Session 2004 Physique Appliquée 4 heures



Documents pareils
ELEC2753 Electrotechnique examen du 11/06/2012

LA PUISSANCE DES MOTEURS. Avez-vous déjà feuilleté le catalogue d un grand constructeur automobile?

Monte charge de cuisine PRESENTATION DU MONTE CHARGE

Equipement d un forage d eau potable

COMMANDER la puissance par MODULATION COMMUNIQUER

véhicule hybride (première

Série 77 - Relais statiques modulaires 5A. Caractéristiques. Relais temporisés et relais de contrôle

Série limitée Classe C 250 CDI BlueEFFICIENCY Prime Edition

0.8 U N /0.5 U N 0.8 U N /0.5 U N 0.8 U N /0.5 U N 0.2 U N /0.1 U N 0.2 U N /0.1 U N 0.2 U N /0.1 U N

M HAMED EL GADDAB & MONGI SLIM

Les puissances La notion de puissance La puissance c est l énergie pendant une seconde CHAPITRE

Relais d'arrêt d'urgence, protecteurs mobiles

Relais d'arrêt d'urgence, protecteurs mobiles

1 Savoirs fondamentaux

Electrotechnique. Fabrice Sincère ; version

MOTO ELECTRIQUE. CPGE / Sciences Industrielles pour l Ingénieur TD06_08 Moto électrique DIAGRAMME DES INTER-ACTEURS UTILISATEUR ENVIRONNEMENT HUMAIN

(Exemple ici de calcul pour une Ducati 748 biposto, et également pour un S2R1000, équipé d un disque acier en fond de cloche, et ressorts d origine)

Développements limités. Notion de développement limité

Charges électriques - Courant électrique

Chapitre 02. La lumière des étoiles. Exercices :

Introduction : Les modes de fonctionnement du transistor bipolaire. Dans tous les cas, le transistor bipolaire est commandé par le courant I B.

TSTI 2D CH X : Exemples de lois à densité 1

Références pour la commande

Caractéristiques des ondes

CONTRÔLE DE BALISES TYPE TB-3 MANUEL D'INSTRUCTIONS. ( Cod ) (M H) ( M / 99G ) (c) CIRCUTOR S.A.

Test : principe fondamental de la dynamique et aspect énergétique

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.

BACCALAURÉAT PROFESSIONNEL EPREUVE DE TRAVAUX PRATIQUES DE SCIENCES PHYSIQUES SUJET A.1

La compensation de l énergie réactive

08/07/2015

mm 1695 mm. 990 mm Porte-à-faux avant. Modèle de cabine / équipage Small, simple / 3. Codage

DETERMINATION DE LA CONCENTRATION D UNE SOLUTION COLOREE

Physique, chapitre 8 : La tension alternative

Les résistances de point neutre

1 000 W ; W ; W ; W. La chambre que je dois équiper a pour dimensions : longueur : 6 m largeur : 4 m hauteur : 2,50 m.

Panorama. Protection et commande de moteur Disjoncteurs, contacteurs et relais de protection

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée.

Spectrophotométrie - Dilution 1 Dilution et facteur de dilution. 1.1 Mode opératoire :

Multitension Monofonction. Multitension Multifonction

pka D UN INDICATEUR COLORE

Spécifications d installation Précision des mesures

Limites finies en un point

VOLT LA NOUVELLE CHEVROLET

Gestion et entretien des Installations Electriques BT

Nombre dérivé et tangente

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

RELAIS STATIQUE. Tension commutée

III.2 SPECTROPHOTOMÈTRES

CONCOURS GÉNÉRAL DES LYCÉES Session Durée 5 heures. Corrigé. Poséidon au secours d Éole pour produire l énergie électrique

Electrotechnique: Electricité Avion,

Varset Direct. Batteries fixes de condensateurs basse tension Coffrets et armoires. Notice d utilisation. Armoire A2

Chapitre 2 : Caractéristiques du mouvement d un solide

Relais statiques SOLITRON MIDI, Commutation analogique, Multi Fonctions RJ1P

Relais statiques SOLITRON, 1 ou 2 pôles Avec dissipateur intégré

Document(s) associé(s) et annexe(s) Date d'application. Version. Règles NEBEF 2 version du 13/12/2014 Règles NEBEF SI. Résumé / Avertissement

INSTRUCTION DE CRÉATION D UN COMPTE CLIENT

Notions fondamentales sur le démarrage des moteurs

Planche n o 22. Fonctions de plusieurs variables. Corrigé

TP 03 B : Mesure d une vitesse par effet Doppler

Si la source se rapproche alors v<0 Donc λ- λo <0. La longueur d onde perçue est donc plus petite que si la source était immobile

CABLECAM de HYMATOM. Figure 1 : Schéma du système câblecam et détail du moufle vu de dessus.

CHARGE ACTIVE. Banc d'essais de machines tournantes. Notice d'instruction. Cette notice doit être transmise. à l'utilisateur final

GIRAFE ENERGIES RENOUVELABLES MATERIAUX RENOUVELABLES LA SYNERGIE PARFAITE

Système de contrôle TS 970

AP1.1 : Montages électroniques élémentaires. Électricité et électronique

SEO 200. Banc d étude du positionnement angulaire d une éolienne face au vent DESCRIPTIF APPLICATIONS PEDAGOGIQUES

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme

PUISSANCE ET ÉNERGIE ÉLECTRIQUE

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours.

Chapitre 6. Fonction réelle d une variable réelle

Tableau d Alarme Incendie Type 3 type marche/arrêt avec ou sans flash

Chapitre 7: Énergie et puissance électrique. Lequel de vous deux est le plus puissant? L'énergie dépensée par les deux est-elle différente?

OPTIMISEZ LA QUALITÉ DE L ÉNERGIE

Convertisseurs Statiques & Machines

UMG 20CM. UMG 20CM Appareil de surveillance des circuits de distribution avec 20 entrées et RCM. Analyse d harmoniques RCM. Gestion d alarmes.

INSTALLATIONS INDUSTRIELLES

DOCUMENT RESSOURCE SONDES PRESENTATION

Perrothon Sandrine UV Visible. Spectrophotométrie d'absorption moléculaire Étude et dosage de la vitamine B 6

I. Ensemble de définition d'une fonction

Cahier technique n 207

document proposé sur le site «Sciences Physiques en BTS» : BTS AVA 2015

L exclusion mutuelle distribuée

MESURE DE LA TEMPERATURE

TD 11. Les trois montages fondamentaux E.C, B.C, C.C ; comparaisons et propriétés. Association d étages. *** :exercice traité en classe.

Toujours pionnier, Opel fait progresser la mobilité électrique

CH 11: PUIssance et Énergie électrique

PRODUIRE DES SIGNAUX 1 : LES ONDES ELECTROMAGNETIQUES, SUPPORT DE CHOIX POUR TRANSMETTRE DES INFORMATIONS

CH.6 Propriétés des langages non contextuels

Messagerie & accès Internet

Vous avez dit... LED??? DOCLED V2 Page 1 / 14

Le transistor bipolaire. Page N 6 Tranlin

Module Relais de temporisation DC V, programmable

CONCOURS COMMUNS POLYTECHNIQUES

CARACTERISTIQUE D UNE DIODE ET POINT DE FONCTIONNEMENT

e.mobility La mobilité durable d Enovos

Chapitre 4 : Le transistor Bipolaire

Développements limités, équivalents et calculs de limites

2 La technologie DTC ou le contrôle direct de couple Guide technique No. 1

Le triac en commutation : Commande des relais statiques : Princ ipe électronique

Transcription:

Session 24 Physique Appliquée 4 heures 1/8 Production d'électricité avec une éolienne Ce problème est constitué de 4 parties indépendantes. Pour les grandeurs électriques, les lettres minuscules représentent les grandeurs instantanées, les lettres majuscules représentent les grandeurs efficaces ou continues. Présentation Une éolienne de puissance nominale 3 kw alimente un site isolé (une île) en électricité. Son rotor équipé de trois pales longues de 15 m est situé à l'extrémité d'un mât haut de 4 m. Elle peut fournir sa puissance nominale quand la vitesse du vent est comprise entre 5 km/h et 8 km/h ce qui est souvent le cas sur ce site. Multiplicateur de vitesse mécanique à engrenage, T Machine asynchrone fonctionnant en génératrice G 3 ph s Charge v, T v Commande de l'orientation des pales figure 1 Commande des interrupteurs Elaboration des commandes Niveau de charge Onduleur autonome Batterie Les pales de l éolienne mises en mouvement par le vent entraînent le rotor d une machine asynchrone par l intermédiaire d'un multiplicateur de vitesse à engrenage. Les enroulements du stator de la machine asynchrone sont soumis à un système triphasé de tensions produit par un onduleur autonome alimenté par une batterie. L onduleur impose donc la fréquence de synchronisme de la machine. L'énergie électrique absorbée par la charge est fournie par la machine asynchrone qui fonctionne en génératrice quand le couple exercé par le vent sur les pales du rotor suffit. La vitesse de rotation des pales v est imposée par la machine asynchrone au glissement près. Le couple T v exercé par les pales sur l'axe du rotor dépend de la vitesse du vent. Un système de contrôle l ajuste en fonction des besoins en puissance en agissant sur l'orientation des pales. Dans le cas où la vitesse du vent est insuffisante, la batterie prend le relais de la génératrice pour assurer la continuité de service. L onduleur doit être réversible en courant pour que la batterie puisse être rechargée. Partie A - Etude de la machine asynchrone fonctionnant en moteur Il s'agit uniquement dans cette partie d élaborer le schéma électrique équivalent d une phase de la machine asynchrone en fonctionnement moteur à partir des informations délivrées par le constructeur. Caractéristiques nominales du moteur - 4 pôles (p = 2), rotor à cage - alimentation 23 V / 4 V - 5 Hz

- puissance utile nominale : P u = 3 kw - vitesse nominale N = 1485 tr.min -1 - rendement nominal = 96 % - les pertes mécaniques sont supposées constantes et égales à p m = 1, kw. - les pertes fer rotoriques et les pertes Joule statoriques sont négligées. 2/8 A.1 - Questions préliminaires A.1.1 - Calculer la vitesse de synchronisme quand la machine est alimentée par le réseau 5 Hz. Exprimer cette grandeur en rad.s -1, (notée s ), puis en tr.min -1, (notée N s ). En déduire la valeur nominale du glissement. A.1.2 - Compléter le diagramme des puissances sur le document réponse n 1 en faisant apparaître les puissances ci-dessous : - Puissance utile.............. P u = T u. - Puissance transmise au rotor.. P tr = T e. s - Puissance mécanique........ P M = T e. - Puissance absorbée.......... P abs - Pertes joule dans le rotor...... p jr - Pertes mécaniques.......... p m - Pertes fer statoriques......... p f A.2 - Calcul des couples nominaux A.2.1 - Calculer le moment du couple utile nominal T u. A.2.2 - Calculer le moment du couple de pertes mécaniques T m. A.2.3 - Calculer le moment du couple électromagnétique nominal T e. A.3 - Calcul des puissances nominales A.3.1 - Calculer la puissance nominale transmise au rotor P tr. En déduire les pertes par effet Joule au rotor p jr. A.3.2 - Calculer la puissance active absorbée par le moteur P abs. En déduire les pertes fer p f. A.4 - Modèle électrique équivalent d'une phase de la machine asynchrone On admet qu'on peut modéliser chaque phase de la machine asynchrone fonctionnant en moteur par le schéma électrique suivant. v i i R f X m X figure 2 i r R g R f modélise les pertes fer X m est la réactance magnétisante du stator R est la résistance du rotor ramenée au stator X est la réactance totale de fuites vue du stator g est le glissement v est une tension simple du réseau de valeur efficace V = 23 V et de fréquence 5 Hz. i est l'intensité du courant de ligne ; i r est l intensité du courant rotorique ramené au stator. Dans la suite du problème, on prendra les valeurs approchées suivantes : R f = 19 X m = 1,3 X =,13 R = 5, m On se propose de vérifier la cohérence de ces valeurs avec les résultats obtenus précédemment. A.4.1 - Exprimer les pertes fer statoriques p f en fonction de R f et V. En déduire la valeur de R f. A.4.2 - Exprimer la valeur efficace r du courant i r en fonction de V, X, R et g. Donner sa valeur numérique pour g = 1%. 2 A.4.3 - La puissance nominale transmise au rotor P tr a pour expression Ptr 3 R r g. Calculer la valeur de P tr pour g = 1%. Comparer avec la valeur calculée en A.3.1.

3/8 Partie B - Machine fonctionnant en génératrice hypersynchrone Le stator de la machine asynchrone est alimenté par un système triphasé de tensions 23 V / 4 V 5 Hz. Le rotor est entraîné en rotation par les pales de l'éolienne par l'intermédiaire d'un multiplicateur de vitesse mécanique dont le rapport de multiplication m est égal à 35. Conventions de signe On conserve les conventions de signes représentées sur le schéma (figure 2) du modèle équivalent par phase de la machine (convention récepteur). Quand l'éolienne fonctionne normalement, la machine fonctionne en génératrice : elle fournit de la puissance active qui prend alors une valeur négative. Les vitesses de rotation restant positives, les moments des couples deviennent négatifs. B.1 - Vitesse et glissement en condition nominale Dans les conditions de fonctionnement nominal, la vitesse de rotation des pales est N = 43,3 tr.mn -1. B.1.1 - Déterminer la vitesse de rotation N du rotor de la machine asynchrone. B.1.2 - En déduire la valeur du glissement g. Justifier l'appellation génératrice hypersynchrone. B.2 - Caractéristique couple - vitesse de la machine B.2.1 - On rappelle deux expressions de la puissance transmise au rotor : 2 Ptr Te. s et Ptr 3 R r g. Quand le glissement est très faible (g<<1), on peut faire l'approximation : gv r R. En déduire une expression approchée du couple électromagnétique T e en fonction de, s, V et R. Calculer la valeur numérique de T e pour les valeurs suivantes de :,99 s ; s ; 1,1 s. B.2.2 - La caractéristique couple vitesse est tracée sur le document réponse n 1. Tracer sur le même graphique la caractéristique approchée valable quand g << 1. B.2.3 - Repérer sur cette courbe par une croix, le point correspondant aux conditions de fonctionnement nominal de l'éolienne. B.3 - Application Le bilan des puissances pour l'ensemble constitué du multiplicateur de vitesse et de la machine asynchrone, obtenu à l'occasion d'un essai, a donné : Pertes totales p t = 18,4 kw Puissance à l'entrée du multiplicateur de vitesse P v Puissance à la sortie de la machine asynchrone P G = - 287,6 kw figure 3 B.3.1 - Calculer la puissance P v à l'entrée du multiplicateur de vitesse. B.3.2 - Montrer, en utilisant les relations fournies en B.2.1 que le glissement a pour expression T..R e s approchée : g 2. 3.V En déduire une valeur approchée du glissement sachant que T e = -1882 N.m.

4/8 B.3.3 - Montrer que la valeur efficace r de i r est voisine de 428 A. B.3.4 - Donner l'expression de la puissance réactive Q G consommée par la machine asynchrone en fonction de V, r, X m et X. Donner sa valeur numérique. B.3.5 - Calculer la puissance apparente S G mise en jeu dans la machine. En déduire le facteur de puissance de l installation. B.3.6 - Quelle solution technologique permettrait d'améliorer ce facteur de puissance? Partie C - Etude de l onduleur L onduleur comprend 6 cellules constituées d'un TGBT et d'une diode. Les TGBT sont considérés comme des interrupteurs parfaits unidirectionnels commandés à l'ouverture et à la fermeture. Les diodes sont supposées parfaites (tension nulle à leurs bornes quand elles sont passantes). On assimile la batterie à une source idéale de tension de f.é.m.. T 1 D 1 T 2 D 2 T 3 D 3 v A A i A v B B i B O v C C i C Charge T' 1 D' 1 T' 2 D' 2 T' 3 D' 3 figure 4 C.1 - Tensions délivrées par l'onduleur Les séquences de commande des interrupteurs sont données sur le document réponse n 2. C.1.1 - Les interrupteurs présents sur un même bras de l onduleur peuvent-ils être commandés simultanément à la fermeture? Justifier la réponse. C.1.2 - Tracer sur le document réponse n 2, les chronogrammes des tensions composées u AB, u BC et u CA. C.1.3 - On rappelle que les tensions simples aux bornes de la charge ont pour expressions uab uca ubc uab uca ubc respectives : v A ; vb ; vc. 3 3 3 Construire les chronogrammes des tensions simples v A, v B et v C sur le document réponse n 2. C.1.4 - Tracer l'allure des termes fondamentaux v A1, v B1 et v C1 de v A, v B et v C sur le document réponse n 2. C.1.5 - La valeur efficace du fondamental des tensions simples a pour expression : VA1 V 2 B1 VC1 EB. En déduire la valeur de la f.é.m. que doit délivrer la batterie pour que le fondamental des tensions simples ait pour valeur efficace 23 V. C.2 - L onduleur alimente la charge seule (quand l'éolienne ne fonctionne pas)

5/8 On néglige dans cette partie les harmoniques du courant absorbé par chaque phase de la charge devant le fondamental. Chaque élément de la charge peut être modélisé par une source de courant sinusoïdal de valeur efficace 1 en retard de 1 par rapport à la tension à ses bornes. Les chronogrammes de i A, i B et i C sont tracés sur le document réponse n 3 pour 1 4 C.2.1 - Indiquer les séquences de conduction des 6 éléments D 1, T 1, D 2, T 2, D 3, T 3 sur le document réponse n 3. C.2.2 - Tracer l'allure du courant i débité par la batterie sur le document réponse n 3. (On remarquera que i A + i B + i C = ). C.2.3 - Calculer la valeur moyenne <i> du courant délivré parla batterie dans le cas où la puissance active P ch absorbée par la charge vaut 2 kw et vaut 51 V. C.3 - L'onduleur est connecté à la charge et à l'éolienne G 3 ph P G, Q G P ch, Q ch Charge On adopte la convention récepteur pour chacun des éléments apparaissant sur le schéma ci-contre. P, Q Quand un élément (machine asynchrone, onduleur ou charge) absorbe de la puissance active ou réactive, celle-ci est comptée positivement. En revanche, s'il fournit de la puissance, elle est comptée négativement. Onduleur autonome Batterie figure 5 Dans cette partie, on néglige toujours les harmoniques de courant devant le fondamental. On suppose que la charge absorbe constamment la puissance active P ch = 2 kw et la puissance réactive Q ch = 15 kvar. On s'intéresse à deux cas de fonctionnement : Cas n 1 - l'éolienne fonctionne à pleine puissance : P G1 = - 3 kw et Q G1 = 2 kvar. Cas n 2 - le vent est faible :................... P G2 = -23 kw et Q G2 = 123 kvar. C.3.1 - Calculer pour chacun des cas les puissances actives et réactives (P 1, P 2, Q 1, Q 2 ) mises en jeu au niveau de l onduleur. C.3.2 - Dire pour chacun des cas si la batterie se charge ou se décharge.

6/8 Document réponse n 1 A.1.2 Diagramme des puissances de la machine fonctionnant en moteur p _ p _ p _ P _ P _ P _ P _ B.2 Caractéristique couple vitesse de la machine 4 T e (N.m) 3 2 1 (rad.s -1 ) 13 135 14 145 15 155 16 165 17 175 18-1 -2-3 -4

Document réponse n 2 7/8 C.1 - Tensions délivrées par l'onduleur T 1 T' 1 T 2 T' 2 T 3 commande à la fermeture commande à l'ouverture T' 3 u AB - u BC - u CA - v A, v A1 - v B, v B1 - v C, v C1 -

8/8