Loi normale et échantillonnage

Documents pareils
Probabilités. Rappel : trois exemples. Exemple 2 : On dispose d un dé truqué. On sait que : p(1) = p(2) =1/6 ; p(3) = 1/3 p(4) = p(5) =1/12

Fluctuation d une fréquence selon les échantillons - Probabilités

Probabilités Loi binomiale Exercices corrigés

Statistiques Décisionnelles L3 Sciences Economiques & Gestion Faculté d économie, gestion & AES Université Montesquieu - Bordeaux

TESTS D'HYPOTHESES Etude d'un exemple

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)

Probabilités conditionnelles Loi binomiale

4. Exercices et corrigés

Les probabilités. Chapitre 18. Tester ses connaissances

Probabilités conditionnelles Loi binomiale

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé

I. Cas de l équiprobabilité

NOTE SUR LA MODELISATION DU RISQUE D INFLATION

TSTI 2D CH X : Exemples de lois à densité 1

Exercices supplémentaires sur l introduction générale à la notion de probabilité

Probabilités. I Petits rappels sur le vocabulaire des ensembles 2 I.1 Définitions... 2 I.2 Propriétés... 2

Chapitre 3 : Principe des tests statistiques d hypothèse. José LABARERE

Probabilités sur un univers fini

Listes de fournitures du secondaire pour la rentrée

Chapitre 3. Les distributions à deux variables

Principe d un test statistique

UFR de Sciences Economiques Année TESTS PARAMÉTRIQUES

Exercices sur le chapitre «Probabilités»

Probabilité. Table des matières. 1 Loi de probabilité Conditions préalables Définitions Loi équirépartie...

Correction du baccalauréat ES/L Métropole 20 juin 2014

Les suites numériques

La simulation probabiliste avec Excel

Exercices de dénombrement

Estimation: intervalle de fluctuation et de confiance. Mars IREM: groupe Proba-Stat. Fluctuation. Confiance. dans les programmes comparaison

Actuariat I ACT2121. septième séance. Arthur Charpentier. Automne charpentier.arthur@uqam.ca. http ://freakonometrics.blog.free.

Biostatistiques Biologie- Vétérinaire FUNDP Eric Depiereux, Benoît DeHertogh, Grégoire Vincke

Exemple On lance une pièce de monnaie trois fois de suite. Calculer la probabilité d obtenir exactement deux fois pile.

CALCUL DES PROBABILITES

Représentation d une distribution

Indépendance Probabilité conditionnelle. Chapitre 3 Événements indépendants et Probabilités conditionnelles

ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #4-5

1. Déterminer l ensemble U ( univers des possibles) et l ensemble E ( événement) pour les situations suivantes.

Systèmes de transmission

Qu est-ce qu une probabilité?

Statistiques à une variable

La problématique des tests. Cours V. 7 mars Comment quantifier la performance d un test? Hypothèses simples et composites

Baccalauréat ES/L Amérique du Sud 21 novembre 2013

LES GENERATEURS DE NOMBRES ALEATOIRES

Feuille d exercices 2 : Espaces probabilisés

Estimation et tests statistiques, TD 5. Solutions

Couples de variables aléatoires discrètes

Ressources pour le lycée général et technologique

Tests de comparaison de moyennes. Dr Sahar BAYAT MASTER 1 année UE «Introduction à la biostatistique»

Arbre de probabilité(afrique) Univers - Evénement

NOTIONS DE PROBABILITÉS

PROBABILITÉS CONDITIONNELLES

TRIGONOMETRIE Algorithme : mesure principale

Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes

1S9 Balances des blancs

Espaces probabilisés

LEÇON N 7 : Schéma de Bernoulli et loi binomiale. Exemples.

Théorie et Codage de l Information (IF01) exercices Paul Honeine Université de technologie de Troyes France

Calculs de probabilités avec la loi normale

C est à vous qu il appartient de mettre en place des conditions optimales pour permettre la meilleure réalisation possible.

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé

Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles

Statistiques II. Alexandre Caboussat Classe : Mardi 11h15-13h00 Salle : C110.

Loi binomiale Lois normales

Distribution Uniforme Probabilité de Laplace Dénombrements Les Paris. Chapitre 2 Le calcul des probabilités

Chapitre 2 Les ondes progressives périodiques

Feuille 6 : Tests. Peut-on dire que l usine a respecté ses engagements? Faire un test d hypothèses pour y répondre.

Travaux dirigés d introduction aux Probabilités

GEA II Introduction aux probabilités Poly. de révision. Lionel Darondeau

P1 : Corrigés des exercices

Calculs de probabilités conditionelles

FctsAffines.nb 1. Mathématiques, 1-ère année Edition Fonctions affines

L E Ç O N. Marches aléatoires. Niveau : Terminale S Prérequis : aucun

Annexe commune aux séries ES, L et S : boîtes et quantiles

Plan général du cours

Comparaison de fonctions Développements limités. Chapitre 10

4 Distributions particulières de probabilités

IFT3245. Simulation et modèles

Université Paris 8 Introduction aux probabilités Licence Informatique Exercices Ph. Guillot. 1 Ensemble fondamental loi de probabilité

Table des matières. Télécharger MetaTrader 4. Première connexion à MetaTrader 4. Se connecter à MetaTrader 4. Modifier la langue

Raisonnement par récurrence Suites numériques

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures)

Variables Aléatoires. Chapitre 2

Analyse de la variance Comparaison de plusieurs moyennes

Peut-on imiter le hasard?

Introduction à la Statistique Inférentielle

1. Introduction Création d'une requête...2

Exo7. Probabilité conditionnelle. Exercices : Martine Quinio

Chapitre 6 Test de comparaison de pourcentages χ². José LABARERE

C f tracée ci- contre est la représentation graphique d une

1 TD1 : rappels sur les ensembles et notion de probabilité

- un jeu de K cartes représentées par des nombres C 1, C 2 à C K avec K entier strictement

Probabilités sur un univers fini

Chap17 - CORRECTİON DES EXERCİCES

TEMPÉRATURE DE SURFACE D'UNE ÉTOILE

TESTS D HYPOTHÈSE FONDÉS SUR LE χ².

Probabilités III Introduction à l évaluation d options

Probabilités. I - Expérience aléatoire. II - Evénements

Cours Fonctions de deux variables

SYSTEMES LINEAIRES DU PREMIER ORDRE

Les devoirs en Première STMG

Transcription:

Loi normale et échantillonnage 1. Loi normale Exemple introductif Une entreprise produit des ampoules. Soit la variable qui à chaque ampoule associe sa durée de vie en heures. Cette durée n est pas nécessairement un nombre entier d heures et théoriquement on ne connaît pas la durée maximale de vie d une telle ampoule. La variable aléatoire est donc continue à valeurs dans. La fonction représentée ci-dessous a une aire sous la courbe égale à 1. Elle va permettre de calculer des probabilités. Considérons l événement «la durée de vie de l ampoule est comprise entre 150 et 200 heures». Cet événement se note. Sa probabilité se calcule en mesurant l aire comprise entre la courbe de, l axe des abscisses et les droites d équations et. Ici on a donc. De même, la probabilité que l ampoule ait une durée de vie supérieure à 225 heures est. La courbe étant symétrique par rapport à la droite d équation moyenne d une ampoule est 200 heures. On dit que l espérance de est 200 heures. On la note (lire «mu»)., la durée de vie Considérons à présent une nouvelle fonction ci-dessous. Sa courbe est encore symétrique par rapport à la droite d équation, mais elle davantage «resserrée» que la précédente. Loi normale et échantillonnage Classe de Terminale STMG Page 1

Concrètement, les ampoules ont encore une durée de vie moyenne de 200 heures, mais il est plus probable qu elle meurt autour de 200 heures dans le premier exemple. La différence entre ces deux cas est mesuré par un nombre positif, appelé écart-type, noté (lire «sigma»). Plus est proche de, plus la courbe est resserrée autour de la moyenne. Les deux variables aléatoires que l on vient d étudier sont des exemples de variable aléatoires suivant des lois normales. Courbe de la loi normale Comme on vient de le voir, deux paramètres caractérisent une loi normale : son espérance ; son écart-type. On parle de loi normale de paramètres et, ce que l on note. Ainsi par exemple, la loi a pour paramètres et. Rôle de l'espérance Les 3 lois normales suivantes ont le même écart-type. On constate que permet de déplacer horizontalement la courbe, mais ne modifie pas sa forme. La courbe de la loi normale est symétrique par rapport à la droite d équation. Rôle de l'écart-type Les 3 lois normales suivantes ont la même espérance. On constate que modifie la hauteur de la «cloche» sans modifier la symétrie. Plus est petit, plus la courbe est «resserrée» autour de son axe de symétrie. Loi normale et échantillonnage Classe de Terminale STMG Page 2

Calcul de probabilité avec la loi normale Soit suivant une loi normale. La probabilité que la variable aléatoire appartienne à est égale à l'aire du domaine compris entre la courbe de la loi normale, l'axe des abscisses et les droites d'équation et. On définit de même les probabilités ou. Exemple A Soit une variable aléatoire suivante une loi normale de paramètre et. On donne ci-dessous la courbe représentative de la densité de ainsi que les valeurs de deux aires. Calculer a. b. c. d. e. f. Utilisation de la calculatrice Soit une variable aléatoire suivant une loi normale d écart-type et de variance. Le menu Distrib, obtenue en faisant 2nde var, permet d accéder à la commande normalfrép. Calcul de Calcul de Calcul de Syntaxe TI normalfrép(a,b,μ,σ) normalfrép(-10^99,b,μ,σ) normalfrép(b,10^99,μ,σ) Exemple A La calculatrice permet d effectuer les calculs de probabilité ci-dessus. a. s obtient avec NormalFrép(2,5,4,1.7). b. s obtient avec NormalFrép(-10^99,2,4,1.7). d. s obtient avec NormalFrép(5,10^99,4,1.7). Loi normale et échantillonnage Classe de Terminale STMG Page 3

En Casio, la commande est normcd(a,b,σ,μ) qui s obtient par «OPTN», «STAT», puis «DIST». Un intervalle à connaître Soit une variable aléatoire suivant une loi normale d écart-type et de variance. Alors. L intervalle est appelé intervalle de fluctuation de au seuil de 95 %. 2. Échantillonnage et estimation Principe de l échantillonnage et de l estimation On illustre la situation ainsi : on dispose d'une grande urne où se trouvent un très grand nombre de boules rouges et bleues. Cas 1 : la proportion des boules rouges est connue On tire au hasard avec remise boules de l'urne. On obtient donc une fréquence de boules rouges sur cet échantillon. On s'attend à ce que la fréquence f observée soit «proche» de, fréquence théorique. On est ici dans le cadre d'un échantillonnage. Cas 2 : la proportion des boules rouges est inconnue On veut donc estimer la proportion de boules rouges dans l'urne. Comme il y en a beaucoup, on ne peut pas toutes les compter. On tire donc au hasard avec remise n boules de l'urne. On obtient donc une fréquence de boules rouges sur cet échantillon. On s'attend à ce que la fréquence théorique soit «proche» de, fréquence observée. On est ici dans le cadre d'une estimation. Intervalles de fluctuation et de confiance Échantillonnage On connait, fréquence théorique d'un caractère sur une population. On a un échantillon de taille. L intervalle est appelé intervalle de fluctuation au seuil 95 % de la fréquence de ce caractère aléatoire de taille issu de la population. Conditions de validité :, et. Interprétation. La fréquence observée sur un échantillon de taille appartient à l'intervalle de fluctuation au seuil 95 % dans 95 % des cas. Estimation On connait, fréquence observée d'un caractère sur un échantillon de taille d'une population. L'intervalle est appelé intervalle de confiance au seuil 95 % de la proportion de ce caractère aléatoire de la population. Interprétation. Au moins 95 % des intervalles de confiance au seuil 95 % contiennent la fréquence théorique. Loi normale et échantillonnage Classe de Terminale STMG Page 4

Exemple Dans une urne contenant 4 boules rouges et 6 boules blanches, on effectue 10000 tirages au hasard avec remise. On obtient donc un échantillon de taille. La proportion de boules rouges est égale à. Comme, et, l intervalle de fluctuation au seuil de 95 % de la fréquence de boules rouges observées est Cela signifie qu avec une probabilité d au moins 95 %, la fréquence de boules rouges observées dans un échantillon de taille 10000 sera comprise entre 39 % et 41 %. Exemple On dispose d'une pièce de monnaie que l'on sait truquée. On veut estimer la probabilité de l'issue «pile» pour cette pièce. On procède à 10000 tirages et l on observe 4230 «pile». La fréquence observée sur cet échantillon de taille de l'issue «pile» est. On calcule l'intervalle de confiance au seuil 95 % : Il y a donc 95 % de chance que la probabilité p de l'issue «pile» appartienne à cet intervalle. Prise de décision Dans ce paragraphe, la proportion du caractère étudié est supposée être égale à. La prise de décision consiste, à partir d un échantillon de taille, à valider ou non cette hypothèse faite sur la proportion. Pour ce faire, on calcule la fréquence observée du caractère étudié dans cet échantillon ; on détermine l intervalle de fluctuation au seuil de 95 % de la fréquence ; enfin on applique la règle de décision suivante si la fréquence observée appartient à l intervalle de fluctuation asymptotique au seuil de 95 %, on ne rejette pas l hypothèse faite sur ; si la fréquence observée n appartient pas à l intervalle de fluctuation asymptotique au seuil de 95 %, on rejette l hypothèse faite sur la proportion avec un risque de 5 % de se tromper. Remarque. Le risque de 5 % signifie que la probabilité que l on rejette à tort l hypothèse faite sur la proportion alors qu elle est vraie est approximativement égale à 0,05. C est une probabilité conditionnelle. Dans le cas où l on ne rejette pas l hypothèse faite sur la proportion, le risque d erreur n est pas quantifié. Exemple Une machine fabrique des composants électroniques qui présentent un défaut de fabrication avec une probabilité. On constitue un échantillon de taille 100 de composants issus de la fabrication. On en détecte 49 présentant un défaut de fabrication. La machine nécessite-t-elle d être réparée? Loi normale et échantillonnage Classe de Terminale STMG Page 5

On fait l hypothèse que la machine est bien réglée, donc que. Un intervalle de fluctuation au seuil de 95 % de la fréquence de pièces présentant un défaut sur des échantillons de taille 100 est. La fréquence observée de pièces présentant un défaut sur un échantillon de taille 100 est. Comme, on ne rejette pas l hypothèse. On peut donc dire que la machine ne nécessite pas d être réparée, au seuil de confiance de 95 %. Loi normale et échantillonnage Classe de Terminale STMG Page 6