MATH ELEMENTS DU CALCUL DES PROBABILITES
|
|
|
- Ghislain Martineau
- il y a 10 ans
- Total affichages :
Transcription
1 MATH ELEMENTS DU CALCUL DES PROBABILITES REPETITIONS et PROJETS : INTRODUCTION F. Van Lishout (Février 2015)
2 Pourquoi ce cours? Sciences appliquées Modélisation parfaite vs monde réel
3 Comment réussir ce cours? COMPRENDRE la théorie ET les répétitions Faire les travaux personnels sur ordinateur Examen écrit : o 08h00-10h00 : 3 questions de théorie + 1 question sur le projet o 10h00-10h15 : pause o 10h15-12h30 : 3 exercices Pondération : o ±25% travaux o ±75% examen écrit
4 Comment se passent les répétitions? Enoncés des répétitions o Répartition des locaux (TP Physique) o A-E S22 (H. Huaux) o F-Me S24 (F. Van Lishout) o Mi-Z S26 (P. Lousberg) Horaire o De 8 h 15 à 10 h 15 o Les 10/02, 03/03, 17/03, 31/03, 21/04 et 05/05 (*)
5 Quelques conseils pour ce cours et votre avenir Toujours chercher à COMPRENDRE avant de RETENIR Apprendre à savoir résoudre des problèmes ABSTRAITS vous permettra de mieux vous ADAPTER à un monde qui change en permanence Ne pas faire trop confiance à votre INTUITION mais privilégier la REFLEXION
6 Monty Hall Problem Trois portes : 1 voiture + 2 prix sans valeur Le candidat choisit une porte, puis le présentateur en ouvre une autre (il en choisit une derrière laquelle se trouve un prix sans valeur) Le présentateur demande alors au candidat s il veut changer d avis A-t-il intérêt à changer d avis? Ce problème a fait débat Beaucoup de gens pensent à tort avoir un sens intuitif des probabilités
7 Résolution par la méthode en 4 étapes (Lehman & Leighton) Trouver l espace des résultats possibles Définir le ou les événement(s) étudié(s) Déterminer la probabilité des résultats Calculer la probabilité du ou des événement(s)
8 Etape 0 : Clarification du problème On suppose que lorsque les organisateurs placent la voiture, chaque porte a la même probabilité d être sélectionnée. le participant choisi une porte au hasard, avec une probabilité égale pour les trois portes. le présentateur doit ouvrir une autre porte que celle cachant la voiture et s il a le choix entre deux portes, chacune à la même chance d être choisie.
9 Etape 1 : Trouver l espace des résultats possibles On construit un arbre décrivant l ensemble des choix possibles pour les variables du problème. Dans notre cas : o La position de la voiture o Le choix initial du candidat o La porte révélée par le présentateur
10 Etape 2 : Définir le ou les événement(s) étudié(s) On détermine les feuilles de l arbre pour lesquelles l événement qui nous intéresse s est réalisé / les événements qui nous intéressent se sont réalisés. Dans notre cas : o L événement selon lequel le participant gagne en changeant d avis.
11 Etape 3 : Déterminer la probabilité des résultats Assigner des probabilités aux feuilles de l arbre. Pour ce faire, deux étapes sont nécessaires : o Assigner des probabilités aux arcs o En déduire celles des feuilles par simple multiplication
12 Etape 4 : Calculer la probabilité du ou des événement(s) La simple addition des probabilités des résultats positifs donne la probabilité du ou des événement(s).
13 Résultat final (screenshot du livre de Lehman & Leighton)
14 Probabilité et jeux
15 Probabilité et jeux
16 Probabilité et jeux Deux bloggeurs sont en train de discuter de la probabilité d'obtenir une paire d'as deux fois de suite au poker. 1) Le premier déclare que la probabilité d'en obtenir une est de plus ou moins 1 chance sur 200 et donc que la réponse est de l'ordre de 1 chance sur A-t-il raison? (Formellement : on tire 2 cartes w et x d un paquet de 52 cartes. On remet les 2 cartes dans le paquet et on mélange. On tire 2 nouvelles cartes y et z. Quelle est la probabilité que w, x, y et z soient toutes des as?)
17 Probabilité et jeux 2) Le second bloggeur est maintenant convaincu de s être fait arnaquer par un joueur avec lequel il a joué toute la nuit dernière. En effet, son adversaire a eu à un moment donné la paire d as deux fois de suite. Pourquoi la probabilité que ça arrive était-elle bien plus grande que 1 chance sur ? (Formellement : on tire 4 cartes w1, x1, y1 et z1 d un paquet de 52 cartes. Le bloggeur reçoit les cartes w1 et x1 et son adversaire y1 et z1. On remet les 4 cartes dans le paquet et on mélange. On tire 4 cartes w2, x2, y2 et z2. Le bloggeur reçoit w2 et x2 et son adversaire y2 et z2. On remet les 4 cartes dans le paquet et on mélange. Etant donné que les joueurs ont joué toute la nuit, supposons qu ils aient continué de la sorte jusqu à w800, x800, y800 et z800. Quelle est la probabilité qu il existe au moins un i dans l intervalle [1, 799] tel que yi, zi, yi+1 et zi+1 soient tous des as?)
18 Travaux personnels sur ordinateur TRAVAIL 1 : PROBLEME DES ANNIVERSAIRES Quelle est la probabilité qu au moins deux personnes dans un ensemble de N aient leur anniversaire le même jour, en supposant que personne ne soit né un 29 février?
19 Travaux personnels sur ordinateur TRAVAIL 2 : LIGNE DE PRODUCTION Vous êtes engagé par une grande compagnie en tant qu ingénieur production. Votre première mission sera l étude de la fiabilité d une ligne de production
Poker. A rendre pour le 25 avril
Poker A rendre pour le 25 avril 0 Avant propos 0.1 Notation Les parties sans * sont obligatoires (ne rendez pas un projet qui ne contient pas toutes les fonctions sans *). Celles avec (*) sont moins faciles
S initier aux probabilités simples «Un jeu de cartes inédit»
«Un jeu de cartes inédit» 29-31 Niveau 3 Entraînement 1 Objectifs S entraîner à estimer une probabilité par déduction. Applications (exemples) En classe : tout ce qui réclame une lecture attentive d une
Exercices sur le chapitre «Probabilités»
Arnaud de Saint Julien - MPSI Lycée La Merci 2014-2015 1 Pour démarrer Exercices sur le chapitre «Probabilités» Exercice 1 (Modélisation d un dé non cubique) On considère un parallélépipède rectangle de
Analyse Combinatoire
Analyse Combinatoire 1) Équipes On dispose d un groupe de cinq personnes. a) Combien d équipes de trois personnes peut-on former? b) Combien d équipes avec un chef, un sous-chef et un adjoint? c) Combien
Probabilités. Une urne contient 3 billes vertes et 5 billes rouges toutes indiscernables au toucher.
Lycée Jean Bart PCSI Année 2013-2014 17 février 2014 Probabilités Probabilités basiques Exercice 1. Vous savez bien qu un octet est une suite de huit chiffres pris dans l ensemble {0; 1}. Par exemple 01001110
Principes de mathématiques 12 SÉRIE DE PROBLÈMES. Septembre 2001. Student Assessment and Program Evaluation Branch
Principes de mathématiques 12 SÉRIE DE PROBLÈMES Septembre 2001 Student Assessment and Program Evaluation Branch REMERCIEMENTS Le Ministère de l Éducation tient à remercier chaleureusement les professionnels
Probabilités conditionnelles Loi binomiale
Exercices 23 juillet 2014 Probabilités conditionnelles Loi binomiale Équiprobabilité et variable aléatoire Exercice 1 Une urne contient 5 boules indiscernables, 3 rouges et 2 vertes. On tire au hasard
S initier aux probabilités simples «Question de chance!»
«Question de chance!» 29-11 Niveau 1 Entraînement 1 Objectifs - S entraîner à activer la rapidité du balayage visuel. - Réactiver le comptage par addition jusqu à 20. - Développer le raisonnement relatif
Exercices de dénombrement
Exercices de dénombrement Exercice En turbo Pascal, un entier relatif (type integer) est codé sur 6 bits. Cela signifie que l'on réserve 6 cases mémoires contenant des "0" ou des "" pour écrire un entier.
POKER ET PROBABILITÉ
POKER ET PROBABILITÉ Le poker est un jeu de cartes où la chance intervient mais derrière la chance il y a aussi des mathématiques et plus précisément des probabilités, voici une copie d'écran d'une main
Probabilités conditionnelles Exercices corrigés
Terminale S Probabilités conditionnelles Exercices corrigés Exercice : (solution Une compagnie d assurance automobile fait un bilan des frais d intervention, parmi ses dossiers d accidents de la circulation.
Economie de l Incertain et des Incitations
Economie de l Incertain et des Incitations CHAPITRE 2 Eléments de théorie des jeux en information symétrique et asymétrique Equilibres Bayesiens - Université de Tours - M1 AGE - Arnold Chassagnon - Automne
Pourquoi l apprentissage?
Pourquoi l apprentissage? Les SE sont basés sur la possibilité d extraire la connaissance d un expert sous forme de règles. Dépend fortement de la capacité à extraire et formaliser ces connaissances. Apprentissage
Les nombres entiers. Durée suggérée: 3 semaines
Les nombres entiers Durée suggérée: 3 semaines Aperçu du module Orientation et contexte Pourquoi est-ce important? Dans le présent module, les élèves multiplieront et diviseront des nombres entiers concrètement,
Baccalauréat ES/L Amérique du Sud 21 novembre 2013
Baccalauréat ES/L Amérique du Sud 21 novembre 2013 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats 5 points Une entreprise informatique produit et vend des clés USB. La vente de ces clés est réalisée
Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé
Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé EXERCICE 1 5 points Commun à tous les candidats 1. Réponse c : ln(10)+2 ln ( 10e 2) = ln(10)+ln ( e 2) = ln(10)+2 2. Réponse b : n 13 0,7 n 0,01
Statistiques II. Alexandre Caboussat [email protected]. Classe : Mardi 11h15-13h00 Salle : C110. http://campus.hesge.
Statistiques II Alexandre Caboussat [email protected] Classe : Mardi 11h15-13h00 Salle : C110 http://campus.hesge.ch/caboussata 1 mars 2011 A. Caboussat, HEG STAT II, 2011 1 / 23 Exercice 1.1
Feuille d exercices 2 : Espaces probabilisés
Feuille d exercices 2 : Espaces probabilisés Cours de Licence 2 Année 07/08 1 Espaces de probabilité Exercice 1.1 (Une inégalité). Montrer que P (A B) min(p (A), P (B)) Exercice 1.2 (Alphabet). On a un
Les règles de base du poker :
Les règles de base du poker : LES RÈGLES DE BASE DU POKER :... 1 A propos du poker...2 Comment jouer?...3 Essayez le poker dés maintenant... 5 Le classement des cartes au poker...6 Classement des Cartes...
P1 : Corrigés des exercices
P1 : Corrigés des exercices I Exercices du I I.2.a. Poker : Ω est ( l ensemble ) des parties à 5 éléments de l ensemble E des 52 cartes. Cardinal : 5 I.2.b. Bridge : Ω est ( l ensemble ) des parties à
Canevas théoriques du projet sur le poker Partie A
Partie A Dans une partie de poker, particulièrement au Texas Hold em Limit, il est possible d effectuer certains calculs permettant de prendre la meilleure décision. Quelques-uns de ces calculs sont basés
Le Seven Card Stud. Club Poker 78
Club Poker 78 Juin 2013 Introduction Le Seven Card Stud est une variante de poker née aux USA, au milieu du XIXe siècle. À partir des années 1930, ce jeu devient la variante la plus populaire dans les
Probabilités. I - Expérience aléatoire. II - Evénements
Probabilités Voici le premier cours de probabilités de votre vie. N avez-vous jamais eut envie de comprendre les règles des grands joueurs de poker et de les battre en calculant les probabilités d avoir
Jeux mathématiques en maternelle. Activités clés. Jeu des maisons et des jardins (Yvette Denny PEMF)
Activités clés NIVEAU : PS/MS Jeu des maisons et des jardins (Yvette Denny PEMF) Compétences Construire les premiers nombres dans leur aspect cardinal Construire des collections équipotentes Situation
Calculs de probabilités conditionelles
Calculs de probabilités conditionelles Mathématiques Générales B Université de Genève Sylvain Sardy 20 mars 2008 1. Indépendance 1 Exemple : On lance deux pièces. Soit A l évènement la première est Pile
Joueur B Pierre Feuille Ciseaux Pierre (0,0) (-1,1) (1,-1) Feuille (1,-1) (0,0) (-1,1) Ciseaux (-1,1) (1,-1) (0.0)
CORRECTION D EXAMEN CONTROLE CONTINU n 1 Question de cours Question 1 : Les équilibres de Cournot et de Stackelberg sont des équilibres de situation de duopole sur un marché non coopératif d un bien homogène.
Les devoirs en Première STMG
Les devoirs en Première STMG O. Lader Table des matières Devoir sur table 1 : Proportions et inclusions....................... 2 Devoir sur table 1 : Proportions et inclusions (corrigé)..................
Planification financière
Planification financière Introduction La planification financière couvre un large éventail de sujets et dans le meilleur des cas, elle les regroupe d une manière ordonnée et intégrée. Toutefois, vu qu
Partie 1 : la construction du nombre chez l'enfant. Page 2. Partie 2 : Des jeux et des nombres Page 8
Partie 1 : la construction du nombre chez l'enfant. Page 2 Partie 2 : Des jeux et des nombres Page 8 1 La construction du nombre Le nombre est invariant : Le nombre ne change pas quelles que soient les
Les probabilités. Chapitre 18. Tester ses connaissances
Chapitre 18 Les probabilités OBJECTIFS DU CHAPITRE Calculer la probabilité d événements Tester ses connaissances 1. Expériences aléatoires Voici trois expériences : - Expérience (1) : on lance une pièce
S initier aux probabilités simples «Question de chance!»
«Question de chance!» 29-11 Niveau 1 Entraînement 1 Objectifs - S entraîner à activer la rapidité du balayage visuel. - Réactiver le comptage par addition jusqu à 20. - Développer le raisonnement relatif
Apprentissage par renforcement (1a/3)
Apprentissage par renforcement (1a/3) Bruno Bouzy 23 septembre 2014 Ce document est le chapitre «Apprentissage par renforcement» du cours d apprentissage automatique donné aux étudiants de Master MI, parcours
REGLES DU TOURNOI POKER TEXAS HOLD EM GRAND CASINO BASEL. Airport Casino Basel AG Tournoi Poker. Version 2.0
REGLES DU TOURNOI POKER TEXAS HOLD EM GRAND CASINO BASEL Version 2.0 Poker_Grand Casino Basel_F 30.06.2008 / MI page 1 / 8 1 Mise Sans annonce verbale, un enjeu est réputé misé à partir du moment où le
CHAPITRE 5. Stratégies Mixtes
CHAPITRE 5 Stratégies Mixtes Un des problèmes inhérents au concept d équilibre de Nash en stratégies pures est que pour certains jeux, de tels équilibres n existent pas. P.ex.le jeu de Pierre, Papier,
I. Cas de l équiprobabilité
I. Cas de l équiprobabilité Enoncé : On lance deux dés. L un est noir et l autre est blanc. Calculer les probabilités suivantes : A «Obtenir exactement un as» «Obtenir au moins un as» C «Obtenir au plus
Dossier projet isn 2015 par Victor Gregoire
Dossier projet isn 2015 par Victor Gregoire Plan: I) But du projet: créer un jeu de blackjack fonctionnel et le poster sur une page web mise en ligne. Le jeu sera developpé en C++ a l'aide de code blocks.
Assurances. Introduction. Objectifs d apprentissage
Assurances Introduction Si vous possédez une automobile au Canada, vous devez avoir quelques notions de base sur l assurance. Les autres types d assurances sont semblables, mais il existe de grandes différences.
Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé
Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé A. P. M. E. P. Exercice 1 5 points 1. Réponse d. : 1 e Le coefficient directeur de la tangente est négatif et n est manifestement pas 2e
CALCUL DES PROBABILITES
CALCUL DES PROBABILITES Exemple On lance une pièce de monnaie une fois. Ensemble des événements élémentaires: E = pile, face. La chance pour obtenir pile vaut 50 %, pour obtenir face vaut aussi 50 %. Les
Exemple On lance une pièce de monnaie trois fois de suite. Calculer la probabilité d obtenir exactement deux fois pile.
Probabilités Définition intuitive Exemple On lance un dé. Quelle est la probabilité d obtenir un multiple de 3? Comme il y a deux multiples de 3 parmi les six issues possibles, on a chances sur 6 d obtenir
ÉPREUVE COMMUNE DE TIPE 2008 - Partie D
ÉPREUVE COMMUNE DE TIPE 2008 - Partie D TITRE : Les Fonctions de Hachage Temps de préparation :.. 2 h 15 minutes Temps de présentation devant le jury :.10 minutes Entretien avec le jury :..10 minutes GUIDE
Probabilités. C. Charignon. I Cours 3
Probabilités C. Charignon Table des matières I Cours 3 1 Dénombrements 3 1.1 Cardinal.................................................. 3 1.1.1 Définition............................................. 3
Fiche pédagogique : ma famille et moi
Fiche pédagogique : ma famille et moi Tâche finale de l activité : Jouer au «Cluedo» Niveau(x) Cycle 3 Contenu culturel : - jeux de sociétés Connaissances : Connaissances requises : - cf séquences primlangue
Cryptographie et fonctions à sens unique
Cryptographie et fonctions à sens unique Pierre Rouchon Centre Automatique et Systèmes Mines ParisTech [email protected] Octobre 2012 P.Rouchon (Mines ParisTech) Cryptographie et fonctions
MATHÉMATIQUES APPLIQUÉES S4 Exercices
Unité D Probabilité Exercice 1 : Chemins 1. Aline habite la maison illustrée ci-dessous. Le diagramme illustre les murs et les portes. a) Combien existe-t-il de chemins possibles entre la pièce A et la
Types de REA produites dans le cadre de la séquence pédagogique
Scénario pédagogique APPRENDRE À ENSEIGNER AUTREMENT Description générale du scénario Titre Les bases de données relationnelles Résumé Dans le cadre d'un cours à distance, la visioconférence est une REA
Correction du baccalauréat ES/L Métropole 20 juin 2014
Correction du baccalauréat ES/L Métropole 0 juin 014 Exercice 1 1. c.. c. 3. c. 4. d. 5. a. P A (B)=1 P A (B)=1 0,3=0,7 D après la formule des probabilités totales : P(B)=P(A B)+P(A B)=0,6 0,3+(1 0,6)
PROGRAMME DE MENTORAT
CONSEIL SCOLAIRE ACADIEN PROVINCIAL PROGRAMME DE MENTORAT ÉNONCÉ PRATIQUE Le Conseil scolaire acadien provincial désire promouvoir un programme de mentorat qui servira de soutien et d entraide auprès des
Les probabilités. Guide pédagogique Le présent guide sert de complément à la série d émissions intitulée Les probabilités produite par TFO.
Guide pédagogique Le présent guide sert de complément à la série d émissions intitulée produite par TFO. Le guide Édition 1988 Rédacteur (version anglaise) : Ron Carr Traduction : Translatec Conseil Ltée
Seconde et première Exercices de révision sur les probabilités Corrigé
I_ L'univers. _ On lance simultanément deux dés indiscernables donc il n'y a pas d'ordre. Il y a répétition, les dbles. On note une issue en écrivant le plus grand chiffre puis le plus petit. 32 signifie
Probabilités sur un univers fini
[http://mp.cpgedupuydelome.fr] édité le 10 août 2015 Enoncés 1 Proailités sur un univers fini Evènements et langage ensemliste A quelle condition sur (a,, c, d) ]0, 1[ 4 existe-t-il une proailité P sur
Probabilités conditionnelles
Probabilités conditionnelles Exercice Dans une usine, on utilise conjointement deux machines M et M 2 pour fabriquer des pièces cylindriques en série. Pour une période donnée, leurs probabilités de tomber
LES BASES DU COACHING SPORTIF
LES BASES DU COACHING SPORTIF Module N 1 Motivation, concentration, confiance, communication Module N 2 L apprentissage : «Apprendre à apprendre» LES BASES DU COACHING SPORTIF APPRENTISSAGE PLAISIR PERFORMANCE
BACCALAURÉAT GÉNÉRAL SESSION 2012 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE
BACCALAURÉAT GÉNÉRAL SESSION 2012 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE Les calculatrices électroniques de poche sont autorisées, conformément à la
- un jeu de K cartes représentées par des nombres C 1, C 2 à C K avec K entier strictement
- 0 - - 1 - Domaine technique : Lorsque des personnes jouent aux cartes, ils ont habituellement recours à un tas de cartes mélangées, un joueur tire une carte dans le tas, il ne la voit pas, mais il sait
TP : Shell Scripts. 1 Remarque générale. 2 Mise en jambe. 3 Avec des si. Systèmes et scripts
E3FI ESIEE Paris Systèmes et scripts B. Perret TP : Shell Scripts 1 Remarque générale Lorsque vous cherchez des informations sur Internet, n'oubliez pas que langage de shell script que nous avons vu correspond
BONUS MALUS. Voici, la façon de calculer la prime : Le montant de la prime à acquitter est égale à : P = PB. C où : P
BONUS MALUS Le propriétaire d un véhicule automobile est tenu d assurer sa voiture auprès d une compagnie d assurances. Pour un véhicule donné, le propriétaire versera annuellement une «prime» à sa compagnie.
Licence MASS 2000-2001. (Re-)Mise à niveau en Probabilités. Feuilles de 1 à 7
Feuilles de 1 à 7 Ces feuilles avec 25 exercices et quelques rappels historiques furent distribuées à des étudiants de troisième année, dans le cadre d un cours intensif sur deux semaines, en début d année,
Temps forts départementaux. Le calcul au cycle 2 Technique opératoire La soustraction
Temps forts départementaux Le calcul au cycle 2 Technique opératoire La soustraction Calcul au cycle 2 La soustraction fait partie du champ opératoire additif D un point de vue strictement mathématique,
Les petits pas. Pour favoriser mon écoute. Où le placer dans la classe? Procédurier. Adapter les directives. Référentiel Présentation des travaux
Tombe facilement dans la lune (distraction interne) Compenser les déficits d attention des élèves ayant un TDAH : des moyens simples à proposer aux enseignants Line Massé Département de psychoéducation,
Il y a trois types principaux d analyse des résultats : l analyse descriptive, l analyse explicative et l analyse compréhensive.
L ANALYSE ET L INTERPRÉTATION DES RÉSULTATS Une fois les résultats d une investigation recueillis, on doit les mettre en perspective en les reliant au problème étudié et à l hypothèse formulée au départ:
TESTS D'HYPOTHESES Etude d'un exemple
TESTS D'HYPOTHESES Etude d'un exemple Un examinateur doit faire passer une épreuve type QCM à des étudiants. Ce QCM est constitué de 20 questions indépendantes. Pour chaque question, il y a trois réponses
Intelligence Artificielle et Robotique
Intelligence Artificielle et Robotique Introduction à l intelligence artificielle David Janiszek [email protected] http://www.math-info.univ-paris5.fr/~janiszek/ PRES Sorbonne Paris Cité
PLAN DE FORMATION Formation : Le rôle du superviseur au quotidien 2014-2015
1. Contexte PLAN DE FORMATION Formation : Le rôle du superviseur au quotidien 2014-2015 Dans le passé, on recherchait des superviseurs compétents au plan technique. Ce genre d expertise demeurera toujours
Comedy Magic vous présente l'animation Casino Factice
Comedy Magic vous présente l'animation Casino Factice Distribuez gratuitement des billets de Casino aux participants. Laissez flamber ou fructifier l argent factice. Pimentez le terme de la soirée Casino
PROBABILITÉS CONDITIONNELLES
PROBABILITÉS CONDITIONNELLES A.FORMONS DES COUPLES Pour la fête de l école, les élèves de CE 2 ont préparé une danse qui s exécute par couples : un garçon, une fille. La maîtresse doit faire des essais
Chaînes de Markov au lycée
Journées APMEP Metz Atelier P1-32 du dimanche 28 octobre 2012 Louis-Marie BONNEVAL Chaînes de Markov au lycée Andreï Markov (1856-1922) , série S Problème 1 Bonus et malus en assurance automobile Un contrat
BACCALAURÉAT PROFESSIONNEL ÉPREUVE DE MATHEMATIQUES. EXEMPLE DE SUJET n 2
Exemple de sujet n 2 Page 1/7 BACCALAURÉAT PROFESSIONNEL ÉPREUVE DE MATHEMATIQUES EXEMPLE DE SUJET n 2 Ce document comprend : Pour l examinateur : - une fiche descriptive du sujet page 2/7 - une fiche
AMELIORER SES COMPETENCES LINGUISTIQUES les prépositions de lieu
AMELIORER SES COMPETENCES LINGUISTIQUES les prépositions de lieu JEUX : Jeu des paires Quelles différences? E.P.S. : - jeu Jacques a dit - Chasse au trésor - Mise en place d un parcours ÉCOUTER, MEMORISER
Les fonctions de hachage, un domaine à la mode
Les fonctions de hachage, un domaine à la mode JSSI 2009 Thomas Peyrin (Ingenico) 17 mars 2009 - Paris Outline Qu est-ce qu une fonction de hachage Comment construire une fonction de hachage? Les attaques
Simulation centrée individus
Simulation centrée individus Théorie des jeux Bruno BEAUFILS Université de Lille Année 4/5 Ce document est mis à disposition selon les termes de la Licence Creative Commons Attribution - Partage dans les
Probabilités sur un univers fini
[http://mp.cpgedupuydelome.fr] édité le 7 août 204 Enoncés Probabilités sur un univers fini Evènements et langage ensembliste A quelle condition sur (a, b, c, d) ]0, [ 4 existe-t-il une probabilité P sur
HAPPY PIGS! RÈGLES DU JEU
HAPPY PIGS! RÈGLES DU JEU Nombre de joueurs : 3~6 Durée : 30~45 minutes Age : 8+ L HISTOIRE Après avoir fait de l élevage de dindons (voir notre jeu précédent Happy Turkey Day ), les fermiers ont maintenant
MANAGER POUR LA PREMIÈRE FOIS
Frédéric Crépin MANAGER POUR LA PREMIÈRE FOIS, 2004. ISBN : 2-7081-3140-0 5 Chapitre 1 idées reçues sur les managers et le management au quotidien Idée reçue n 1 : managers et salariés doivent avoir les
La pratique des décisions dans les affaires
Association Française Edwards Deming Une philosophie de l action pour le XXIème siècle Conférence annuelle, Paris, 8 juin 1999 Jean-Marie Gogue, Président de l AFED La pratique des décisions dans les affaires
LES GENERATEURS DE NOMBRES ALEATOIRES
LES GENERATEURS DE NOMBRES ALEATOIRES 1 Ce travail a deux objectifs : ====================================================================== 1. Comprendre ce que font les générateurs de nombres aléatoires
Planifier avec les expériences clés pour les enfants de 3 à 5 ans
Planifier avec les expériences clés pour les enfants de 3 à 5 ans Ginette Hébert formatrice en petite enfance AFÉSÉO FORUM 2012 Cette formation s appuie sur mon expérience d accompagnement d éducatrices
Cours de Probabilités et de Statistique
Cours de Probabilités et de Statistique Licence 1ère année 2007/2008 Nicolas Prioux Université Paris-Est Cours de Proba-Stat 2 L1.2 Science-Éco Chapitre Notions de théorie des ensembles 1 1.1 Ensembles
Arbre de probabilité(afrique) Univers - Evénement
Arbre de probabilité(afrique) Univers - Evénement Exercice 1 Donner l univers Ω de l expérience aléatoire consistant à tirer deux boules simultanément d une urne qui en contient 10 numérotés puis à lancer
L'INTÉRÊT COMPOSÉ. 2.1 Généralités. 2.2 Taux
L'INTÉRÊT COMPOSÉ 2.1 Généralités Un capital est placé à intérêts composés lorsque les produits pendant la période sont ajoutés au capital pour constituer un nouveau capital qui, à son tour, portera intérêt.
Document d accompagnement. de la 1 re à la 8 e année. Exemples de tâches et corrigés. 1 re année Tâche 1... 5 Corrigé... 7 Tâche 2... 8 Corrigé...
Normes de performance de la Colombie-Britannique Document d accompagnement Mathématiques de la 1 re à la 8 e année Exemples de tâches et corrigés 1 re année Tâche 1... 5 Corrigé... 7 Tâche 2... 8 Corrigé...
Conclusions de la session 1. L informatique, une discipline à part entière! Culture, fondamentaux et usages
Conclusions de la session 1 L informatique, une discipline à part entière! Culture, fondamentaux et usages Jean-Pierre ARCHAMBAULT Chargé de mission Veille technologique, CNDP-CRDP de Paris Thierry VIEVILLE
Vous incarnez un surdoué en informatique qui utilise son ordinateur afin de pirater des comptes bancaires un peu partout dans le monde et s en mettre
Vous incarnez un surdoué en informatique qui utilise son ordinateur afin de pirater des comptes bancaires un peu partout dans le monde et s en mettre plein les poches. Problème : vous n êtes pas seul!
Apprendre à résoudre des problèmes numériques. Utiliser le nombre pour résoudre des problèmes
Apprendre à résoudre des problèmes numériques Utiliser le nombre pour résoudre des problèmes Ce guide se propose de faire le point sur les différentes pistes pédagogiques, qui visent à construire le nombre,
Feuille 6 : Tests. Peut-on dire que l usine a respecté ses engagements? Faire un test d hypothèses pour y répondre.
Université de Nantes Année 2013-2014 L3 Maths-Eco Feuille 6 : Tests Exercice 1 On cherche à connaître la température d ébullition µ, en degrés Celsius, d un certain liquide. On effectue 16 expériences
Programme de formation
Programme de formation Symbos a mis au point avec ses experts un programme en deux temps. l ABC du coaching en neuf jours APPROFONDISSEMENT par l acquisition des méthodes en neuf jours complémentaires.
PROBABILITES ET STATISTIQUE I&II
PROBABILITES ET STATISTIQUE I&II TABLE DES MATIERES CHAPITRE I - COMBINATOIRE ELEMENTAIRE I.1. Rappel des notations de la théorie des ensemble I.1.a. Ensembles et sous-ensembles I.1.b. Diagrammes (dits
Algorithmes d'apprentissage
Algorithmes d'apprentissage 1 Agents qui apprennent à partir d'exemples La problématique : prise de décision automatisée à partir d'un ensemble d'exemples Diagnostic médical Réponse à une demande de prêt
Baccalauréat technique de la musique et de la danse Métropole septembre 2008
Baccalauréat technique de la musique et de la danse Métropole septembre 008 EXERCICE 5 points Pour chacune des cinq questions à 5, trois affirmations sont proposées dont une seule est exacte. Pour chaque
FICHE N 8 Photodiversité, d une banque d images à un portail d activités en ligne Anne-Marie Michaud, académie de Versailles
FICHE N 8 Photodiversité, d une banque d images à un portail d activités en ligne Anne-Marie Michaud, académie de Versailles Niveaux et thèmes de programme Sixième : 1 ère partie : caractéristiques de
Université Paris 8 Introduction aux probabilités 2014 2015 Licence Informatique Exercices Ph. Guillot. 1 Ensemble fondamental loi de probabilité
Université Paris 8 Introduction aux probabilités 2014 2015 Licence Informatique Exercices Ph. Guillot 1 Ensemble fondamental loi de probabilité Exercice 1. On dispose de deux boîtes. La première contient
Pi, poker et informatique ; une «épuisante» alliance pour des projets en mathématiques
Pi, poker et informatique ; une «épuisante» alliance pour des projets en mathématiques Jean Fradette et Anik Trahan, Cégep de Sherbrooke Résumé Dans un cours intégrateur en mathématiques, des étudiants
CLUB UTILISATEURS Distel 2014
a le plaisir de vous convier à l édition 2014 de son club utilisateurs Distel. Nous vous proposons 1 jour et demi sur Toulouse les 9 et 10 octobre 2014. Cet évènement placé sous le signe de l échange et
L apprentissage automatique
L apprentissage automatique L apprentissage automatique L'apprentissage automatique fait référence au développement, à l analyse et à l implémentation de méthodes qui permettent à une machine d évoluer
TÂCHE 1 - INTERACTION FICHE Nº 1
TÂCHE 1 - INTERACTION FICHE Nº 1 Temps de préparation : 1 minute Intervention par couple : 4-5 minutes CANDIDAT A CADEAU D ANNIVERSAIRE Votre collègue et vous allez acheter un CADEAU D ANNIVERSAIRE pour
Exercices supplémentaires sur l introduction générale à la notion de probabilité 2009-2010
Exercices supplémentaires sur l introduction générale à la notion de probabilité 2009-2010 Exercices fortement conseillés : 6, 10 et 14 1) Un groupe d étudiants est formé de 20 étudiants de première année
Probabilités. Rappel : trois exemples. Exemple 2 : On dispose d un dé truqué. On sait que : p(1) = p(2) =1/6 ; p(3) = 1/3 p(4) = p(5) =1/12
Probabilités. I - Rappel : trois exemples. Exemple 1 : Dans une classe de 25 élèves, il y a 16 filles. Tous les élèves sont blonds ou bruns. Parmi les filles, 6 sont blondes. Parmi les garçons, 3 sont
Contenu et préparation
Une palpitante chasse aux cartes à grands coups de dés Pour 2 à 6 experts en moutons à partir de 10 ans Depuis qu on lui a offert les nouveaux ciseaux «Kicoup 2010», Jacques, le coiffeur du troupeau, est
DESCRIPTEURS NIVEAU A2 du Cadre européen commun de référence pour les langues
DESCRIPTEURS NIVEAU A2 du Cadre européen commun de référence pour les langues ACTIVITÉS DE COMMUNICATION LANGAGIÈRE ET STRATÉGIES Activités de production et stratégies PRODUCTION ORALE MONOLOGUE SUIVI
