Statistiques II. Alexandre Caboussat Classe : Mardi 11h15-13h00 Salle : C110.

Save this PDF as:

Dimension: px
Commencer à balayer dès la page:

Download "Statistiques II. Alexandre Caboussat alexandre.caboussat@hesge.ch. Classe : Mardi 11h15-13h00 Salle : C110. http://campus.hesge."

Transcription

1 Statistiques II Alexandre Caboussat Classe : Mardi 11h15-13h00 Salle : C mars 2011 A. Caboussat, HEG STAT II, / 23

2 Exercice 1.1 Cinq sièges sont à repourvoir au conseil d administration de l entreprise et huit candidats se présentent. La liste des élus est publiée par ordre décroissant du nombre de voix obtenu par les candidats. Combien y a-t-il de listes d élus possibles? A. Caboussat, HEG STAT II, / 23

3 Exercice 1.4 (point 1) De combien de manières peut-on mettre sur un présentoir rectiligne 8 bijoux différents sachant que parmi ceux-ci il y a 2 alliances (différentes) qui seront toujours côte à côte? A. Caboussat, HEG STAT II, / 23

4 Exercice 1.4 (point 2) Le coffret d emballage d un bijou peut varier selon l humeur de la vendeuse. En effet, elle a à disposition 3 formes de boîte, 4 couleurs de papier d emballage et 5 sortes de ruban. Combien y a-t-il de choix d emballage d un bijou sachant que la vendeuse utilise une boîte, un papier et 2 rubans différents? A. Caboussat, HEG STAT II, / 23

5 Exercice 1.5 Combien y a-t-il d anagrammes du mot "REPULSION"? Dans combien de ces anagrammes les voyelles sont-elles ensemble? A. Caboussat, HEG STAT II, / 23

6 Exercice 1.7 Combien existe-t-il de plaques minéralogiques à 4 chiffres 1 si une plaque peut commencer avec le chiffre 0 comme aux USA. 2 si une plaque peut commencer avec le chiffre 0 comme aux USA, mais les répétitions sont exclues. 3 si une plaque ne peut pas commencer avec le chiffre 0. 4 si une plaque ne peut pas commencer avec le chiffre 0 et les répétitions sont aussi exclues. A. Caboussat, HEG STAT II, / 23

7 Résumé k éléments parmi n Sans répétition Avec répétition Ordre indifférent ( Combinaison ) n n! = k k!(n k)! Ordre important Arrangement sans répétition A n k = n! (n k)! Si k = n : Permutation n! Arrangement avec répétition n k A. Caboussat, HEG STAT II, / 23

8 Quiz 1 Un concours de Miss Monde délivre deux prix: un pour la vainqueur, un pour la première dauphine. Il y 45 candidates. Combien de résultats sont-ils possible? (A) 990 (B) 1980 (C) 45 (D) Aucune de ces réponses A. Caboussat, HEG STAT II, / 23

9 Quiz 2 Combien de mains de poker existe-t-il? (5 cartes parmi 52) (A) 52! (B) (C) (D) Aucune de ces réponses A. Caboussat, HEG STAT II, / 23

10 Quiz 3 Un étudiant doit répondre à 7 des 10 questions d un examen. De combien de manières peut-il les choisir? (A) (B) 120 (C) 110 (D) Aucune de ces réponses A. Caboussat, HEG STAT II, / 23

11 Probabilité d un événement Soit A un événement possible. La probabilité de l événement A est donnée par le nombre de réalisations dans A, divisé par le nombre de réalisations total P(A) = #(réalisations satisfaisant A). #(réalisations totales) Il nous faut donc compter le nombre d issues favorables et diviser par le nombre d issues totales. A. Caboussat, HEG STAT II, / 23

12 Probabilité d un événement: Exemples On lance deux dés (un rouge et un bleu). Quelle est la probabilité que la somme des nombres obtenus fasse 7? Combien d issues en tout? Combien d issues favorables? A. Caboussat, HEG STAT II, / 23

13 Probabilité d un événement: Exemples On lance deux dés (identiques cette fois-ci). Quelle est la probabilité que la somme des nombres obtenus fasse 7? Combien d issues en tout? Combien d issues favorables? A. Caboussat, HEG STAT II, / 23

14 Probabilité d un événement: Exemples Lors d une partie de bridge, on distribue les 52 cartes entre 4 joueurs. Quelle est la probabilité qu un joueur reçoive les 13 piques? Combien d issues en tout? Combien d issues favorables? 52! 13! 13! 13! 13! 4 39! 13! 13! 13! A. Caboussat, HEG STAT II, / 23

15 Probabilité d un événement: Exemples Une urne contient trois boules rouges et sept noires. On tire trois boules au hasard (sans les remettre dans l urne!). Quelle est la probabilité que ces trois boules soient rouges? Combien d issues en tout? Combien d issues favorables? A. Caboussat, HEG STAT II, / 23

16 Probabilité d un événement: Exemples Une urne contient trois boules rouges et sept noires. On tire trois boules au hasard (avec remise dans l urne!). Quelle est la probabilité que ces trois boules soient rouges? Combien d issues en tout? Combien d issues favorables? A. Caboussat, HEG STAT II, / 23

17 Quiz 4 A partir d un groupe de 5 hommes et de 7 femmes, on sélectionne 3 personnes. Quelle est la probabilité que ces 3 personnes soient 3 hommes? (A) 1/220 (B) 6/220 (C) 12/220 (D) Aucune de ces réponses A. Caboussat, HEG STAT II, / 23

18 Quiz 5 Quelle est la probabilité de tirer a moins un 6 lorsqu on jette un dé quatre fois? (A) (B) (C) (D) Aucune de ces réponses A. Caboussat, HEG STAT II, / 23

19 Quiz 6 Dans un échantillon de 25 chemises, 10 d entre elles ont un défaut. Un client va essayer 6 d entre elles. Quelle est la probabilité que les 6 aient un défaut? (A) C15 25 /C 25 6 (B) C 10 6 /C 25 6 /C 25 6 (C) C19 25 (D) Aucune de ces réponses A. Caboussat, HEG STAT II, / 23

20 Quiz 7 Dans un échantillon de 25 chemises, 10 d entre elles ont un défaut. Un client va essayer 6 d entre elles. Quelle est la probabilité qu au moins 4 d entre elles aient un défaut? (A) (C C5 10 C C4 10 C2 15 )/C 25 6 (B) C6 10 /C 25 6 (A) C4 10 C2 15 /C 25 6 (D) Aucune de ces réponses A. Caboussat, HEG STAT II, / 23

21 Exercices Exercices 1.2, 1.3, A. Caboussat, HEG STAT II, / 23

Analyse Combinatoire

Analyse Combinatoire Analyse Combinatoire 1) Équipes On dispose d un groupe de cinq personnes. a) Combien d équipes de trois personnes peut-on former? b) Combien d équipes avec un chef, un sous-chef et un adjoint? c) Combien

Plus en détail

Les trois sortes de tirages

Les trois sortes de tirages DERNIÈRE IMPRESSION LE 29 juin 2015 à 19:20 Les trois sortes de tirages Introduction Comme nous l avons vu, dans une loi équirépartie, il est nécessaire de dénombrer les cas favorables et les cas possibles.

Plus en détail

1. Un groupe de dix personnes comprend cinq hommes et cinq femmes.

1. Un groupe de dix personnes comprend cinq hommes et cinq femmes. Dénombrement Exercices 1. Un groupe de dix personnes comprend cinq hommes et cinq femmes. (a) Combien y a-t-il de manières de les disposer autour d une table ronde, en ne tenant compte que de leurs positions

Plus en détail

Feuille TD 1 : Probabilités discrètes, dénombrement

Feuille TD 1 : Probabilités discrètes, dénombrement Université de Nice-Sophia Antipolis -L2 MASS - Probabilités Feuille TD 1 : Probabilités discrètes, dénombrement Exercice 1 : 1. On doit choisir 2 représentants dans une classe de 40 élèves. Quel est le

Plus en détail

Feuille 1. L3 Maths Appliquées lagache@biologie.ens.fr 27 Janvier 2009. A le chambre des députés d un pays composé de 100 départements, chaque

Feuille 1. L3 Maths Appliquées lagache@biologie.ens.fr 27 Janvier 2009. A le chambre des députés d un pays composé de 100 départements, chaque Feuille 1 L3 Maths Appliquées lagache@biologie.ens.fr 27 Janvier 2009 1 Combinatoire 1.1 Exercice 1 A le chambre des députés d un pays composé de 100 départements, chaque département est représenté par

Plus en détail

Chapitre 1 : Analyse Combinatoire

Chapitre 1 : Analyse Combinatoire Chapitre 1 : Analyse Combinatoire L2 éco-gestion, option AEM (L2 éco-gestion, option AEM) Chapitre 1 : Analyse Combinatoire 1 / 23 Question du jour Pensez-vous que dans cette assemblée, deux personnes

Plus en détail

Analyse combinatoire

Analyse combinatoire Mathématiques Générales B Université de Genève Sylvain Sardy 6 mars 2008 Le but de l analyse combinatoire (techniques de dénombrement est d apprendre à compter le nombre d éléments d un ensemble fini de

Plus en détail

CHAPITRES 5 et 6 PROBABILITÉS ET DÉNOMBREMENTS

CHAPITRES 5 et 6 PROBABILITÉS ET DÉNOMBREMENTS 1 re EFG hapitres et Probabilités et dénombrements HAPITRES et PROBABILITÉS ET DÉNOMBREMENTS Exercice 1 Dans un magasin les modes de paiement et les montants des achats sont répartis de la façon suivante

Plus en détail

Unité 2 Leçon 2 Les permutations et les combinaisons

Unité 2 Leçon 2 Les permutations et les combinaisons Unité 2 Leçon 2 Les permutations et les combinaisons Qu'apprenons nous dans cette leçon? La différence entre un arrangement ordonné (une permutation) et un arrangement nonordonné (une combinaison). La

Plus en détail

UNIVERSITÉ DE CERGY. LICENCE d ÉCONOMIE et FINANCE LICENCE de GESTION. Seconde année - Semestre 3 PROBABILITÉS. Cours de M. J.

UNIVERSITÉ DE CERGY. LICENCE d ÉCONOMIE et FINANCE LICENCE de GESTION. Seconde année - Semestre 3 PROBABILITÉS. Cours de M. J. Année 2013-2014 UNIVERSIÉ DE CERGY LICENCE d ÉCONOMIE et FINANCE LICENCE de GESION Seconde année - Semestre 3 PROBABILIÉS Cours de M. J. Stéphan ravaux Dirigés de Mme M. Barrié, M. J-M. Chauvet et M. J.

Plus en détail

Initiation aux probabilités.

Initiation aux probabilités. Initiation aux probabilités. On place dans une boite trois boules identiques à l exception de leur couleur : une boule est noire, une est blanche, la troisième est grise. On tire une des boules sans regarder,

Plus en détail

Analyse Combinatoire

Analyse Combinatoire Analyse Combinatoire Rappels Symboles Combinatoires Tirage de p parmi n éléments avec remise sans remise ordre important Bn p n p A p n n! pn pq! ordre non-important - Cn p n! pn pq!p! Coefficients Binomiaux

Plus en détail

Probabilités et statistiques dans le traitement de données expérimentales

Probabilités et statistiques dans le traitement de données expérimentales Probabilités et statistiques dans le traitement de données expérimentales S. LESECQ, B. RAISON IUT1, GEII 1 Module MC-M1 2009-2010 1 Contenu de l enseignement Analyse combinatoire Probabilités Variables

Plus en détail

1 Exercices d introdution

1 Exercices d introdution 1 Exercices d introdution Exercice 1 (Des cas usuels) 1. Combien y a-t-il de codes possibles pour une carte bleue? Réponse : 10 4. 2. Combien y a-t-il de numéros de téléphone commençant par 0694? Réponse

Plus en détail

Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes

Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes IUT HSE Probabilités et Statistiques Feuille : variables aléatoires discrètes 1 Exercices Dénombrements Exercice 1. On souhaite ranger sur une étagère 4 livres de mathématiques (distincts), 6 livres de

Plus en détail

DENOMBREMENT. A Notion d ordre, de rangement à n!

DENOMBREMENT. A Notion d ordre, de rangement à n! DENOMBREMENT A Notion d ordre, de rangement à n! Exemple : de combien de façons différentes peut-on ranger ces 3 lettres? u Nombre de lettre s : 3 Alors, on fait 3! = 3x2x1 = 6 façons de ranger ces lettres

Plus en détail

Dénombrement, opérations sur les ensembles.

Dénombrement, opérations sur les ensembles. Université Pierre et Marie Curie 2013-2014 Probabilités et statistiques - LM345 Feuille 1 (du 16 au 20 septembre 2013) Dénombrement, opérations sur les ensembles 1 Combien de façons y a-t-il de classer

Plus en détail

II. Eléments des probabilités

II. Eléments des probabilités II. Eléments des probabilités Exercice II.1 Définir en extension l ensemble fondamental Ω des résultats associé à chacune des expériences aléatoires suivantes: 1. jeter une pièce de monnaie et observer

Plus en détail

Fiche méthodologique Les pièges dans les dénombrements

Fiche méthodologique Les pièges dans les dénombrements Fiche méthodologique Les pièges dans les dénombrements BCPST Lycée Hoche $\ CC BY: Pelletier Sylvain Dans cette fiche, on résume quelques points techniques sur les dénombrements et la théorie des probabilités.

Plus en détail

Mathématiques 4 Niv.1 Probabilités Exercices chapitre 3

Mathématiques 4 Niv.1 Probabilités Exercices chapitre 3 1. On tire une boule d'une urne qui contient 3 blanches, 4 rouges et 5 noires. Quelle est la probabilité a) qu'elle soit blanche b) qu'elle soit blanche ou rouge c) qu'elle ne soit pas rouge? 2. Un joueur

Plus en détail

FFB. Jeux mathématiques

FFB. Jeux mathématiques FFB Jeux mathématiques Bridge et programmes scolaires Utilisation d activités mathématiques fondées sur le Bridge : Arithmétique Raisonnement et mémoire Algorithmes Probabilités Statistiques Activités

Plus en détail

Distribution Uniforme Probabilité de Laplace Dénombrements Les Paris. Chapitre 2 Le calcul des probabilités

Distribution Uniforme Probabilité de Laplace Dénombrements Les Paris. Chapitre 2 Le calcul des probabilités Chapitre 2 Le calcul des probabilités Equiprobabilité et Distribution Uniforme Deux événements A et B sont dits équiprobables si P(A) = P(B) Si il y a équiprobabilité sur Ω, cad si tous les événements

Plus en détail

UNIVERSITÉ DE CERGY Année 2013-2014 U.F.R. Économie & Gestion Licence d Économie et Finance / Licence de Gestion MATH201 : Probabilités

UNIVERSITÉ DE CERGY Année 2013-2014 U.F.R. Économie & Gestion Licence d Économie et Finance / Licence de Gestion MATH201 : Probabilités 1 UNIVERSITÉ DE CERGY Année 2013-2014 U.F.R. Économie & Gestion Licence d Économie et Finance / Licence de Gestion MATH201 : Probabilités Chapitre II : Espaces probabilisés 1 Notions d événements 1.1 Expérience

Plus en détail

EXERCICES SUR LES PROBABILITÉS

EXERCICES SUR LES PROBABILITÉS EXERCICES SUR LES PROBABILITÉS Exercice 1 Dans un univers Ω, on donne deux événements A et B incompatibles tels que p(a) = 0,2 et p(b) = 0,7. Calculer p(a B), p(a B), p ( A ) et p ( B ). Exercice 2 Un

Plus en détail

CUEEP Département Mathématiques E 821 : Problèmes du premier degré 1/27

CUEEP Département Mathématiques E 821 : Problèmes du premier degré 1/27 Problèmes du premier degré à une ou deux inconnues Rappel Méthodologique Problèmes qui se ramènent à une équation à une inconnue Soit l énoncé suivant : Monsieur Duval a 4 fois l âge de son garçon et sa

Plus en détail

Feuille d exercices 1

Feuille d exercices 1 Université Paris 7 - Denis Diderot L2 - Probabilités PS4 Année 2014-2015 Feuille d exercices 1 Exercice 1 Combien y a-t-il de paires d entiers non consécutifs compris entre 1 et n (n 1)? Exercice 2 1.

Plus en détail

S initier aux probabilités simples «Jets de dé»

S initier aux probabilités simples «Jets de dé» «Jets de dé» 29-21 Niveau 2 Entraînement 1 Objectifs - S entraîner à être capable de déterminer une probabilité. - S initier aux fractions. Applications En classe : envisager un résultat sous l angle d

Plus en détail

Terminologie. La théorie des probabilités fournit des modèles mathématiques permettant l'étude des expériences aléatoires.

Terminologie. La théorie des probabilités fournit des modèles mathématiques permettant l'étude des expériences aléatoires. Probabilités Terminologie Une expérience ou une épreuve est qualiée d'aléatoire si on ne peut pas prévoir son résultat et si, répétée dans des conditions identiques, elle peut donner des résultats diérents.

Plus en détail

Les probabilités. Chapitre 18. Tester ses connaissances

Les probabilités. Chapitre 18. Tester ses connaissances Chapitre 18 Les probabilités OBJECTIFS DU CHAPITRE Calculer la probabilité d événements Tester ses connaissances 1. Expériences aléatoires Voici trois expériences : - Expérience (1) : on lance une pièce

Plus en détail

1) On appelle expérience aléatoire tout phénomène qui a plusieurs résultats possibles, la réalisation de chacun étant due au hasard.

1) On appelle expérience aléatoire tout phénomène qui a plusieurs résultats possibles, la réalisation de chacun étant due au hasard. PROBABILITÉS 1 1 Définitions 1) On appelle expérience aléatoire tout phénomène qui a plusieurs résultats possibles, la réalisation de chacun étant due au hasard. exemple : L'expérience qui consiste à lancer

Plus en détail

Probabilités conditionelles

Probabilités conditionelles Probabilités conditionelles Exercice 1 Cet exercice est un questionnaire à choix multiples constitué de six questions ; chacune comporte trois réponses, une seule est exacte On notera sur la copie uniquement

Plus en détail

Le renouvellement du Sénat à l'issue des élections simultanées du 25 mai 2014

Le renouvellement du Sénat à l'issue des élections simultanées du 25 mai 2014 Le renouvellement du Sénat à l'issue des élections simultanées du 25 mai 2014 1. Composition du Sénat Le Sénat est composé de 60 membres : 50 sénateurs des entités fédérées et 10 sénateurs cooptés. Les

Plus en détail

MATH0062-1 ELEMENTS DU CALCUL DES PROBABILITES

MATH0062-1 ELEMENTS DU CALCUL DES PROBABILITES MATH0062-1 ELEMENTS DU CALCUL DES PROBABILITES REPETITIONS et PROJETS : INTRODUCTION F. Van Lishout (Février 2015) Pourquoi ce cours? Sciences appliquées Modélisation parfaite vs monde réel Comment réussir

Plus en détail

Exercices de dénombrement

Exercices de dénombrement Exercices de dénombrement Exercice En turbo Pascal, un entier relatif (type integer) est codé sur 6 bits. Cela signifie que l'on réserve 6 cases mémoires contenant des "0" ou des "" pour écrire un entier.

Plus en détail

Probabilités. I Petits rappels sur le vocabulaire des ensembles 2 I.1 Définitions... 2 I.2 Propriétés... 2

Probabilités. I Petits rappels sur le vocabulaire des ensembles 2 I.1 Définitions... 2 I.2 Propriétés... 2 Probabilités Table des matières I Petits rappels sur le vocabulaire des ensembles 2 I.1 s................................................... 2 I.2 Propriétés...................................................

Plus en détail

Calculer la probabilité d un événement

Calculer la probabilité d un événement THEME : CORRIGE DES EXERCICES PROBABILITES Calculer la probabilité d un événement Exercice n : Un sachet contient bonbons à la menthe, à l orange et au citron. On tire, au hasard, un bonbon du sachet et

Plus en détail

MATHÉMATIQUES 3 PÉRIODES

MATHÉMATIQUES 3 PÉRIODES BACCALAURÉAT EUROPÉEN 006 MATHÉMATIQUES 3 PÉRIODES DATE : 8 juin 006 (matin) DURÉE DE L'EXAMEN : 3 heures (180 minutes) MATÉRIEL AUTORISÉ : Formulaire européen Calculatrice non graphique et non programmable

Plus en détail

Cours de Probabilités et de Statistique

Cours de Probabilités et de Statistique Cours de Probabilités et de Statistique Licence 1ère année 2007/2008 Nicolas Prioux Université Paris-Est Cours de Proba-Stat 2 L1.2 Science-Éco Chapitre Notions de théorie des ensembles 1 1.1 Ensembles

Plus en détail

1. Probabilités élémentaires

1. Probabilités élémentaires 1. Probabilités élémentaires MTH2302D S. Le Digabel, École Polytechnique de Montréal H2016 (v1) MTH2302D: probabilités 1/48 Plan 1. Expériences aléatoires et événements 2. Probabilités 3. Analyse combinatoire

Plus en détail

Jeux à plusieurs et coalitions

Jeux à plusieurs et coalitions Jeux à plusieurs et coalitions Épreuve pratique d algorithmique et de programmation Concours commun des écoles normales supérieures Durée de l épreuve: 3 heures 30 minutes Juillet 2005 Important. Lorsque

Plus en détail

Probabilité. Durée suggérée: 3-3½ semaines

Probabilité. Durée suggérée: 3-3½ semaines Probabilité Durée suggérée: 3-3½ semaines Aperçu du chapitre Orientation et contexte Le calcul des probabilités est la branche des mathématiques qui étudie les phénomènes aléatoires. Plus particulièrement,

Plus en détail

COURS DE DENOMBREMENT

COURS DE DENOMBREMENT COURS DE DENOMBREMENT 1/ Définition des objets : introduction Guesmi.B Dénombrer, c est compter des objets. Ces objets sont créés à partir d un ensemble E, formé d éléments. A partir des éléments de cet

Plus en détail

Bureau N301 (Nautile) benjamin@leroy-beaulieu.ch

Bureau N301 (Nautile) benjamin@leroy-beaulieu.ch Pre-MBA Statistics Seances #1 à #5 : Benjamin Leroy-Beaulieu Bureau N301 (Nautile) benjamin@leroy-beaulieu.ch Mise à niveau statistique Seance #1 : 11 octobre Dénombrement et calculs de sommes 2 QUESTIONS

Plus en détail

Énoncés des exercices

Énoncés des exercices Énoncés Énoncés des exercices Exercice 1 [ Indication ] [ Correction ] Combien existe-t-il de dominos dans un jeu complet? On pourra donner jusqu à cinq démonstrations diffétentes. Exercice 2 [ Indication

Plus en détail

A R D V V 10 9 8 7 6 5 4 3. Pour jouer au bridge, Quatre joueurs Un jeu de 52 cartes et c'est tout!! Nord. Est. Ouest. Sud

A R D V V 10 9 8 7 6 5 4 3. Pour jouer au bridge, Quatre joueurs Un jeu de 52 cartes et c'est tout!! Nord. Est. Ouest. Sud Pour jouer au bridge, Quatre joueurs Un jeu de 52 cartes et c'est tout!! Nord Ouest Est Sud Est est le partenaire d'ouest Nord est la partenaire de Sud Chaque camp constitue une paire. La position des

Plus en détail

ECHANTILLONNAGE. I. Notion d échantillon. Intervalle de fluctuation

ECHANTILLONNAGE. I. Notion d échantillon. Intervalle de fluctuation sur 7 ECHANTILLONNAGE Le principe : On considère par exemple l'expérience suivante consistant à lancer plusieurs fois un dé et à noter si la face supérieure affichée est un 4 ou un autre nombre. La valeur

Plus en détail

E G = Définition : La probabilité d'un événement E peut être définie intuitivement par la formule suivante :

E G = Définition : La probabilité d'un événement E peut être définie intuitivement par la formule suivante : 8.1 Notations Notations: : vénement : vénement contraire à : ou (ou les deux), correspond à l union : et, correspond à l intersection U : L univers contient tous les événements possibles xercice 1 : Je

Plus en détail

Il y a trois branches avec un seul pile pour un total de 8 branches donc la probabilité d avoir exactement une fois pile est de 3/8 = 0,375

Il y a trois branches avec un seul pile pour un total de 8 branches donc la probabilité d avoir exactement une fois pile est de 3/8 = 0,375 OILITES Un arbre permet de modéliser une situation et de déterminer une probabilité dans le cas où on étudie plusieurs événements. Il est particulièrement bien adapté à la répétition d expériences, aux

Plus en détail

I. Cas de l équiprobabilité

I. Cas de l équiprobabilité I. Cas de l équiprobabilité Enoncé : On lance deux dés. L un est noir et l autre est blanc. Calculer les probabilités suivantes : A «Obtenir exactement un as» «Obtenir au moins un as» C «Obtenir au plus

Plus en détail

LEÇON N 5 : 5.1 Probabilité conditionnelle. Pré-requis : Opérations sur les ensembles, cardinaux ; Espaces probabilisés ; Calcul de probabilités.

LEÇON N 5 : 5.1 Probabilité conditionnelle. Pré-requis : Opérations sur les ensembles, cardinaux ; Espaces probabilisés ; Calcul de probabilités. LEÇON N 5 : Probabilité conditionnelle, indépendance de deux événements (on se limitera au cas où l ensemble d épreuves des fini). Applications à des calculs de probabilité. Pré-requis : Opérations sur

Plus en détail

Exercices : Probabilités

Exercices : Probabilités Exercices : Probabilités Partie : Probabilités Exercice Dans un univers, on donne deux événements et incompatibles tels que =0, et =0,7. Calculer,, et. Exercice Un dé (à faces) est truqué de la façon suivante

Plus en détail

Une nouvelle version graphique et moderne du fameux huit américain, avec des cartes d action qui animent le jeu par de multiples rebondissements.

Une nouvelle version graphique et moderne du fameux huit américain, avec des cartes d action qui animent le jeu par de multiples rebondissements. SOLO Une nouvelle version graphique et moderne du fameux huit américain, avec des cartes d action qui animent le jeu par de multiples rebondissements. Joueurs: de 2 à 10 Age: de 6 à 106 ans 1 Règle du

Plus en détail

Niveau. Situation étudiée. Type d activité. Durée. Objectifs. Seconde.

Niveau. Situation étudiée. Type d activité. Durée. Objectifs. Seconde. Simuler des expériences aléatoires avec une calculatrice Niveau Seconde. Situation étudiée Différentes selon les séances : Séance 1 : Jeu de pile ou face, tirages de boule dans une urne avec des proportions

Plus en détail

Feuille d exercice n 22 : Probabilités

Feuille d exercice n 22 : Probabilités Lycée La Martinière Monplaisir Année 2015/2016 MPSI - Mathématiques Second Semestre Feuille d exercice n 22 : Probabilités Exercice 1 On se donne N N. Deux joueurs lancent tour à tour un dé. Le premier

Plus en détail

Sujet 1. Problème 1 [2p] Lors d une course de chevaux, il y a 10 chevaux au départ. Combien de possibilités pour le tiercé?

Sujet 1. Problème 1 [2p] Lors d une course de chevaux, il y a 10 chevaux au départ. Combien de possibilités pour le tiercé? Sujet 1 Problème 1 [2p] Lors d une course de chevaux, il y a 10 chevaux au départ. Combien de possibilités pour le tiercé? Il faut choisir 3 chevaux parmi 10, et l ordre compte. Il y a 10 possibilités

Plus en détail

UVHC - ENSIAME CP1 - Probabilités - Interrogation Enseignante : Madame BOURLARD-JOSPIN Calculatrice autorisée

UVHC - ENSIAME CP1 - Probabilités - Interrogation Enseignante : Madame BOURLARD-JOSPIN Calculatrice autorisée UVHC - ENSIAME CP1 - Probabilités - Interrogation Enseignante : Madame BOURLARD-JOSPIN Calculatrice autorisée 1. On tire successivement et sans remise deux cartes d un jeu de 52 cartes. Soit A l événement

Plus en détail

Chapitre 1: Introduction au calcul des probabilités, cas d un univers fini.

Chapitre 1: Introduction au calcul des probabilités, cas d un univers fini. Chapitre 1: Introduction au calcul des probabilités, cas d un univers fini. 1 Introduction Des actions comme lancer un dé, tirer une carte d un jeu, observer la durée de vie d une ampoule électrique, etc...sont

Plus en détail

Calculs de probabilités conditionelles

Calculs de probabilités conditionelles Calculs de probabilités conditionelles Mathématiques Générales B Université de Genève Sylvain Sardy 20 mars 2008 1. Indépendance 1 Exemple : On lance deux pièces. Soit A l évènement la première est Pile

Plus en détail

Perspective sur les nouveaux entrepreneurs au Canada

Perspective sur les nouveaux entrepreneurs au Canada Perspective sur les nouveaux entrepreneurs au Canada Au cours des deux dernières années, on a vu naître plus de 25 000 PME un chiffre impressionnant si l on tient compte de la vigueur du marché du travail.

Plus en détail

INITIATION DANS LES ÉCOLES

INITIATION DANS LES ÉCOLES INITIATION DANS LES ÉCOLES Comité départemental de la Galoche bigoudène Décembre 2014 LES RÈGLES DE SÉCURITÉ L espace entre les différents jeux doit être de 3,5 à 4 mètres. Les enfants doivent obligatoirement

Plus en détail

Mathématiques discrètes Probabilités discrètes Cours 30, MATH/COSC 1056F

Mathématiques discrètes Probabilités discrètes Cours 30, MATH/COSC 1056F Mathématiques discrètes Probabilités discrètes Cours 30, MATH/COSC 1056F Julien Dompierre Département de mathématiques et d informatique Université Laurentienne 27 novembre 2008, Sudbury Julien Dompierre

Plus en détail

3 Exercices. 3.1 Probabilités simples. 3.2 Probabilités avec dénombrement. Probabilités 3. Exercice 1 On tire au hasard une carte parmi un jeu de 52.

3 Exercices. 3.1 Probabilités simples. 3.2 Probabilités avec dénombrement. Probabilités 3. Exercice 1 On tire au hasard une carte parmi un jeu de 52. Probabilités 3 3 Exercices 3.1 Probabilités simples Exercice 1 On tire au hasard une carte parmi un jeu de 52. Calculer la probabilité d obtenir : 1. un roi 2. le valet de trèfle 3. l as de coeur ou la

Plus en détail

TRAX NIVEAU DE CLASSE DESCRIPTION BUT DU JEU REGLE DU JEU. couleur allant d un côté à l autre d un carré virtuel de 8 X 8 tuiles.

TRAX NIVEAU DE CLASSE DESCRIPTION BUT DU JEU REGLE DU JEU. couleur allant d un côté à l autre d un carré virtuel de 8 X 8 tuiles. TRAX NIVEAU DE CLASSE DESCRIPTION BUT DU JEU REGLE DU JEU Cycle III 64 tuiles identiques recto verso Former une boucle d une même - Chacun des deux joueurs choisit sa couleur couleur ou une ligne d une

Plus en détail

Les données et le repérage

Les données et le repérage Les données et le repérage Q. De quelle base sont issues les données de l interface bibliométrique? R. Les données sont issues de la base de l OST qui, pour le repérage bibliométrique, est construite à

Plus en détail

Factorisation Factoriser en utilisant un facteur commun Fiche méthode

Factorisation Factoriser en utilisant un facteur commun Fiche méthode Factorisation Factoriser en utilisant un facteur commun Fiche méthode Rappel : Distributivité simple Soient les nombres, et. On a : Factoriser, c est transformer une somme ou une différence de termes en

Plus en détail

Leçon N 2C Fonctions de calcul

Leçon N 2C Fonctions de calcul Leçon N 2C Fonctions de calcul Cette deuxième leçon concerne les fonctions de calcul dans les tableurs. 1 Structure des formules de calcul Que vous utilisiez EXCEL ou que vous utilisiez CALC, la méthode

Plus en détail

Exercices supplémentaires

Exercices supplémentaires Exercices supplémentaires Christophe Lalanne Emmanuel Chemla Exercices Exercice 1 Un grand magasin a n portes d entrée ; r personnes arrivent à des instants divers et choisissent au hasard une entrée indépendamment

Plus en détail

3. Les Nombres Rationnels

3. Les Nombres Rationnels - - Les Nombres Rationnels. Les Nombres Rationnels. Les fractions Définition : Une fraction est une expression de la forme avec a et b des nombres entiers. a b Une fraction est aussi appelée nombre rationnel.

Plus en détail

PROBABILITÉS. I) Introduction, aperçu historique. Loi de probabilité

PROBABILITÉS. I) Introduction, aperçu historique. Loi de probabilité Table des matières PROBABILITÉS Résumé de cours I) Introduction, aperçu historique 1 II) Loi de probabilité 1 III)Probabilité d évènement 2 1. Le vocabulaire des probabilités................................

Plus en détail

Licence MASS 2000-2001. (Re-)Mise à niveau en Probabilités. Feuilles de 1 à 7

Licence MASS 2000-2001. (Re-)Mise à niveau en Probabilités. Feuilles de 1 à 7 Feuilles de 1 à 7 Ces feuilles avec 25 exercices et quelques rappels historiques furent distribuées à des étudiants de troisième année, dans le cadre d un cours intensif sur deux semaines, en début d année,

Plus en détail

Le jeu de set. Année 2013-2014. DUCHENE Quentin, PILLOT Camille et MONCEL Mylène en seconde et LIEHN Damien, RAMOS Anthony et FIDAN Onur en première

Le jeu de set. Année 2013-2014. DUCHENE Quentin, PILLOT Camille et MONCEL Mylène en seconde et LIEHN Damien, RAMOS Anthony et FIDAN Onur en première Cet article est rédigé par des élèves. Il peut comporter des oublis et imperfections, autant que possible signalés par nos relecteurs dans les notes d'édition. Le jeu de set Année 2013-2014 DUCHENE Quentin,

Plus en détail

Le Dobble. Cellya Sirot en Tale S ; Jean-Baptiste Fraisse en Tale S et Jammy Mariotton en Tale S

Le Dobble. Cellya Sirot en Tale S ; Jean-Baptiste Fraisse en Tale S et Jammy Mariotton en Tale S Cet article est rédigé par des élèves. Il peut comporter des oublis et imperfections, autant que possible signalés par nos relecteurs dans les notes d'édition. Année 2014-2015 Le Dobble Cellya Sirot en

Plus en détail

4. Exercices et corrigés

4. Exercices et corrigés 4. Exercices et corrigés. N 28p.304 Dans une classe de 3 élèves, le club théâtre (T) compte 0 élèves et la chorale (C) 2 élèves. Dix-huit élèves ne participent à aucune de ces activités. On interroge au

Plus en détail

Fluctuation d une fréquence selon les échantillons - Probabilités

Fluctuation d une fréquence selon les échantillons - Probabilités Fluctuation d une fréquence selon les échantillons - Probabilités C H A P I T R E 3 JE DOIS SAVOIR Calculer une fréquence JE VAIS ÊTRE C APABLE DE Expérimenter la prise d échantillons aléatoires de taille

Plus en détail

Mois J F M A M J J A S O N D Masse (en kg) 40 25 20 15 24 30 32 28 36 24 35 51

Mois J F M A M J J A S O N D Masse (en kg) 40 25 20 15 24 30 32 28 36 24 35 51 Statistiques e Exercice n : Lors d un stage de basket, on a mesuré les adolescents. Les tailles sont données en cm. On obtient la série suivante : 65 ; 75 ; 87 ; 65 ; 70 ; 8 ; 74 ; 84 ; 7 ; 66 ; 78 ; 77

Plus en détail

Problèmes à propos des nombres entiers naturels

Problèmes à propos des nombres entiers naturels Problèmes à propos des nombres entiers naturels 1. On dispose d une grande feuille de papier, on la découpe en 4 morceaux, puis on déchire certains morceaux (au choix) en 4 et ainsi de suite. Peut-on obtenir

Plus en détail

Le test triangulaire

Le test triangulaire Le test triangulaire Objectif : Détecter l absence ou la présence de différences sensorielles entre 2 produits. «les 2 produits sont-ils perçus comme différents?» Contexte : la différence sensorielle entre

Plus en détail

Examen d accès - 1 Octobre 2009

Examen d accès - 1 Octobre 2009 Examen d accès - 1 Octobre 2009 Aucun document autorisé - Calculatrice fournie par le centre d examen Ce examen est un questionnaire à choix multiples constitué de 50 questions. Plusieurs réponses sont

Plus en détail

Probabilités. I - Expérience aléatoire. II - Evénements

Probabilités. I - Expérience aléatoire. II - Evénements Probabilités Voici le premier cours de probabilités de votre vie. N avez-vous jamais eut envie de comprendre les règles des grands joueurs de poker et de les battre en calculant les probabilités d avoir

Plus en détail

S initier aux probabilités simples «Question de chance!»

S initier aux probabilités simples «Question de chance!» «Question de chance!» 29-11 Niveau 1 Entraînement 1 Objectifs - S entraîner à activer la rapidité du balayage visuel. - Réactiver le comptage par addition jusqu à 20. - Développer le raisonnement relatif

Plus en détail

Activités de généralisation pour l aire

Activités de généralisation pour l aire Activités de généralisation pour l aire L aire du rectangle et du carré But Cette activité permet de développer la formule pour calculer l aire de la surface du rectangle et celle du carré. Matériel Rectangles

Plus en détail

Résultats et interprétation du sondage

Résultats et interprétation du sondage Table des matières 1 ORGANISATION DU SONDAGE... 1-2 1.1 But du sondage... 1-2 1.2 Répartition des personnes sondées... 1-2 1.2.1 Sexe... 1-2 1.2.2 Age... 1-2 1.2.3 Accès à Internet et Wi-Fi... 1-2 2 RESULTATS

Plus en détail

Épreuve de Mathématiques 8

Épreuve de Mathématiques 8 Lycée La Prat s Vendredi 10 avril 2015 Classe de PT Épreuve de Mathématiques 8 Durée 4 h L usage des calculatrices est interdit. La présentation, la lisibilité, l orthographe, la qualité de la rédaction

Plus en détail

Far Far West. L une représentant les 5 ressources qu il pourra récupérer du centre de la table

Far Far West. L une représentant les 5 ressources qu il pourra récupérer du centre de la table Far Far West Il existe un endroit où tout est encore possible, un endroit où les plus audacieux ont le droit de rêver, où les plus courageux peuvent encore s enrichir au mépris des lois, un endroit où

Plus en détail

Probabilités sur un univers ni

Probabilités sur un univers ni POIRET Aurélien TD n o 21 MPSI Probabilités sur un univers ni 1 Événements et probabilités Exercice N o 1 : Dans un centre de loisirs, une personne peut pratiquer trois activités. On considère les événements

Plus en détail

Highlands, XIII siècle. Durée: 5 minutes Nombre de joueurs: 2 Chaque joueur représente un clan qui se bat pour prendre le contrôle du royaume.

Highlands, XIII siècle. Durée: 5 minutes Nombre de joueurs: 2 Chaque joueur représente un clan qui se bat pour prendre le contrôle du royaume. TM Highlands, XIII siècle. Avec la soudaine disparition du Roi des Rats, le Royaume est maintenant sans souverain. Deux clans de rats, les Yarg et les Applewood, s affrontent pour s octroyer le contrôle

Plus en détail

Lycée Fénelon Sainte-Marie Préparation Science-Po/Prépa HEC

Lycée Fénelon Sainte-Marie Préparation Science-Po/Prépa HEC Lycée Fénelon Sainte-Marie Préparation Science-Po/Prépa HEC Dénombrement et probabilités Version du juillet 05 Enoncés Exercice - YouTube Sur YouTube, les vidéos sont identifiées à l aide d une chaîne

Plus en détail

Statistiques Pourcentages et probabilité

Statistiques Pourcentages et probabilité 6 septembre 2014 Statistiques Pourcentages et probabilité Moyenne EXERCICE 1 On connaît la répartition des notes à un test. Calculer la moyenne des notes. Notes 4 6 8 9 10 11 12 14 16 Effectifs 13 23 28

Plus en détail

STATISTIQUES A UNE VARIABLE EXERCICES CORRIGES

STATISTIQUES A UNE VARIABLE EXERCICES CORRIGES STATISTIQUES A UNE VARIALE EXERCICES CORRIGES Exercice n Les élèves d une classe ont obtenu les notes suivantes lors d un devoir : Note 4 5 8 0 4 5 8 0 Effectif 4 7 6 4 ) Déterminer l étendue et le mode

Plus en détail

Probabilités conditionnelles

Probabilités conditionnelles 22 Probabilités conditionnelles Ω, B, P est un espace probabilisé. 22. Définition et propriétés des probabilités conditionnelles Considérons l expérience aléatoire qui consiste à lancer deux fois un dé

Plus en détail

ATELIER ALGORITHME PREMIERS PAS Journée d information sur les nouveaux programmes de Première S-ES 2010-2011

ATELIER ALGORITHME PREMIERS PAS Journée d information sur les nouveaux programmes de Première S-ES 2010-2011 Pour me contacter : irene.rougier@ac-clermont.fr 1. Introduction ATELIER ALGORITHME PREMIERS PAS Journée d information sur les nouveaux programmes de Première S-ES 2010-2011 De nombreux documents et informations

Plus en détail

DENOMBREMENTS, COMBINATOIRE EXERCICES CORRIGES

DENOMBREMENTS, COMBINATOIRE EXERCICES CORRIGES DENOMBREMENTS, COMBINTOIRE EXERCICES CORRIGES Produit cartésien ( «principe multiplicatif») Exercice n. Combien de menus différents peut-on composer si on a le choix entre entrées, plats et 4 desserts?

Plus en détail

PROCÈS-VERBAL DE L ÉLECTION DES DÉLÉGUÉS DU CONSEIL MUNICIPAL ET DE LEURS SUPPLÉANTS EN VUE DE L ÉLECTION DES SÉNATEURS COMMUNE :

PROCÈS-VERBAL DE L ÉLECTION DES DÉLÉGUÉS DU CONSEIL MUNICIPAL ET DE LEURS SUPPLÉANTS EN VUE DE L ÉLECTION DES SÉNATEURS COMMUNE : DÉPARTEMENT (collectivité) :... ARRONDISSEMENT (subdivision) : Effectif légal du conseil municipal : Nombre de conseillers en exercice : Nombre de délégués (ou délégués supplémentaires) à élire : Nombre

Plus en détail

Vous incarnez un surdoué en informatique qui utilise son ordinateur afin de pirater des comptes bancaires un peu partout dans le monde et s en mettre

Vous incarnez un surdoué en informatique qui utilise son ordinateur afin de pirater des comptes bancaires un peu partout dans le monde et s en mettre Vous incarnez un surdoué en informatique qui utilise son ordinateur afin de pirater des comptes bancaires un peu partout dans le monde et s en mettre plein les poches. Problème : vous n êtes pas seul!

Plus en détail

Elections fédérales et cantonales 2015

Elections fédérales et cantonales 2015 Elections fédérales et cantonales 2015 www.jura.ch Pour la première fois, les élections fédérales et cantonales se dérouleront simultanément. Le 18 octobre prochain, les électeurs 1 sont en effet appelés

Plus en détail

Tournois. Dates et horaires

Tournois. Dates et horaires Championnat de Belgique de poker 2015. Du 27 Novembre au 6 Décembre 2015 Casino de Namur ( attention un changement de date est possible en fonction du calendrier européen des tournois de poker) Tournois

Plus en détail

POKER ET PROBABILITÉ

POKER ET PROBABILITÉ POKER ET PROBABILITÉ Le poker est un jeu de cartes où la chance intervient mais derrière la chance il y a aussi des mathématiques et plus précisément des probabilités, voici une copie d'écran d'une main

Plus en détail

Qu est-ce qu une probabilité?

Qu est-ce qu une probabilité? Chapitre 1 Qu est-ce qu une probabilité? 1 Modéliser une expérience dont on ne peut prédire le résultat 1.1 Ensemble fondamental d une expérience aléatoire Une expérience aléatoire est une expérience dont

Plus en détail

Un jeu pour 2 ou 3 joueurs assoiffés d or, à partir de 8 ans.

Un jeu pour 2 ou 3 joueurs assoiffés d or, à partir de 8 ans. Un jeu pour 2 ou 3 joueurs assoiffés d or, à partir de 8 ans. De l or! De l or! Rien que de l or, à perte de vue! Un âne aux ducats, c est très pratique. Mais attention : ces animaux têtus peuvent aussi

Plus en détail

Résoudre un problème mise en pratique

Résoudre un problème mise en pratique Résoudre un problème mise en pratique Objectifs généraux Rappel de certains concepts mathématiques. Analyse des problèmes et des procédures de résolution. Étude de notions élémentaires de didactique Apport

Plus en détail