Résistance des matériaux

Documents pareils
Cours de résistance des matériaux

TUTORIAL 1 ETUDE D UN MODELE SIMPLIFIE DE PORTIQUE PLAN ARTICULE

Cours de Résistance des Matériaux (RDM)

SSNL126 - Flambement élastoplastique d'une poutre droite. Deux modélisations permettent de tester le critère de flambement en élastoplasticité :

DISQUE DUR. Figure 1 Disque dur ouvert

Chapitre XIV BASES PHYSIQUES QUANTITATIVES DES LOIS DE COMPORTEMENT MÉCANIQUE. par S. CANTOURNET 1 ELASTICITÉ

Rupture et plasticité

ANNEXE J POTEAUX TESTÉS SELON UN CHARGEMENT STATIQUE ET TESTÉS SELON UN CHARGEMENT CYCLIQUE ET STATIQUE

P M L R O G W. sylomer. Gamme de Sylomer Standard. Propriétés Méthode de test Commentaires. Polyuréthane (PUR) Cellulaire mixte

Banc d études des structures Etude de résistances de matériaux (RDM) et structures mécaniques

DÉVERSEMENT ÉLASTIQUE D UNE POUTRE À SECTION BI-SYMÉTRIQUE SOUMISE À DES MOMENTS D EXTRÉMITÉ ET UNE CHARGE RÉPARTIE OU CONCENTRÉE

ÉTUDE DE L EFFICACITÉ DE GÉOGRILLES POUR PRÉVENIR L EFFONDREMENT LOCAL D UNE CHAUSSÉE

Fonctions de deux variables. Mai 2011

Les correcteurs accorderont une importance particulière à la rigueur des raisonnements et aux représentations graphiques demandées.

Analyse statique d une pièce

Chapitre 2 : Caractéristiques du mouvement d un solide

SSNV143 - Traction biaxiale avec la loi de comportement BETON_DOUBLE_DP

Généralités. Aperçu. Introduction. Précision. Instruction de montage. Lubrification. Conception. Produits. Guides à brides FNS. Guides standards GNS

Déformabilité des sols. Tassements. Consolidation

Jean-Marc Schaffner Ateliers SCHAFFNER. Laure Delaporte ConstruirAcier. Jérémy Trouart Union des Métalliers

ICS Destiné à remplacer EN 926-1:1995. Version Française

SOCIETE NATIONALE DES CHEMINS DE FER BELGES SPECIFICATION TECHNIQUE

Exemples de dynamique sur base modale

Prise en compte des Eurocodes dans le dimensionnement d ouvrages d art courant en béton armé. Comparaison avec «l ancienne» réglementation.

BACCALAURÉAT GÉNÉRAL SÉRIE SCIENTIFIQUE

Sujet proposé par Yves M. LEROY. Cet examen se compose d un exercice et de deux problèmes. Ces trois parties sont indépendantes.

CONCEPTION PARASISMIQUE DES BATIMENTS (STRUCTURES) INTRODUCTION A LA DYNAMIQUE DES STRUCTURES

Essais de charge sur plaque

Béton. Fig. 1- Essai d'étalement sur table

Exemple d application du EN : Poutre fléchie avec section tubulaire reconstituée

Département de Génie Civil

Information. BASES LITTERAIRES Etre capable de répondre à une question du type «la valeur trouvée respecte t-elle le cahier des charges?

Mécanique des sols I. Chapitre I Propriétés physiques des sols. Chapitre II Hydraulique des sols. Chapitre III Déformations des sols

Bandes en polyuréthane HP avec conformité HACCP

Chapitre 12. Bâtiments à ossature mixte en zone sismique.

Calcul des pertes de pression et dimensionnement des conduits de ventilation

Chapitre 2 Les ondes progressives périodiques

PCB 20 Plancher collaborant. Fiche technique Avis technique CSTB N 3/11-678

1 Définition. 2 Systèmes matériels et solides. 3 Les actions mécaniques. Le système matériel : Il peut être un ensemble.un sous-ensemble..

1 Mise en application

Concours EPITA 2009 Epreuve de Sciences Industrielles pour l ingénieur La suspension anti-plongée de la motocyclette BMW K1200S

BACCALAURÉAT TECHNOLOGIQUE SESSION 2008 POSITIONNEUR DE PANNEAU SOLAIRE POUR CAMPING-CAR

Manuel de validation Fascicule v4.25 : Thermique transitoire des structures volumiques

RELEVE D ETAT DU PONT DES GRANDS-CRÊTS. On a procédé une auscultation visuelle entre le 23 et le 29 mars 2007.

Guide Technique Pour la Charpente de Mur. LSL et LVL SolidStart LP

Colle époxydique multi usages, à 2 composants

TP2 ACTIVITE ITEC. Centre d intérêt : AUBE D UN MIRAGE 2000 COMPORTEMENT D UNE PIECE. Documents : Sujet Projet Dossier technique - Document réponse.

Fiche Technique d Évaluation sismique : Construction basse en Maçonnerie Non-armée, Chaînée, ou de Remplissage en Haïti

FICHE TECHNIQUE. Domaines d applications. Stockage / Mise en oeuvre. Caractéristiques physiques et techniques STOCKAGE MISE EN OEUVRE

La fabrication des objets techniques

Fiche technique Ligne de vie SECURIFIL industrie

Chapitre 1 Régime transitoire dans les systèmes physiques

Corrigé Exercice 1 : BRIDE HYDRAULIQUE AVEC HYPOTHÈSE PROBLÈME PLAN.

LES LOIS PHYSIQUES APPLIQUÉES AUX DEUX-ROUES : 1. LA FORCE DE GUIDAGE

INTRODUCTION. A- Modélisation et paramétrage : CHAPITRE I : MODÉLISATION. I. Paramétrage de la position d un solide : (S1) O O1 X

Chapitre 0 Introduction à la cinématique

N09 Viaduc de Chillon

TUBES ET ACCESSOIRES Serrurier A ailettes Construction Canalisation Spéciaux

Le point de vue du contrôleur technique

Equipe EPS 68 L athlétisme à l école primaire Page 56 sur 109

Guide de conception. Sécurité incendie des halls industriels

II - 2 Schéma statique

(Exemple ici de calcul pour une Ducati 748 biposto, et également pour un S2R1000, équipé d un disque acier en fond de cloche, et ressorts d origine)

Calcul intégral élémentaire en plusieurs variables

La réglementation et les obligations qui en découlent

Vis à billes de précision à filets rectifiés

Vis à béton FBS et FSS

Chapitre 7. Circuits Magnétiques et Inductance. 7.1 Introduction Production d un champ magnétique

Initiation à la Mécanique des Fluides. Mr. Zoubir HAMIDI

Plan du chapitre «Milieux diélectriques»

Oscillations libres des systèmes à deux degrés de liberté

5 STATIQUE. 5.1 Généralités

Le béton léger prêt à l emploi, la solution idéale pour les applications intérieures et extérieures

SOMMAIRE Thématique : Matériaux

INFLUENCE de la TEMPERATURE. Transition ductile/fragile Choc Thermique Fluage

MODELISATION DES SYSTEMES MECANIQUES

Monitoring et suivi du comportement des chaussées

Caractéristiques des ondes

Quantification Scalaire et Prédictive

JOURNEE TECHNIQUE AFIAP du 15 Mai 2014

Utilisation des tabelles de dimensionnement

ANALYSE ET TRAITEMENT DES DONNÉES PROVENANT DU MONITORING DES PONTS PAR LA TECHNOLOGIE OSMOS

P. VALLON - Retraitement en place à froid - Juillet 2009

FORMULAIRE FORMULAIRE

SOL FORTE ÉPAISSEUR INDUSTRIAL FLORIM

Annexe A. Annexe A. Tableaux et données relatifs à la vérification par Eurocode 3 A.3

Mini projet n 1 DOSSIER DE CONCEPTION Clef USB

D022751/01 TEXTE SOUMIS EN APPLICATION DE L ARTICLE 88-4 DE LA CONSTITUTION PAR LE GOUVERNEMENT, À L ASSEMBLÉE NATIONALE ET AU SÉNAT.

Fonctions de plusieurs variables

MODÉLISATION DU FONCTIONNEMENT EN PARALLELE À DEUX OU PLUSIEURS POMPES CENTRIFUGES IDENTIQUES OU DIFFERENTES

Adhésif structural pour le collage de renforts

Douille expansibleécarteur

G.P. DNS02 Septembre Réfraction...1 I.Préliminaires...1 II.Première partie...1 III.Deuxième partie...3. Réfraction

Module d Electricité. 2 ème partie : Electrostatique. Fabrice Sincère (version 3.0.1)

Styrodur C, un XPS exempt de CFC, HCFC et HFC. De l air, tout simplement. Ecologique, tout simplement.

Généralités sur les matériaux composites

Filtres pour gaz et air. GF/1: Rp 1/2 - Rp 2 GF/3: DN 40 GF/4: DN 50 - DN 100 GF: DN DN 200

COMPTE-RENDU «MATHS EN JEANS» LYCEE OZENNE Groupe 1 : Comment faire une carte juste de la Terre?

Version 1. Demandeur de l étude : VM - BETON SERVICES 51 Boulevard des Marchandises L'HERBERGEMENT. Auteur * Approbateur Vérificateur(s)

Transcription:

Résistance des matériaux Objectif : Identifier les sollicitations subies par un solide. Page 06-14 1

Sommaire 1 But de la résistance des matériaux...3 2 énéralités.............................. 3 2.1 Notion de poutre...3 2.2 Hypothèses fondamentales... 4 3 Les sollicitations simples............... 4 3.1 Repère local... 4 3.2 Traction......... 4 3.3 Compression... 5 3.4 Cisaillement... 6 3.5 Flexion... 6 3.6 Torsion... 7 4 Effort de cohésion... 7 5- En résumé... 8 6- Notion de contraintes... 8 7- Traction - Compression... 9 7.1 Essai... 9 7.2 Contrainte... 9 7.3 Condition de résistance...10 7.4 Déformation et allongement......10 7.5 Loi de Hooke... 10 Page 06-14 2

1- But de la résistance des matériaux La statique a permis de déterminer les efforts qui sollicitent un solide, celui-ci même si ce n est pas forcement visible se déforme. Nous entrons donc dans le domaine de la résistance des matériaux. La résistance des matériaux est donc l'étude de la déformation des matériaux. (arbres de transmission d un moteur, bâtiments, ponts,..). Cela permet donc de : Déterminer l amplitude des déformations des solides.(acceptable ou pas) Choisir le matériau le plus approprié pour subir ces déformations. Vérifier la résistance de ce matériau par rapport à ses capacités propres. (Dépassement de la limite à la résistance élastique du matériau) Vérifier la résistance à la rupture (Rupture après un certain nombre de cycles de déformation ou un effort trop important) Optimiser la forme d un solide. Déterminer les dimensions du solide capable de résister dans de bonnes conditions aux sollicitations qu il subit. 2- énéralités 2.1-Notion de poutre Les notions abordées dans ce cours ne sont valables que pour des solides ayant une forme de poutre ; c est à dire un solide pour lequel : il existe une ligne moyenne, continue, passant par les barycentres des sections du solide la longueur L est au moins 4 à 5 fois supérieure au diamètre D il n y a pas de brusque variation de section (trous, épaulements) le solide admet un seul et même plan de symétrie pour les charges et la géométrie. En résumé : on appelle poutre un solide engendré par une surface plane (S) dont le centre de surface décrit une courbe plane appelée ligne moyenne. Plan de symétrie Ligne moyenne D Profil (section droite S) L Exemples de poutres : Page 06-14 3

Exemples de poutres ne satisfaisant pas l hypothèse de symétrie : 2.2-Hypothèses fondamentales Les hypothèses de la résistance des matériaux, dans ce cours, sont les suivantes : Les matériaux sont homogènes et isotropes (Qui a les mêmes propriétés physiques dans toutes les directions) - Homogène - - Non Homogène - Il n y a pas de gauchissement des sections droites : les sections droites planes et perpendiculaires à la ligne moyenne, restent planes et perpendiculaires à la ligne moyenne après déformation ; Toutes les forces extérieures exercées sur la poutre sont contenus dans un plan de symétrie ; On suppose que les déformations restent faibles par rapport aux dimensions de la poutre. 3- Les sollicitations simples 3.1-Repère local et notation Une désignation particulière des axes s associe à la notation que nous connaissons jusqu à maintenant. Aux traditionnels x,y et z s ajoute la notation N et T qui indique si l effort est perpendiculaire ou tangent à la surface qui sera étudiée. Axes Tangent à la surface Axe Normal à la surface (perpendiculaire) T 3.2-Traction N T Une poutre est sollicitée en traction lorsque les actions aux extrémités se réduisent à deux forces égales et opposées, portées par la ligne moyenne Lm et qui ont pour vocation à allonger cette poutre. -F F Lm A B L effort F est appelé effort normal, il est noté N. Quelle que soit la section considérée de la poutre, l effort N s exerce toujours au barycentre de la section. - A Lm Allongement Poutre au repos Section S Poutre déformée 4 Page 06-14

- Visualisation de la déformation sur une poutre en mousse : La maille s allonge verticalement La poutre se rétrécie transversalement 3.3-Compression Une poutre est sollicitée à la compression lorsque les actions aux extrémités se réduisent à deux forces égales et opposées, portées par la ligne moyenne Lm et qui ont pour vocation à raccourcir cette poutre. -F F Lm A B L effort F est appelé effort normal, il est noté N. Quelle que soit la section considérée de la poutre, l effort N s exerce toujours au barycentre de la section. -F N Lm A Poutre au repos Section S Poutre déformée - Visualisation de la déformation sur une poutre en mousse : La poutre se raccourcit verticalement Page 06-14 5

3.4-Cisaillement Une poutre est sollicitée en cisaillement lorsque sa section S est soumise à une résultante T appliquée en (barycentre de la section) et contenue dans le plan (S). T est appelé effort tranchant. Section S + T f f Chaque élément de surface S supporte un effort de cisaillement f contenu dans le plan (S). Il y a répartition uniforme des contraintes dans la section droite. S f x Il faut imaginer que la distance entre les 2 surfaces est très petite pas comme sur la photo. 3.5-Flexion Une poutre est sollicitée en flexion lorsque sa section S est soumise à une action au barycentre composé d une résultante T contenue dans le plan de symétrie et un moment M fz perpendiculaire à ce dernier M z est appelé moment fléchissant, ou moment de flexion. Allongement Section S + T M fz Raccourcissement Page 06-14 6

3.6-Torsion Une poutre est sollicitée en torsion lorsque les actions aux extrémités se réduisent à deux moments égaux et opposées, portées par la ligne moyenne Lm. - Mt Mt Le moment Mt est appelé moment de torsion et est noté Mt Soit l angle de rotation entre les deux extrémités de la poutre. L 4- Efforts de cohésion Soit une poutre (E) en équilibre sous l'action de plusieurs actions extérieures. Pour étudier ce solide déformable, il faut modéliser ce qui se passe au sein de la matière. Pour se faire, on réalise une coupure fictive de la poutre située à l'abscisse x qui la sépare en 2 tronçons E1 et E2. Les efforts de cohésion traduisent les actions de contact de (E2) sur (E1).Ces efforts de cohésion permettent à la poutre de ne pas se "disloquer" sous l'effet d'actions extérieures. On note les efforts de cohésion de la façon suivante : D après le PFS Puisque E = E1 U E2 T Ext E T Ext E T Ext T 1 E2 T 1 Ext E Ext 0 E2 T T E E 1 2 amont aval T TE E 2 1 Page 06-14 7

Equilibre du tronçon E1 : Avec PFS : T int T Eaval E amont T T Ext E E2 E T 1 int 0 2 1 1 5- En résumé 6- Notion de contraintes Afin de comparer les sollicitations internes à la poutre à la résistance propre du matériau, on va exprimer les sollicitations indépendamment de la dimension de la section. Pour un élément infinitésimal de la section droite ds autour d'un point M, un vecteur contrainte σ(m,x) est caractérisé par ses composantes : - contrainte normale (selon x) noté σx - contraintes tangentielles (ou de cisaillement) noté τy et τz. σ(m, x)=σ x. +τ y. +τ z. τ y τ z σ x Page 06-14 8

7- Traction - Compression 7.1-Essai Source : http://www.youtube.com/watch?featu re=player_embedded&v=cadylfhjcru Vidéo Répartition uniforme de la contrainte 7.2 Expression de la contrainte normale (sigma) Dans une coupure de section droite S, chaque élément de surface Δs supporte un effort de traction Δn parallèle à la ligne moyenne. Dans le cas général de la traction, sauf phénomènes particuliers de concentration de contraintes, on admet qu il y a une répartition uniforme des contraintes dans la section droite, d où la relation : Page 06-14 9 Δn

= S N : contrainte normale en N/mm 2 ou MPa N : effort normal en N S : surface section droite en mm 2 7.3 Condition de résistance Pour des raisons de sécurité la contrainte normale maxi doit rester inférieure à la résistance élastique du matériau Re soit : maxi = N/S < Re Pour plus de sûreté, on adopte très souvent un coefficient de sécurité C s (ou s) et on définit alors la résistance pratique à l'extension notée Rpe avec Rpe = Re/s = Re/C s maxi = S N Rpe ou maxi Re/Cs 7.4 Déformation et allongement relatif Les essais de traction montrent que les allongements sont proportionnels aux longueurs initiales dans le domaine élastique. Cette propriété peut se traduire par la notion d allongement relatif (epsilon) : = (L-L 0 )/L 0 = L/L 0 (sans unité) L : allongement de l'éprouvette en mm L0 : longueur initiale de l'éprouvette en mm Remarque: Lors d un essai de traction, on constate que pendant l allongement il y a une diminution des dimensions des sections droites. Le coefficient de poisson (nu) caractérise cette déformation transversale.. = (R-R 0 ) / R 0 = R / R 0 7.5 Relation entre la contrainte et l'allongement (loi de HOOKE) Dans le domaine élastique, la contrainte normale est proportionnelle à l allongement relatif et ce traduit par la loi de HOOKE : N S = E. L E., ce qui nous donne, l'allongement L N. L L E E.S : module de Young ou module d'élasticité longitudinal en MPa (N/mm 2 ) L ou L0 : longueur initiale de la poutre. N : effort normal en Newton. S : section droite de la poutre en mm 2 L : allongement de la poutre en mm. Page 06-14 10

7.6 Influence des variations de la section : concentration des contraintes Dans la majorité des cas, les pièces étudiées ne sont pas des poutres parfaites et présentent de brusques variations de section. Au voisinage du changement de section, la répartition des contraintes n'est plus uniforme. La contrainte maxi engendrée est supérieure à la contrainte uniforme ; on dit qu'il y a concentration de contrainte. Les abaques ci-dessous permettent de déterminer en fonction du cas, un coefficient Kt tel que : i kt max ce qui nous donne max i kt N S La condition de résistance s'écrit alors : maxi = Kt x N/S < Rpe Contrainte uniforme Comment déterminer Kt? Contrainte non uniforme Page 06-14 11

8- Cisaillement 8.1- Expression de la contrainte T est appelé effort tranchant. S t t t Chaque élément de surface S supporte un effort de cisaillement f contenu dans le plan (S). Il y a répartition uniforme des contraintes dans la section droite. = T / S :(Thau) contrainte tangentielle en Mpa ou N/mm² T : effort tranchant en Newton S : aire de la section droite cisaillée en mm² Poutre au repos Poutre déformée L très petit S1 S1 S2 S2 - Condition de résistance Soient : R eg la résistance élastique au cisaillement du matériau (en Mpa) Cs ou s : un coefficient de sécurité R pg la résistance pratique au cisaillement, avec R pg = R eg /s Alors, la condition de résistance s écrit : maxi R pg OU maxi R eg /C s - Déformation En déformation élastique, la contrainte de cisaillement varie linéairement en fonction de l angle de glissement. =. : contrainte tangentielle en N/mm² : module d élasticité transversal en Mpa : angle de glissement en radians Page 06-14 12

9- Flexion 9.1-Essai Observation de la déformation Dans la partie supérieure les fibres s allongent, dans la partie inférieure les fibres s étirent et au niveau de la ligne moyenne nous n avons pas d allongement. On observe aussi que les sections droites restent perpendiculaires à la ligne moyenne. Zone de traction Fibre neutre Zone de compression 9.2 Expression des contraintes normales (sigma) y M.. y x Pour toute poutre sollicitée en flexion la contrainte normale en un point M d'une section droite (S) est proportionnelle à la distance y entre ce point et le plan moyen passant par. M f z I z.y Remarque : le long d'une poutre de section constante sera maxi avec Y maxi et M fz maxi. 4.3 Condition de résistance = contrainte normale (N/mm 2 ) M fz = moment fléchissant au pt (N.mm) Y = cote du point M ; y = M (mm) I z = Moment quadratique de la section droite par rapport à l'axe z (mm 4 ) La contrainte normale maxi doit rester inférieure à la résistance pratique à l extension. maxi Rpe 9.4 Moments quadratiques usuels L unité pour le moment quadratique est le mm 4. Sections droites I z I y y z b 3 a. b b. a 12 12 3 a Page 06-14 13

z y d.d 4 64.d 4 64 z D d. 64 D. 4 4 d D d 4 4 64 Page 06-14 14