on shadow banking

CLASSIFICATION REPORT OF REACTION TO FIRE PERFORMANCE IN ACCORDANCE WITH EN : 2007

Exercices sur SQL server 2000

CLASSIFICATION REPORT OF REACTION TO FIRE PERFORMANCE IN ACCORDANCE WITH EN : 2007

Bill 12 Projet de loi 12

lundi 3 août 2009 Choose your language What is Document Connection for Mac? Communautés Numériques L informatique à la portée du Grand Public

Ordonnance sur le paiement à un enfant ou à une personne qui n est pas saine d esprit. Infant or Person of Unsound Mind Payment Order CODIFICATION

MEMORANDUM POUR UNE DEMANDE DE BOURSE DE RECHERCHE DOCTORALE DE LA FONDATION MARTINE AUBLET

Règlement sur les baux visés à la Loi no 1 de 1977 portant affectation de crédits. Appropriation Act No. 1, 1977, Leasing Regulations CODIFICATION

Guide d installation Deco Drain inc. DD200

FCM 2015 ANNUAL CONFERENCE AND TRADE SHOW Terms and Conditions for Delegates and Companions Shaw Convention Centre, Edmonton, AB June 5 8, 2015

Forthcoming Database

CONVENTION DE STAGE TYPE STANDART TRAINING CONTRACT

BILL C-452 PROJET DE LOI C-452 C-452 C-452 HOUSE OF COMMONS OF CANADA CHAMBRE DES COMMUNES DU CANADA

AIDE FINANCIÈRE POUR ATHLÈTES FINANCIAL ASSISTANCE FOR ATHLETES

UNIVERSITE DE YAOUNDE II

I. Programmation I. 1 Ecrire un programme en Scilab traduisant l organigramme montré ci-après (on pourra utiliser les annexes):

Guide d'installation rapide TFM-560X YO.13

Règlement sur le télémarketing et les centres d'appel. Call Centres Telemarketing Sales Regulation

DOCUMENTATION MODULE BLOCKCATEGORIESCUSTOM Module crée par Prestacrea - Version : 2.0

Practice Direction. Class Proceedings

Lean approach on production lines Oct 9, 2014

Life Companies Borrowing Regulations. Règlement sur les emprunts des sociétés d assurance-vie CONSOLIDATION CODIFICATION

IDENTITÉ DE L ÉTUDIANT / APPLICANT INFORMATION

LOI SUR LE PROGRAMME DE TRAVAUX COMPENSATOIRES L.R.T.N.-O. 1988, ch. F-5. FINE OPTION ACT R.S.N.W.T. 1988,c.F-5

WINTER BOAT STORAGE SYSTEM SYSTÈME DE REMISAGE HIVERNAL POUR BATEAU

Dans une agence de location immobilière...

Get Instant Access to ebook Cest Maintenant PDF at Our Huge Library CEST MAINTENANT PDF. ==> Download: CEST MAINTENANT PDF

sur le réseau de distribution

Expérience de Stern et Gerlach et décohérence: l'ordinateur quantique est-il vraiment possible?

This is a preview - click here to buy the full publication NORME INTERNATIONALE INTERNATIONAL STAN DARD. Telecontrol equipment and systems

A l'avenir, chacun aura son quart d'heure de célébrité.. Andy WAHROL

Form of Deeds Relating to Certain Successions of Cree and Naskapi Beneficiaries Regulations

CEST POUR MIEUX PLACER MES PDF

Transcription:

R.Liu et al./ Simulation of 3d granular gas with dissipation (6) - 48 - Simulation of 3d granular dissipative gas under different kinds of excitations & with different number of balls N Result 6: V mean and V sum as 2 functions of, for different e=.7 to.9 and thermal excitation, R. Liu, M. Hou 2, P. Evesque Lab MSSMat, UMR 8579 CNRS, Ecole Centrale Paris 92295 CHATENAY-MALABRY, France, e-mail: pierre.evesque@ecp.fr Abstract: This group of papers publishes a series of simulations on the dynamics of N equal-sie spheres (D=) in a 3d rectangular cell (L x =2D, L y =2D, L =6D) excited along in gravity.(n=, 5,, 2, 2, 3, 4, 45). Different O excitation kinds have been used (symmetric and non symmetric bi-parabolic, symmetric and non symmetric saw teeth, thermal wall). No rotation is included, dissipation is introduced via a restitution coefficient e= V n /V n, where V n and V n are the relative ball speed along normal to ball centres after and before collision. Pacs # : 5.4 ; 45.7 ; 62.2 ; 83.7.Fn Recently, much work has been done to simulate dissipative granular gas in g [] which looks coherent with classic continuous theoretical approach [2]. However, experimental results obtained with rocket experiment (Mini-Texus 5, Maxus 5, Maxus 7) or Airbus A3-G (Novespace) as well as satellite SJ-8 have found [3] some disagreement with these classical publications and understanding [4, 5]. Few other results [6,7] contradict the common statement [,2] and/or is in agreement with our simulations [7]. The goal of theses simulations is to demonstrate that behaviour of granular dissipative gas is more complex (i) than what can think at first sight, (ii) that the role of boundary collisions can be observed directly on the ball dynamics and (iii) that the system can not be understood as a system controlled by a single temperature at a given positions. Figure symbols and abbreviations: e.9: coefficient of restitution e = :9 N***: number of particles N = *** BP: bi-parabolic driving ST: saw-tooth driving Sym: symmetrical driving Nsym: Non-symmetrical driving Protocol is given in appendix. Data are reported for a given physical quantity (n(), pdf, ) as a function of the ball number in the cell and for a given restitution coefficient e and a given wall driving. Then e is varied. Then driving is varied. The data are divided in papers, which are divided into driving cases label A, B and subdivided into sections corresponding to different e (.7,.8,.9). poudres & grains 7 (6), 48-5 (Juillet 29)

R.Liu et al./ Simulation of 3d granular gas with dissipation (6) - 482 - ) V mean thermal excitation.) with e=.7.5 e.7-n-therm V- t V- t2 V- t3 V- t4 V+ t V+ t2 V+ t3 V+ t4 <V >.5 -.5 - -3-2 - 2 3 Figure. - : Simulations of granular gas is 3d rectangular cell.2.8.6 e.7-n5-therm V- t V- t2 V- t3 V- t4 V+ t V+ t2 V+ t3 V+ t4 <V >.4.2 -.2 -.4 -.6 -.8-3 -2-2 3 Figure. - 2: Simulations of granular gas is 3d rectangular cell poudres & grains 7 (6), 48-5 (Juillet 29)

R.Liu et al./ Simulation of 3d granular gas with dissipation (6) - 483 -.2.8.6 e.7-n-therm V- t V- t2 V- t3 V- t4 V+ t V+ t2 V+ t3 V+ t4 <V >.4.2 -.2 -.4 -.6 -.8-3 -2-2 3 Figure. - 3: Simulations of granular gas is 3d rectangular cell.2.8.6 e.7-n2-therm V- t V- t2 V- t3 V- t4 V+ t V+ t2 V+ t3 V+ t4 <V >.4.2 -.2 -.4 -.6 -.8-3 -2-2 3 Figure. - 4: Simulations of granular gas is 3d rectangular cell poudres & grains 7 (6), 48-5 (Juillet 29)

R.Liu et al./ Simulation of 3d granular gas with dissipation (6) - 484 -.2.8.6 e.7-n6-therm V- t V- t2 V- t3 V- t4 V+ t V+ t2 V+ t3 V+ t4 <V >.4.2 -.2 -.4 -.6 -.8-3 -2-2 3 Figure. - 5: Simulations of granular gas is 3d rectangular cell.2.8.6.4 e.7-n2-therm V- t V- t2 V- t3 V- t4 V+ t V+ t2 V+ t3 V+ t4 <V >.2 -.2 -.4 -.6 -.8 - -3-2 - 2 3 Figure. - 6: Simulations of granular gas is 3d rectangular cell poudres & grains 7 (6), 48-5 (Juillet 29)

R.Liu et al./ Simulation of 3d granular gas with dissipation (6) - 485 -.5 e.7-n3-therm V- t V- t2 V- t3 V- t4 V+ t V+ t2 V+ t3 V+ t4 <V >.5 -.5 - -3-2 - 2 3 Figure. - 7: Simulations of granular gas is 3d rectangular cell.5 e.7-n4-therm V- t V- t2 V- t3 V- t4 V+ t V+ t2 V+ t3 V+ t4 <V >.5 -.5 - -3-2 - 2 3 Figure. - 8: Simulations of granular gas is 3d rectangular cell poudres & grains 7 (6), 48-5 (Juillet 29)

R.Liu et al./ Simulation of 3d granular gas with dissipation (6) - 486 -.8.6.4 e.7-n45-therm V- t V- t2 V- t3 V- t4 V+ t V+ t2 V+ t3 V+ t4 <V >.2 -.2 -.4 -.6 -.8-3 -2-2 3 Figure. - 9: Simulations of granular gas is 3d rectangular cell.2) with e=.8.5 e.8-n-therm V- t V- t2 V- t3 V- t4 V+ t V+ t2 V+ t3 V+ t4 <V >.5 -.5 - -3-2 - 2 3 Figure.2 - : Simulations of granular gas is 3d rectangular cell poudres & grains 7 (6), 48-5 (Juillet 29)

R.Liu et al./ Simulation of 3d granular gas with dissipation (6) - 487 -.2.8.6 e.8-n5-therm V- t V- t2 V- t3 V- t4 V+ t V+ t2 V+ t3 V+ t4 <V >.4.2 -.2 -.4 -.6 -.8-3 -2-2 3 Figure.2-2: Simulations of granular gas is 3d rectangular cell.2.8.6 e.8-n-therm V- t V- t2 V- t3 V- t4 V+ t V+ t2 V+ t3 V+ t4 <V >.4.2 -.2 -.4 -.6 -.8-3 -2-2 3 Figure.2-3: Simulations of granular gas is 3d rectangular cell poudres & grains 7 (6), 48-5 (Juillet 29)

R.Liu et al./ Simulation of 3d granular gas with dissipation (6) - 488 -.2.8.6 e.8-n2-therm V- t V- t2 V- t3 V- t4 V+ t V+ t2 V+ t3 V+ t4 <V >.4.2 -.2 -.4 -.6 -.8-3 -2-2 3 Figure.2-4: Simulations of granular gas is 3d rectangular cell.2.8.6 e.8-n6-therm V- t V- t2 V- t3 V- t4 V+ t V+ t2 V+ t3 V+ t4 <V >.4.2 -.2 -.4 -.6 -.8-3 -2-2 3 Figure.2-5: Simulations of granular gas is 3d rectangular cell poudres & grains 7 (6), 48-5 (Juillet 29)

R.Liu et al./ Simulation of 3d granular gas with dissipation (6) - 489 -.2.8.6 e.8-n2-therm V- t V- t2 V- t3 V- t4 V+ t V+ t2 V+ t3 V+ t4 <V >.4.2 -.2 -.4 -.6 -.8-3 -2-2 3 Figure.2-6: Simulations of granular gas is 3d rectangular cell.2.8.6 e.8-n3-therm V- t V- t2 V- t3 V- t4 V+ t V+ t2 V+ t3 V+ t4 <V >.4.2 -.2 -.4 -.6 -.8-3 -2-2 3 Figure.2-7: Simulations of granular gas is 3d rectangular cell poudres & grains 7 (6), 48-5 (Juillet 29)

R.Liu et al./ Simulation of 3d granular gas with dissipation (6) - 49 -.2.8.6 e.8-n4-therm V- t V- t2 V- t3 V- t4 V+ t V+ t2 V+ t3 V+ t4 <V >.4.2 -.2 -.4 -.6 -.8-3 -2-2 3 Figure.2-8: Simulations of granular gas is 3d rectangular cell.4.2.8.6 e.8-n45-therm V- t V- t2 V- t3 V- t4 V+ t V+ t2 V+ t3 V+ t4 <V >.4.2 -.2 -.4 -.6 -.8-3 -2-2 3 Figure.2-9: Simulations of granular gas is 3d rectangular cell poudres & grains 7 (6), 48-5 (Juillet 29)

R.Liu et al./ Simulation of 3d granular gas with dissipation (6) - 49 -.3) with e=.9.5 e.9-n-therm V- t V- t2 V- t3 V- t4 V+ t V+ t2 V+ t3 V+ t4 <V >.5 -.5 - -3-2 - 2 3 Figure.3 - : Simulations of granular gas is 3d rectangular cell.2.8.6.4 e.9-n5-therm V- t V- t2 V- t3 V- t4 V+ t V+ t2 V+ t3 V+ t4 <V >.2 -.2 -.4 -.6 -.8 - -3-2 - 2 3 Figure.3-2: Simulations of granular gas is 3d rectangular cell poudres & grains 7 (6), 48-5 (Juillet 29)

R.Liu et al./ Simulation of 3d granular gas with dissipation (6) - 492 -.2.8.6 e.9-n-therm V- t V- t2 V- t3 V- t4 V+ t V+ t2 V+ t3 V+ t4 <V >.4.2 -.2 -.4 -.6 -.8-3 -2-2 3 Figure.3-3: Simulations of granular gas is 3d rectangular cell.2.8.6.4 e.9-n2-therm V- t V- t2 V- t3 V- t4 V+ t V+ t2 V+ t3 V+ t4 <V >.2 -.2 -.4 -.6 -.8 - -3-2 - 2 3 Figure.3-4: Simulations of granular gas is 3d rectangular cell poudres & grains 7 (6), 48-5 (Juillet 29)

R.Liu et al./ Simulation of 3d granular gas with dissipation (6) - 493 -.2.8.6 e.9-n6-therm V- t V- t2 V- t3 V- t4 V+ t V+ t2 V+ t3 V+ t4 <V >.4.2 -.2 -.4 -.6 -.8-3 -2-2 3 Figure.3-5: Simulations of granular gas is 3d rectangular cell.2.8.6 e.9-n2-therm V- t V- t2 V- t3 V- t4 V+ t V+ t2 V+ t3 V+ t4 <V >.4.2 -.2 -.4 -.6 -.8-3 -2-2 3 Figure.3-6: Simulations of granular gas is 3d rectangular cell poudres & grains 7 (6), 48-5 (Juillet 29)

R.Liu et al./ Simulation of 3d granular gas with dissipation (6) - 494 -.2.8.6 e.9-n3-therm V- t V- t2 V- t3 V- t4 V+ t V+ t2 V+ t3 V+ t4 <V >.4.2 -.2 -.4 -.6 -.8-3 -2-2 3 Figure.3-7: Simulations of granular gas is 3d rectangular cell.2.8.6 e.9-n4-therm V- t V- t2 V- t3 V- t4 V+ t V+ t2 V+ t3 V+ t4 <V >.4.2 -.2 -.4 -.6 -.8-3 -2-2 3 Figure.3-8: Simulations of granular gas is 3d rectangular cell poudres & grains 7 (6), 48-5 (Juillet 29)

R.Liu et al./ Simulation of 3d granular gas with dissipation (6) - 495 -.4.2.8.6 e.9-n45-therm V- t V- t2 V- t3 V- t4 V+ t V+ t2 V+ t3 V+ t4 <V >.4.2 -.2 -.4 -.6 -.8-3 -2-2 3 Figure.3-9: Simulations of granular gas is 3d rectangular cell poudres & grains 7 (6), 48-5 (Juillet 29)

R.Liu et al./ Simulation of 3d granular gas with dissipation (6) - 496-2) V sum thermal excitation 2.) with e=.7 2.5 2.5 e.7-n-therm V- t V- t2 V- t3 V- t4 V+ t V+ t2 V+ t3 V+ t4 ΣV.5 -.5 - -.5-2 -3-2 - 2 3 Figure 2. - : Simulations of granular gas is 3d rectangular cell 8 6 4 e.7-n5-therm V- t V- t2 V- t3 V- t4 V+ t V+ t2 V+ t3 V+ t4 ΣV 2-2 -4-6 -3-2 - 2 3 Figure 2. - 2: Simulations of granular gas is 3d rectangular cell poudres & grains 7 (6), 48-5 (Juillet 29)

R.Liu et al./ Simulation of 3d granular gas with dissipation (6) - 497-2 8 6 e.7-n-therm V- t V- t2 V- t3 V- t4 V+ t V+ t2 V+ t3 V+ t4 4 ΣV 2-2 -4-6 -8-3 -2-2 3 Figure 2. - 3: Simulations of granular gas is 3d rectangular cell 5 e.7-n2-therm V- t V- t2 V- t3 V- t4 V+ t V+ t2 V+ t3 V+ t4 5 ΣV -5 - -3-2 - 2 3 Figure 2. - 4: Simulations of granular gas is 3d rectangular cell poudres & grains 7 (6), 48-5 (Juillet 29)

R.Liu et al./ Simulation of 3d granular gas with dissipation (6) - 498-2 5 e.7-n6-therm V- t V- t2 V- t3 V- t4 V+ t V+ t2 V+ t3 V+ t4 ΣV 5-5 - -5-3 -2-2 3 Figure 2. - 5: Simulations of granular gas is 3d rectangular cell 25 2 5 e.7-n2-therm V- t V- t2 V- t3 V- t4 V+ t V+ t2 V+ t3 V+ t4 ΣV 5-5 - -5-3 -2-2 3 Figure 2. - 6: Simulations of granular gas is 3d rectangular cell poudres & grains 7 (6), 48-5 (Juillet 29)

R.Liu et al./ Simulation of 3d granular gas with dissipation (6) - 499-4 3 2 e.7-n3-therm V- t V- t2 V- t3 V- t4 V+ t V+ t2 V+ t3 V+ t4 ΣV - -2-3 -3-2 - 2 3 Figure 2. - 7: Simulations of granular gas is 3d rectangular cell 4 3 2 e.7-n4-therm V- t V- t2 V- t3 V- t4 V+ t V+ t2 V+ t3 V+ t4 ΣV - -2-3 -3-2 - 2 3 Figure 2. - 8: Simulations of granular gas is 3d rectangular cell poudres & grains 7 (6), 48-5 (Juillet 29)

R.Liu et al./ Simulation of 3d granular gas with dissipation (6) - 5-5 4 3 e.7-n45-therm V- t V- t2 V- t3 V- t4 V+ t V+ t2 V+ t3 V+ t4 ΣV 2 - -2-3 -3-2 - 2 3 Figure 2. - 9: Simulations of granular gas is 3d rectangular cell 2.2) with e=.8 2.5 2.5 e.8-n-therm V- t V- t2 V- t3 V- t4 V+ t V+ t2 V+ t3 V+ t4 ΣV.5 -.5 - -.5-2 -3-2 - 2 3 Figure 2.2 - : Simulations of granular gas is 3d rectangular cell poudres & grains 7 (6), 48-5 (Juillet 29)

R.Liu et al./ Simulation of 3d granular gas with dissipation (6) - 5-8 6 4 e.8-n5-therm V- t V- t2 V- t3 V- t4 V+ t V+ t2 V+ t3 V+ t4 ΣV 2-2 -4-6 -8-3 -2-2 3 Figure 2.2-2: Simulations of granular gas is 3d rectangular cell 5 e.8-n-therm V- t V- t2 V- t3 V- t4 V+ t V+ t2 V+ t3 V+ t4 5 ΣV -5 - -3-2 - 2 3 Figure 2.2-3: Simulations of granular gas is 3d rectangular cell poudres & grains 7 (6), 48-5 (Juillet 29)

R.Liu et al./ Simulation of 3d granular gas with dissipation (6) - 52-5 5 e.8-n2-therm V- t V- t2 V- t3 V- t4 V+ t V+ t2 V+ t3 V+ t4 ΣV -5 - -5-3 -2-2 3 Figure 2.2-4: Simulations of granular gas is 3d rectangular cell 2 5 e.8-n6-therm V- t V- t2 V- t3 V- t4 V+ t V+ t2 V+ t3 V+ t4 ΣV 5-5 - -5-3 -2-2 3 Figure 2.2-5: Simulations of granular gas is 3d rectangular cell poudres & grains 7 (6), 48-5 (Juillet 29)

R.Liu et al./ Simulation of 3d granular gas with dissipation (6) - 53-3 25 2 5 e.8-n2-therm V- t V- t2 V- t3 V- t4 V+ t V+ t2 V+ t3 V+ t4 ΣV 5-5 - -5-2 -3-2 - 2 3 Figure 2.2-6: Simulations of granular gas is 3d rectangular cell 4 3 2 e.8-n3-therm V- t V- t2 V- t3 V- t4 V+ t V+ t2 V+ t3 V+ t4 ΣV - -2-3 -3-2 - 2 3 Figure 2.2-7: Simulations of granular gas is 3d rectangular cell poudres & grains 7 (6), 48-5 (Juillet 29)

R.Liu et al./ Simulation of 3d granular gas with dissipation (6) - 54-5 4 3 2 e.8-n4-therm V- t V- t2 V- t3 V- t4 V+ t V+ t2 V+ t3 V+ t4 ΣV - -2-3 -4-3 -2-2 3 Figure 2.2-8: Simulations of granular gas is 3d rectangular cell 6 5 4 3 e.8-n45-therm V- t V- t2 V- t3 V- t4 V+ t V+ t2 V+ t3 V+ t4 ΣV 2 - -2-3 -4-3 -2-2 3 Figure 2.2-9: Simulations of granular gas is 3d rectangular cell poudres & grains 7 (6), 48-5 (Juillet 29)

R.Liu et al./ Simulation of 3d granular gas with dissipation (6) - 55-2.3) with e=.9 2.5 2.5 e.9-n-therm V- t V- t2 V- t3 V- t4 V+ t V+ t2 V+ t3 V+ t4 ΣV.5 -.5 - -.5-2 -2.5-3 -2-2 3 Figure 2.3 - : Simulations of granular gas is 3d rectangular cell 8 6 4 e.9-n5-therm V- t V- t2 V- t3 V- t4 V+ t V+ t2 V+ t3 V+ t4 ΣV 2-2 -4-6 -8-3 -2-2 3 Figure 2.3-2: Simulations of granular gas is 3d rectangular cell poudres & grains 7 (6), 48-5 (Juillet 29)

R.Liu et al./ Simulation of 3d granular gas with dissipation (6) - 56-2 5 e.9-n-therm V- t V- t2 V- t3 V- t4 V+ t V+ t2 V+ t3 V+ t4 ΣV 5-5 - -5-3 -2-2 3 Figure 2.3-3: Simulations of granular gas is 3d rectangular cell 2 5 e.9-n2-therm V- t V- t2 V- t3 V- t4 V+ t V+ t2 V+ t3 V+ t4 ΣV 5-5 - -5-3 -2-2 3 Figure 2.3-4: Simulations of granular gas is 3d rectangular cell poudres & grains 7 (6), 48-5 (Juillet 29)

R.Liu et al./ Simulation of 3d granular gas with dissipation (6) - 57-25 2 5 e.9-n6-therm V- t V- t2 V- t3 V- t4 V+ t V+ t2 V+ t3 V+ t4 ΣV 5-5 - -5-2 -3-2 - 2 3 Figure 2.3-5: Simulations of granular gas is 3d rectangular cell 35 3 25 2 5 e.9-n2-therm V- t V- t2 V- t3 V- t4 V+ t V+ t2 V+ t3 V+ t4 ΣV 5-5 - -5-2 -3-2 - 2 3 Figure 2.3-6: Simulations of granular gas is 3d rectangular cell poudres & grains 7 (6), 48-5 (Juillet 29)

R.Liu et al./ Simulation of 3d granular gas with dissipation (6) - 58-5 4 3 e.9-n3-therm V- t V- t2 V- t3 V- t4 V+ t V+ t2 V+ t3 V+ t4 ΣV 2 - -2-3 -3-2 - 2 3 Figure 2.3-7: Simulations of granular gas is 3d rectangular cell 5 4 3 e.9-n4-therm V- t V- t2 V- t3 V- t4 V+ t V+ t2 V+ t3 V+ t4 ΣV 2 - -2-3 -3-2 - 2 3 Figure 2.3-8: Simulations of granular gas is 3d rectangular cell poudres & grains 7 (6), 48-5 (Juillet 29)

R.Liu et al./ Simulation of 3d granular gas with dissipation (6) - 59-6 5 4 3 e.9-n45-therm V- t V- t2 V- t3 V- t4 V+ t V+ t2 V+ t3 V+ t4 ΣV 2 - -2-3 -4-3 -2-2 3 Figure 2.3-9: Simulations of granular gas is 3d rectangular cell poudres & grains 7 (6), 48-5 (Juillet 29)

R.Liu et al./ Simulation of 3d granular gas with dissipation (6) - 5 - Appendix : Simulation technique A program of molecular dynamics working in C has been used to simulate the dynamics of a colliding gas of equal spheres with dissipation, with equal mass m. Ball-ball collision is treated using inelastic restitution coefficient e=v f /v i (=.9,.8 or.7), excluding rotation effects and rotation parameters. Ball diameter D is the space unit (D=). Rectangular box is used with dimension (x,y,) = (2*2*6). O is along vibration; Transverse directions are Ox and Oy, no transverse motion of the box is imposed. y 2 x 2 v (t) 6 (a)the shape of the container Bi- parabolic symmetric t Symmetric Sawteeth t Bi- parabolic non symmetric t Non Symmetric Sawteeth t (b) Different excitation types of the vertical walls We study 3d dynamics of N spheres (N=, 5, 2, 2, 3, 4, 45) with different excitation (symmetric and non symmetric bi-parabola and sawteeth drivings, thermal excitation (exp(-v²/kt)). In thermal excitation, balls which collide with moving wall get a random distribution according to the thermal noise. In bi-parabolic driving, the wall speed is assumed continuous and acceleration +Γ is applied during T, then changes to -Γ 2 during T 2 and conversely; so a period T=T +T 2, and the continuity condition leads to Γ T =Γ 2 T 2. This excitation is quite similar to a symmetric sinus wave when Γ = Γ. The program finds ball-ball and ball-wall collisions and the snapshots of ball positions and speeds are recorded every (N/) collisions; The program stops after *N collisions and contains * snapshots of 3d- cell and balls. Steady state is obtained after some time. The cell is cut into 59 bins perpendicular to vibration direction, and the different local quantities are averaged over two consecutive bins. Dynamics is studied in displaying different parameters such as the probability distribution functions (pdf) of the speed coordinates V, and V x (along and perpendicular to excitation respectively) at different position, the density distribution n(), the speed distribution V () as a function of the position, the mean speed <V >=Σ particles mv /(Σ particles m), which is also the mean flow, the mean temperature kt/m = Σ particles V² /(Σ particles ) and the mean pressure P = Σ particles mv². Only normal restitution coefficient e is introduced to take account of dissipation; No rotation and friction is included. We also separate the particles into two sets at a given instant, i.e. those ones which move towards + (positive V ), and those ones which move towards - (negative V ) and we plot the same quantities with respect to these directions, i.e. the density distribution n (±) (), the speed distribution V () as a function of the position, the mean speed <V (±) >=Σ particles mv (±) /(Σ particles m), which is also the mean flow in + or -, the mean temperature kt/m = Σ particles (V (±) ) ² /(Σ particles ) and the mean pressure P = Σ particles m(v (±) ) ², on graphs. Figure symbols and abbreviations: e.9: coefficient of restitution e = :9 N***: number of particles N = *** BP: bi-parabolic driving ST: saw-tooth driving Sym: symmetrical driving Nsym: Non-symmetrical driving poudres & grains 7 (6), 48-5 (Juillet 29)

R.Liu et al./ Simulation of 3d granular gas with dissipation (6) - 5 - Acknowledgements: CNES, CNSA, ECP, ESA and IOP-CAS are greatly thanked for partial funding. This work has been obtained during a stay of Liu Rui in Lab MSSMat which has been supported by China grant. Invited scholar at ECP, from IOP-CAS, Alan liurui4@mails.gucas.ac.cn 2 Invited Professor at ECP, from IOP-CAS, mayhou mayhou@aphy.iphy.ac.cn References [] T. Poschell & S. Luding, Granular Gases, Lectures Notes in Physics 564, (Springer-Verlag, Berlin, 2); Granular Gas Dynamics, Lectures Notes in Physics 624, edited by T. Poschel and N. V. Brilliantov, (Springer-Verlag, Berlin, 23); A. Barrat, E. Triac & M.H. Ernst, Granular gases: dynamics and collective effects, arxiv:cond-mat/4435 v2, 3/2/24, published in J. Phys. C (25); S.Luding, R.Cafiero, H.J. Herrmann, "Driven Granular Gas", in Granular Gas Dynamics, Lectures Notes in Physics 624, edited by T. Poschel and N. V. Brilliantov, (Springer-Verlag, Berlin, 23), 293 [2] J. Javier Brey, F. Moreno, R. Garcıa-Rojo and M. J. Rui-Montero, "Hydrodynamic Maxwell Demon in granular systems", Phys. Rev. E 65, p. 35 (2). I. Goldhirsch, Rapid granular flow, Annu. Rev. Fluid Mech. 35, 267 (23) ; [3] E. Falcon, R. Wunenburger, P. Evesque, S. Fauve, C. Chabot, Y. Garrabos & D. Beysens; Phys. Rev. Lett. 83 (2 juillet 999) 44-443 ; E. Falcon, P. Evesque, F. Palencia, C. Lecoutre-Chabot, S. Fauve, D. Beysens & Y. Garrabos, Collision statistics in a dilute granular gas fluidied by vibrations in low gravity, Europhys. Lett 74, 83- (26) ; M. Leconte, Y. Garrabos, E. Falcon, C. Lecoutre-Chabot, F. Palencia, P. Evesque, D. Beysens,, Journal of Statistical Mechanics: Theory and experiment, P72 (26); P. Evesque, Y. Garrabos, C. Lecoutre, F. Palencia, and D. Beysens, Dilute dissipative granular gas in Knudsen regime and in micro-gravity: evidence for a velostat as boundary conditions, Powders & Grains 25, Stuttgart, July 8-22, 25,in Powders & Grains 25, (Garcia-Rojo, Herrmann, McNamara ed., Balkema 25), pp. 7-; P. Evesque, E. Falcon, R. Wunenburger, S. Fauve, C. Lecoutre-Chabot, Y. Garrabos & D. Beysens, Gas-cluster transition of granular matter under vibration in microgravity, In "Proceedings of thefirst international Symposium on Microgravity Research & Applications in Physical Science and Biotechnology", Sorrento, Italy, -5 Sept 2, pp. 829-834 ; P. Evesque, F. Palencia, C. Lecoutre-Chabot, D. Beysens and Y. Garrabos, ISPS 24 (Toronto- 23-27 may 24); Microgravity Sci. Technol. XVI-, 28-284 (25); M. Leconte, Y. Garrabos, F. Palencia, C. Lecoutre, P. Evesque, D. Beysens, "Inelastic ball-plane impact: An accurate way to measure the normal restitution coefficient", Appl. Phys. Lett. 89, 24358 (26); M. Hou, R. Liu, G. Zhai, Z. Sun, K. Lu, Y. Garrabos and P. Evesque, Velocity distribution of vibration-driven granular gas in Knudsen regime, MicroGravity Sc. Technol. (accepted 28) [4] P. Evesque: Comparison between Classical-Gas behaviours and Granular-Gas ones in micro-gravity : Poudres & Grains 5, 6-82 (2) ; P. Evesque: Is Dissipative Granular Gas in Knudsen Regime Excited by Vibration Biphasic? Poudres & Grains 5, 8-34 (25); P. Evesque: On the role of boundary condition on the speed- & impact- distributions in dissipative granular gases in Knudsen regime excited by vibration Poudres & Grains 5, -6 (25) ; P. Evesque: Poudres & Grains 3, 2-26 (23), http://www.mssmat.ecp.fr/html_petg/rubrique.php3?id_rubrique= P. Evesque, "A model of dissipative granular gas: the ultimate case of complete inelasticity of grain-grain collision", Powders & Grains 25, Stuttgart, July 8-22, 25,in Powders & Grains 25, (Garcia-Rojo, Herrmann, McNamara ed., Balkema 25), pp. 3-34 [5] P. Evesque: Boundary conditions and the dynamics of a dissipative granular gas: slightly dense case; poudres & grains 6 (3), 38-62 (Septembre 27), and ref there in. [6] J. S. van Zon and F. C. MacKintosh, "Velocity Distributions in Dissipative Granular Gases", Phys.Rev. Lett. 93, 38 (24) [7] W. A. M. Morgado & E. R. Mucciolo; Numerical simulation of vibrated granular gases under realistic boundary conditions; arxiv:cond-mat/2484v (22) poudres & grains 7 (6), 48-5 (Juillet 29)

R.Liu et al./ Simulation of 3d granular gas with dissipation (6) - 52 - Notice pour les auteurs de poudres & grains : Objet de la publication poudres & grains est une revue publiant des articles scientifiques originaux dont le sujet traite des matériaux en grains, en poudre ou assimilés; elle est couverte par le copyright. Elle s'adresse à des professionnels de la recherche et de l'enseignement des secteurs public et privé. Chaque numéro a une version imprimée conservée à la Bibliothèque de France. La reproduction intégrale des articles et/ou de la revue pour des usages personnels ou afin d'archivage est autorisé et peut se faire par téléchargement. Une autorisation doit être demandée pour des reproductions même partielles. Soumission des articles: Les articles doivent être des originaux; un transfert de copyright doit être signé, spécifiant que l'auteur accepte les règles éditoriales, surtout celles relatives aux commentaires scientifiques, car les articles sont ouverts à discussion scientifique. Des liens électroniques seront établis dans la mesure du possible. Règles éditoriales: Tout auteur scientifique doit - Décrire honnêtement les résultats qu'il a obtenus tant théoriques qu'expérimentaux. - Accepter et favoriser le débat honnête entre scientifiques. - Ne pas faire de querelles de personne. - Respecter les droits des autres auteurs scientifiques et de l'antériorité scientifique en particulier. Tout manquement à ces règles supprime l'accès à la publication. L'auteur est seul responsable du contenu de l'article. Une commission éditoriale donne son avis au besoin; mais le vrai travail de rapporteur doit être exécuté a posteriori après publication, par la communauté scientifique. Tout lecteur scientifique doit - Faire une analyse critique des articles scientifiques qu'il lit de manière à se forger sa propre opinion - A la suite d'une lecture scientifique, porter à la connaissance des lecteurs scientifiques des résultats faisant partie du domaine public et exprimant les mêmes résultats ou des résultats contraires à ceux qu'il vient de lire. Notice de Mise en Page et Règles Typographiques La langue de la revue est le français ou l'anglais. Longueur maximum de l'article: 2pages; format A5, lisible par Acrobat reader (format pdf). marges: haut: cm ; bas: cm ; gauche:.25cm ; droite:.25cm; reliure: cm; entête haut:.9cm; entête bas:.9cm Polices: police général: times new roman ou symbol police pour les références, les légendes des figures, le résumé (abstract): times 8 abstract en italique sauf pour les caractères "symbole" ou en exposant ou en indice police du nom des auteurs: times new roman 3 police du Titre: times new roman 3 paragraphes: en interligne simple ligne d'espacement entre les paragraphes: Général: 6pts Que ce soit (i) entre 2 sections, (ii) pour la ère ligne du texte, (iii) avant, après ou entre équation. Retraits de la première ligne d'un paragraphe: Pas de retrait après une entête; Autrement retrait de.75 cm Entête de page contient ligne avec à gauche l'auteur et un titre abrégé (en italique, times new roman 8); à droite le n de page en times new roman, puis ligne vide de caractère, taille 8pts. Exemple: A.Parson et al./ short title - 52 Pied de page contient ligne vide de 6pts, puis ligne contenant le nom de la revue (poudres & grains), son numéro (en gras times new roman 8), les numéros de pages et la date de parution. Attention le p et le g sont en times new roman italique Exemple: poudres & grains 6, -6 ( août-septembre 999) Adresse: ne pas oublier de donner l'e-mail Couverture: times new roman 2 (en gras italique pour le n et la date; en italique pour le nom et la page). Adresse: P. Evesque, éditeur, 33 4 3 2 8; fax: 33 4 3 4 42; E-mail: evesque@mssmat.epc.fr Lab MSSM, Ecole Centrale Paris, 92295 Châtenay-Malabry, France; web: prunier.mms.ecp.fr poudres & grains 7 (6), 48-5 (Juillet 29)