Mesurer en toute simplicité



Documents pareils
Leica Monitoring Solutions. Leica TM30 Capteur d auscultation Chaque demi-seconde compte

Leica System 1200 Software Des programmes intégrés pour GPS1200 et TPS1200

Niveaux numériques Leica DNA Des avancées qui vous mènent plus loin

"La collimation est la première cause de mauvaises images dans les instruments amateurs" Walter Scott Houston

Présentation d un télescope, de ses composants et de quelques consignes d utilisation

Scanner laser HDS7000 Ultra rapide, à portée étendue

Leica DISTO A2. The original laser distance meter

Produits concernés: CS10, CS15, TS11, TS15, GS05, GS06, GS08, GS10, GS15

Les mesures à l'inclinomètre

Station Totale Geomax Série Zoom30

Leica TPS800 Series Puissant, efficace, fiable et intuitif. PinPoint Technology

Donnez à votre équipement du mojo!

Portier Vidéo Surveillance

TS Guide de l'utilisateur Français

Leica icon Series. Guide d'installation et d'activation de licence. Version 1.0 Français

Table des matières Release Notes...1

3 - Description et orbite d'un satellite d'observation

PROGRAMME D HABILETÉS EN FAUTEUIL ROULANT (WSP-F)

Décrète : Ce règlement est applicable aux zones définies à l'article premier. Fait à Rabat, le 21 chaabane 1384 (26 décembre 1964). Ahmed Bahnini.

Europâisches Patentamt European Patent Office Numéro de publication: A1 Office européen des brevets ^ 1

La spectro, c'est facile

Instructions de montage

Le GéoPortail du Jura Présentation des fonctionnalités de la version mobile

Logiciel Survey Pro. Équipé de Spectra Precision Central : La solution cloud de Spectra Precision. Survey Pro: le meilleur, tout simplement

Manuel de l'application SMS

GMI 20 Manuel d'utilisation

A KEE SAFETY PRODUCT A C C È S E N H A U T E U R. Plateforme d'accès. ASSEMBLAGE SANS OUTILS ALTERNATIVE ÉCONOMIQUE à UN ÉCHAFAUDAGE

Collimateur universel de réglage laser

Document d Appui n 3.3. : Repérage ou positionnement par Global Positionning System G.P.S (extrait et adapté de CAMELEO 2001)

SERRURE ÉLECTRONIQUE À PÊNE DORMANT

Guide d'utilisation. OpenOffice Calc. AUTEUR INITIAL : VINCENT MEUNIER Publié sous licence Creative Commons

CHAPITRE IX : Les appareils de mesures électriques

Evaluation de la variabilité d'un système de mesure

Voyez la réponse à cette question dans ce chapitre.

Société de Geo-engineering

Guide pour la réalisation d'un document avec Open Office Writer 2.2

TITRE PARTIE TITRE SECTION. Faire des anaglyphes avec CatiaV5

Cours IV Mise en orbite

CommandCenter Génération 4

Cours de D.A.O. Mécanique

Utiliser Access ou Excel pour gérer vos données

Qlik Sense Cloud. Qlik Sense Copyright QlikTech International AB. Tous droits réservés.

Thème 17: Optimisation

COMBISAFE ESCALIER UNIVERSEL TM MODE D EMPLOI

NC 35 Norme comptable relative aux états financiers consolidés

Barrières infrarouge actif double faisceaux Multi fréquences SBT 30F-60F-80F-100F-150F Notice d installation. Logo

Guide de l'utilisateur de l'utilitaire d'installation de caméra Avigilon

Série T modèle TES et TER

pcon.planner 6 Préparer et présenter une implantation en toute simplicité

Sécurité et confort Busch-Guard

Savoir lire une carte, se situer et s orienter en randonnée

Mesurer les altitudes avec une carte

INSERER DES OBJETS - LE RUBAN INSERTION... 3 TABLEAUX

Guide des modes GPS Statique et Statique Rapide

Observer TP Ondes CELERITE DES ONDES SONORES

Chapitre 0 Introduction à la cinématique

Bien utiliser son échelle : généralités

modélisation solide et dessin technique

Centre de tournage. et de fraisage CNC TNX65/42

Humidimètre sans contact avec mémoire + Thermomètre IR

Panneau solaire ALDEN

Sujet. calculatrice: autorisée durée: 4 heures

Normes techniques d'accessibilité

DIFFRACTion des ondes

Didacticiel de mise à jour Web

COPIER, COUPER, COLLER, SELECTIONNER, ENREGISTRER.

Gestionnaire de connexions Guide de l utilisateur

Leica LINO L2. Self leveling alignment tool

MANUEL PROGRAMME DE GESTION DU CPL WI-FI

SAGASAFE Mode d'emploi de la série DCP Version 7.0

La C.A.O (Conception Assistée par Ordinateur). Le logiciel de C.A.O.

Guide d'utilisation EasyMP Monitor Ver.4.31

etrex 10 Manuel de démarrage rapide

JVC CAM Control. Mode d'emploi. for Android. Français LYT A 0812YMHYH-OT

MANUEL D UTILISATION MODE D EMPLOI ALT 600 MODE D EMPLOI ALT 600 FABRICANT DE MATERIEL SCENIQUE

PLAN RÉÉDUCATION POUR LES UTILISATEURS DE L'ARTICULATION. Contrôle de la phase pendulaire. Par Jos DECKERS

Caméra de surveillance avec capteur PIR, pour PX-3746

SECURIT GSM Version 2

Décrets, arrêtés, circulaires

Mathématiques et petites voitures

Introduction : Cadkey

Mode d'emploi. Eléments de l'appareil

Statif universel XL Leica Mode d emploi

Interface PC Vivago Ultra. Pro. Guide d'utilisation

Le plombier chauffagiste a aussi besoin de cette représentation pour savoir ce qu il y a à l intérieur de la maison au niveau des hauteurs.

TUTORIAL 1 ETUDE D UN MODELE SIMPLIFIE DE PORTIQUE PLAN ARTICULE

Système d alarme sans fil GSM / SMS / RFID.

Leica Application Suite

Infolettre #18 : Les graphiques avec Excel 2010

S'orienter et se repérer sur le terrain avec une carte

Mode d'emploi abrégé du GPS GeoExplorer3 et du Software GPS Pathfinder Office

...3. Utiliser l'application Paramètres Description. Compatibilité. Déconnexion à jour le Parrot Flower Power

HI 991x. Contrôleurs Industriel mural de ph et EC. HI 9910 Contrôleur de ph mural avec point de consigne simple et dosage proportionnel

Utilisation de XnView

Mon Compte Epargne Temps (CET) : manuel utilisateur

Utilisation du visualiseur Avermedia

(B.O. n 2739 du , page 489) LE PREMIER MINISTRE,

Sage Start Saisie des collaborateurs Instructions. A partir de la version

AUTOPORTE III Notice de pose

Transcription:

Mesurer en toute simplicité

Avant-propos Chers étudiants et enseignants, ainsi que toutes personnes passionnées de topographie, au cours des dernières années, le développement d'instruments modernes et simples d'emploi, a contribué à leur popularité auprès d'un nombre croissant d'utilisateurs, dans de nombreux domaines. Cette brochure fournit des informations sur les fondamentaux de la mesure topographique, les instruments les plus courants et les opérations quotidiennes majeures, utilisées par les géomètres et autres intervenants. Les stagiaires, les étudiants et les professionnels des domaines de la topographie, du génie civil, de l'architecture et bien d'autres, peuvent trouver les réponses à leurs questions : Quelles sont les caractéristiques des instruments de mesure? A quoi doit-on faire attention lorsqu on mesure avec un niveau ou une station totale? Quel est l'effet des erreurs instrumentales et comment les reconnaître, les déterminer et les éliminer? Comment effectuer les opérations de mesure simples? De nombreuses opérations relevé, contrôle et implantation de points, transfert d'altitude, calcul de volumes et de surfaces peuvent être effectuées automatiquement 2 Avant-propos à l'aide de programmes embarqués dans les instruments. En plus du niveau et de la station totale, la méthode de mesure à l'aide des systèmes de satellites GPS/GNSS sera brièvement abordée. Avec près de 200 ans d'expérience dans le développement et la fabrication d'instruments de mesure, Leica Geosystems propose une gamme complète de produits et service innovants pour la topographie. Pour une vue d'ensemble des solutions offertes par Leica Geosystems, visitez le site web www.leica-geosystems.fr. Je vous souhaite beaucoup de succès pour votre formation, vos études ou vos travaux, et j'espère que vous trouverez cette brochure utile. Bien cordialement, Johannes Schwarz, Président de la division géomatique Leica Geosystems AG

Sommaire Le niveau 4 Préparation à la mesure Mise en station du niveau Caler l'instrument Réglage de l'instrument pour mesurer sans parallaxe Inspection de la ligne de vue (test des deux mires) 5 5 5 Mesure avec un niveau Différence de hauteur entre deux points Mesures optiques de distances avec un niveau Cheminement en nivellement Implantation d'altitudes Profils en long et en travers 8 8 9 10 11 12 Niveau numérique et laser rotatif Niveau numérique Laser rotatif 13 13 13 La station totale 14 6 7 Vue d'ensemble 15 Mesure de distance sans réflecteur 15 Pointé automatique de cibles 15 Coordonnées 16 Mesure d'angles 17 Les erreurs instrumentales Erreurs instrumentales d'une station totale Vérification du distance-mètre d'une station totale 18 18 20 Mise en station Station sur point connu (saisie des coord. et de l orientation de la station) Station libre (calcul des coord. et de l'orientation de la station) 21 Quelques opérations de mesures simples Prolonger une droite Implantation polaire d'un point Mesure de pente Réalisation d'aplomb 23 23 23 24 25 21 22 Application de terrain 26 Relevés (méthode polaire) 26 Implantation 27 Ligne de référence 28 Calcul de volumes 28 Calcul de surfaces 28 Hauteurs inacessibles 30 Distances entre points 31 Implantation de chaises 32 Mesures par GPS/GNSS (GPS et GLONASS) Stations de référence GPS/GNSS 33 34 Sommaire 3

Le niveau Un niveau est fondamentalement une lunette qui tourne autour d'un axe vertical. Il est utilisé pour créer une ligne de visée horizontale, ce qui permet de déterminer des différences de hauteur et de réaliser des réglages en altitude. 4 Le niveau Les niveaux de Leica Geosystems sont également équipés d'un cercle horizontal, très pratique pour ouvrir des angles droits, par exemple en mesure de profils en travers. De plus ces niveaux peuvent être utilisés pour déterminer les distances par méthode optique, avec une précision de 0,1 à 0,3 m.

Mise en station d'un niveau 1. Coulissez les pieds du trépied à la longueur appropriée et serrez les vis à fond. 2. Positionnez le trépied de sorte que la platine soit aussi horizontale que possible et que les pieds soient fermement ancrés dans la terre. 3. Posez ensuite l appareil sur le trépied et verrouillez-le avec la vis à pompe de fixation. Mise à niveau de l'instrument Après avoir mis l'instrument en station, mettez-le de niveau avec la nivelle sphérique. Tourner deux vis calantes simultanément et en sens opposé. Le mouvement de l'index de votre main droite indique le sens de déplacement de la bulle. Maintenant, utilisez la troisième vis calante pour centrer la bulle. Pour vérifier, faites pivoter l'instrument de 180. La bulle doit rester dans le cercle. Si ce n'est pas le cas, un réglage de l'instrument est nécessaire (voir mode d'emploi). Sur un niveau, le compensateur se charge automatiquement de la mise à niveau finale. Le compensateur se compose d'un miroir suspendu par des fils, et qui dirige le faisceau lumineux horizontal vers le centre du réticule, même s'il y a inclinaison résiduelle dans la lunette. La nivelle sphérique étant centrée, si vous tapez légèrement un pied du trépied, vous verrez la ligne de visée osciller et toujours se stabiliser sur la même lecture sur mire. C'est une façon de tester si le compensateur est capable de basculer librement. Préparation à la mesure 5

Réglage de l'instrument pour mesurer sans parallaxe La parallaxe du réticule est une erreur qui affecte les instruments optiques et électro-optiques tels que les niveaux et les stations totales. L'erreur se produit lorsque le plan du réticule ne coïncide pas avec le plan de l'image de l'objet sur lequel est faite la mise au point, c.a.d. de la mire ou du prisme. Ceci peut être facilement détecté en déplaçant légèrement l'œil de haut en bas ou de gauche à droite en face de l'oculaire. Le réticule semble se déplacer et ne reste pas en ligne avec l'axe optique. Si cette erreur n'est pas corrigée les lectures sur mire ou les visées sur prisme seront incorrectes et conduiront donc à des résultats erronés. 6 Préparation à la mesure Avant usage vérifiez systématiquement la parallaxe et éliminez-la si nécessaire de la manière suivante : Pointez la lunette sur un fond à contraste élevé ou clair (par exemple une feuille de papier); Mettez le réticule au point en tournant la bague de l'oculaire; Ensuite faites la mise au point sur la mire ou le prisme à l'aide de la bague de mise au point. Le plan de l'image du réticule et de l'objet pointé doivent maintenant coïncider.

Contrôle de la ligne de visée (test des deux mires) Sur les niveaux récents, le compensateur à été réglé à température ambiante, donc la ligne de visée est horizontale même si l'instrument est légèrement incliné. Cette situation change lorsque la température fluctue de plus de dix ou quinze degrés, ou après un long voyage, ou si l'appareil est soumis à des vibrations excessives. Il est alors recommandé de contrôler la ligne de visée, en particulier si les mesures sont faites à des distances variées. 1. En terrain plat, installez deux mires à une distance de 30 m maximum (95 pieds). 2. Mettez l'instrument en station à égale distance des deux mires (à estimer au pas) 1,549 3. Effectuez les deux lectures sur mires et calculez la différence de hauteur (cf. illustration ci-dessous). Lecture A = 1,549 Lecture B = 1,404 iz = A B = 0,145 4. Mettez l'instrument en station à 1m (3 pieds) devant la mire A et effectuez la lecture sur mire (cf. illustration ci-dessous). Lecture A = 1,496 5. Calculez la lecture B théorique : Lecture A = 1,496 iz = 0,145 Lecture B théorique = 1,351 6. Effectuez la lecture B. Si elle diffère de la lecture théorique de plus de 3 mm, il faut faire un ajustement de la ligne de visée (cf. Manuel d'instructions). 1,404 Mesuré 1,496 Théorique 1,351 Préparation à la mesure 7

Dénivelée entre deux points Le nivellement consiste à déterminer la dénivelée entre deux points. AR = visée arrière Pour éliminer les erreurs systématiques liées aux conditions atmosphériques ou l'erreur résiduelle de ligne de visée, l'instrument doit être de préférence à égale distance des deux points. B Lecture : 2,521 8 Mesure avec un niveau iz D A La différence de hauteur est calculée à partir de la différence entre les deux lectures sur mire sur les points A et B. AV = visée avant iz = AR AV = 2,521 1,345 = 1,176 Pente en % = 100 x iz / D Lecture : 1,345

Mesure de distances optiques avec le niveau Le réticule a deux lignes de stadia disposées symétriquement par rapport à la croix centrale. Leur écartement est tel que la distance peut être calculée en multipliant l'intervalle de mire correspondant par 100. Précision de la mesure de distance : 10 à 30 cm Exemple : Lecture de la stadia Lecture de la stadia Intervalle de mire B supérieure = 1,205 A inférieure = 0,996 I = B A = 0,209 B Distance = 100 x I = 20,9 m A D Mesure avec un niveau 9

Cheminement en nivellement Si les points A et B sont très éloignés, leur dénivelée est déterminée par un cheminement, avec des distances à la mire généralement comprises entre 30 et 50 m. AR AV AR Equilibrez les distances entre l'instrument et les deux mires, elles doivent être sensiblement les mêmes. 1. Mettez le niveau en station en S1. 2. Tenez la mire précisément à la verticale au point A : notez la lecture (visée arrière AR). 3. Tenez la mire précisément à la verticale au point intermédiaire 1 (crapaud de topographe bien stabilisé) : notez la lecture (visée avant AV). 4. Mettez le niveau en station en S2 (la mire reste au point intermédiaire 1). 5. Faites tourner avec précaution la mire au point intermédiaire 1 de sorte qu'elle soit orientée vers le niveau. 6. Lisez la visée arrière et ainsi de suite. Station 10 Mesure avec un niveau No Point Avant AR S2 Avant AV A S1 A 1 Altitude B Observations 2,806 1,328 421,778 3,376 419,321 1,623 421,113 ;= alt. de A + AR - AV 0,919 2 2 2 420,300 1 S2 Z S3 1 A AV AV S1 S3 La différence de hauteur entre A et B est égale à la somme des visées arrières moins la somme des visées avants. AR 3,415 B Sommes 7,140 iz 0,813 6,327 ;= diff. d'alt. AB

Implantations en altitude Lors d'une fouille, le point B est à implanter à une altitude iz = -1,000 m c.a.d. sous le niveau de la rue (point A). AV=2,520 AR=1,305 1. Positionnez le niveau de sorte que les distances aux points A et B soient à peu près égales. 2. Placez la mire au point A et relevez la lecture arrière : AR = 1,305. 3. Placez la mire au point B et relevez la lecture avant i : AV = 2,520. La dénivelée théorique d au point B est calculée comme suit: d = AV AR iz = 2,520 1,305 1,000 = 0,215 m 4. Plantez un piquet en B et marquez l'altitude théorique : 0,215 m au-dessus du sol. H=1,00 m h=+0,215 m Dans une autre méthode fréquemment utilisée, la lecture sur mire théorique est calculée à l'avance : AV = AR iz = 1,305 (-1,000) = 2,305 La mire graduée est ensuite déplacée vers le haut ou vers le bas, jusqu'à ce que la valeur théorique soit lue avec le niveau. Mesure avec un niveau 11

Profils en long et en travers Les profils en long et en travers constituent les éléments de base du projet détaillé et de l'implantation d'ouvrages linéaires (ex. des voies routières), pour le calcul des déblais et remblais, et pour leur adaptation optimale à la topographie. Tout d'abord l'axe longitudinal (axe routier) est implanté et piqueté, c.a.d. que des marques sont positionnées à des intervalles réguliers. Tout d'abord, on positionne la mire sur un point connu : l'altitude du niveau est la somme de l'altitude du point connu et de la lecture sur mire. Il suffit de soustraire de l'altitude instrument, les lectures sur mire aux points du profil en travers pour obtenir l'altitude des points théoriques. Profil en long Profil en travers du PM175 ue 25 m Référence Hauteur : 420 m Référence Hauteur : 420 m 200 175 12 Mesure avec un niveau 150 125 100 Points métriques (PM) 423.50 Axe théoriq (prévu) 424.00 Terrain 423.50 424.00 Les distances à partir de l'axe du projet vers les différents points du profil en travers sont déterminés, soit à l'aide d'un décamètre, soit par méthode optique avec le niveau. Pour la représentation graphique du profil en long, les altitudes sont exprimées à une échelle beaucoup plus grande (par ex. x10) que celle utilisée pour les distances, et par rapport à une altitude de référence (cf. illustration ci-dessous). (altitude théorique) Un profil en long est donc créé sur l'axe du tracé routier et les altitudes de points régulièrement espacés (PM) sont déterminées par cheminement. A ces points caractéristiques et à certains points particuliers, des profils en travers, perpendiculaires à l'axe, sont ensuite décrits. Les altitudes terrain pour les points du profil en travers sont déterminés à l'aide de l'altitude connue de l'instrument.

Le niveau numérique Leica Geosystems a été pionnier en développant le premier niveau au monde à réaliser un traitement numérique des images pour déterminer les altitudes et les distances : une mire à code barre est lue de manière automatique et électronique (cf. Illustration). Un niveau numérique est recommandé lorsqu'un grand nombre de dénivelées doivent être calculées : dans ces circonstances les gains de temps peuvent atteindre 50 %. La lecture sur mire et la distance sont affichées numériquement et peuvent être enregistrées : les altitudes sont calculées à l'avancement et il ne peut donc y avoir d'erreurs de lecture, d'enregistrement ou de calcul. Leica Geosystems propose également des logiciels de calcul pour traiter les données enregistrées. Le laser rotatif Si, par exemple sur un chantier de construction de grande étendue, un grand nombre d'altitudes doivent être implantées ou contrôlées, il est souvent judicieux d'utiliser un laser rotatif. Avec ce type d'instrument, un faisceau laser rotatif balaie un plan horizontal, qui sert de plan de référence pour l'implantation ou le contrôle des altitudes. Une cellule réceptrice est déplacée sur la mire, vers le haut ou vers le bas, jusqu'à ce qu'elle détecte le faisceau laser : la hauteur est alors lue directement sur la mire. Il n'y a plus besoin d'un opérateur sur l'instrument. Niveau numérique et laser rotatif 13

La station totale Les stations totales sont utilisées lorsque des positions et des altitudes de points, ou simplement leurs positions en 2D, doivent être déterminées. Une station totale est un théodolite avec distance-mètre intégré, permettant de mesurer simultanément des angles et des distances. Les stations totales électroniques modernes ont toutes un distance-mètre opto-électronique (EDM) et des codeurs angulaires électroniques. Les échelles codées des cercles horizontaux et verticaux sont analysées électroniquement, puis les angles et les distances sont affichés numérique- 14 La station totale ment. La distance horizontale, la différence d'altitude et les coordonnées sont calculées automatiquement et toutes les mesures et informations supplémentaires sont enregistrées. Les stations totales Leica Geosystems sont livrées avec un ensemble de logiciels système qui permettent de réaliser facilement, rapidement et efficacement la plupart des opérations topographiques. Les plus importants de ces programmes sont présentés plus loin dans ce document.

Distances sans réflecteur Pointé automatique de cibles La plupart des stations totales Leica Geosystems comprennent non seulement un distance-mètre infrarouge classique qui mesure sur un prisme, mais aussi un distance-mètre laser intégré qui ne nécessite pas de réflecteur. Vous pouvez basculer entre ces deux modes. La mesure de distance sans réflecteur apporte de nombreux avantages lorsque les points sont difficilement accessibles voire inaccessibles, par exemple pour des mesures de façades de bâtiments, pour des relevés de tuyauteries, ou pour des mesures au-delà de clôtures, de tranchées ou de ravins. Certaines stations totales de Leica Geosystems sont équipées d'un dispositif de pointé automatique de cibles. Cela rend le pointé plus rapide et facile. Il suffit de pointer grossièrement la lunette vers le réflecteur : la pression du bouton approprié déclenche alors le fin-pointé automatique, les mesures d'angle et distance, et l'enregistrement de toutes les valeurs. Cette technologie permet aussi d'effectuer des mesures entièrement automatiques. L instrument peut également être basculé sur un mode dans lequel une cible mobile sera poursuivies et mesurées : après avoir mesuré une première fois le réflecteur, l instrument se verrouille sur lui et le poursuit (mode robotique). Le spot laser rouge, visible et coaxial est également adapté pour le marquage des cibles lors de mesure de profils en tunnel ou de travail en intérieur. Avantages : Grande vitesse de mesure combinée avec une précision constante, indépendante de l'opérateur. La station totale 15

Coordonnées Pour décrire la position d'un point, deux coordonnées sont nécessaires. Les coordonnées polaires ont besoin d'une direction et d'un angle. Les coordonnées cartésiennes ont besoin de deux axes dans un système de coordonnées orthogonal. La station totale mesure des coordonnées polaires : celles-ci sont transformées en coordonnées cartésiennes dans un système orthogonal donné, soit dans l'instrument lui-même, soit dans un logiciel de bureau. Coordonnées polaires Coordonnées cartésiennes Transformation Direction de référence y Donné : D, a Résultat : x,y Ordonnée y = D x sin a x = D x cos a Donné : x, y Résultat : D, a Abscisse 16 Coordonnées polaires et cartésiennes x D =Ey2 + x2 sin a = y/d ou cos a = x/d

Mesures d'angles Un angle est la différence entre deux directions. L'angle horizontal a entre deux directions vers les points P1 et P2 ne dépend pas de la dénivelée entre ces deux points, à condition que la lunette tourne toujours dans un plan strictement vertical lorsqu'elle est orientée vers les points. Cette disposition n'est satisfaite que dans des conditions idéales. L'angle vertical (également appelé angle zénithal) est la différence entre une direction d'origine (le zénith ou verticale de l instrument) et la direction vers le point considéré. Z1 = zenith angle to P1 Z2 = zenith angle to P2 a = angle horizontal entre les deux directions des points P1 et P2, c'est à dire angle dièdre entre deux plans verticaux passant par P1 et P2. Zenith L'angle vertical n'est donc exact que si la graduation zéro du cercle vertical se trouve exactement dans la direction du zénith. Cette disposition n'est également rencontrée que dans des conditions idéales. Les écarts par rapport au cas idéal sont causés par des erreurs d'axes de l'instrument, et par une mise en station imparfaite (voir la section «Erreurs instrumentales»). Mesures d angles 17

Erreurs instrumentales d'une station totale Idéalement, une station totale doit répondre aux exigences suivantes : Si ces conditions ne sont pas satisfaites, les termes suivants sont utilisés pour décrire les erreurs commises : a) La ligne de visée OO perpendiculaire à l'axe de basculement HH ; b) L'axe de basculement HH perpendiculaire à l'axe principal VV ; c) L'axe principal VV strictement vertical ; d) Le zéro du cercle vertical précisément au zénith. a) Erreur de ligne de visée, ou collimation horizontale «c» : différence à l'angle droit entre la ligne de visée et l'axe de basculement. c Erreur de ligne de visée «c» (ou collimation horizontale) V O H b) Erreur d'inclinaison d'axe, ou tourillonnement «a» : différence à l'angle droit entre l'axe de basculement et l'axe principal. O H a Erreur d'inclinaison d'axe «a» (ou tourillonnement) V 18 Erreurs instrumentales

c) Inclinaison de l'axe principal : angle entre la ligne d'aplomb et l'axe vertical. Inclinaison de l'axe principal ne peut pas l'éliminer. Son influence sur la mesure des angles horizontaux et verticaux est automatiquement corrigée au moyen du compensateur interne. d) Erreur d'index vertical, ou collimation verticale «i» : angle entre la direction du zénith et la direction du zéro du cercle vertical, c'est à dire que la lecture du cercle vertical lors d'une visée strictement à l'horizontale, n'est pas à 100gr (90 ), mais à 100gr + i (90 + i). i Les effets de ces trois erreurs sur la mesure d'angle horizontal croissent avec la dénivelée de la station à la cible. Pour éliminer les erreurs de ligne de visée et de basculement on mesure dans les deux positions de la lunette. Ces deux erreurs qui sont généralement de très petites valeurs, peuvent également être déterminées et enregistrées (ce qui est important pour les stations totales de haute précision). A partir de là, ces erreurs sont prises en compte automatiquement chaque fois qu'un angle est mesuré, et il est alors possible de prendre des mesures pratiquement exemptes d'erreur, même dans une seule position de lunette. La détermination de ces erreurs est décrite en détail dans le mode d'emploi des stations totales. L'inclinaison de l'axe principal n'est pas considérée comme une erreur instrumentale : elle se produit parce que l'instrument a été mis en station de manière incorrecte, et la mesure dans les deux positions de la lunette Erreur d index vertical (index V), ou collimation verticale «i» En mesurant l'angle vertical dans les deux positions de la lunette, puis en moyennant les lectures, la collimation verticale est éliminée. Elle peut également être déterminée et enregistrée. Remarque : Les erreurs instrumentales varient avec la température, ou suite à des vibrations, à de longues périodes d'inactivité, ou à un transport. Si vous souhaitez mesurer dans une seule position de la lunette, vous devez déterminer les erreurs instrumentales et les enregistrer préalablement aux mesures. Erreurs instrumentales 19

Vérification du distance-mètre de la station totale Matérialiser de façon permanente trois ou quatre bases de contrôle (distances variées, par ex. entre 20 à 200 m). Via un distance-mètre récent, ou un modèle récemment calibré sur une base connue, mesurez ces distances à trois reprises. Les moyennes, corrigées des influences atmosphériques (voir mode d'emploi), peuvent être considérées comme des valeurs de contrôle. 20 Vérification du distance-mètre Vérifiez votre distance-mètre en mesurant ces bases connues au moins quatre fois par an. S il n y a pas d écart excessif par rapport à la précision de l appareil, le distance-mètre peut être considéré comme exact.

Station sur point connu (saisie des coord. et de l orientation de la station) 1. Placez le trépied approximativement sur le point de station. 2. Corrigez la position du trépied de sorte que la platine soit à peu près horizontale et au-dessus du point de station (illustration en bas à gauche). 3. Ancrez fermement les pieds du trépied dans le sol et utilisez la vis à pompe centrale pour bloquer l'instrument sur le trépied. 4. Allumez le plomb laser (ou pour les instruments anciens, regardez à travers le plomb optique) et tournez les vis calantes de sorte que le point laser ou le plomb optique soit centré sur le point de station (illustration en bas au centre). 5. Centrez la nivelle sphérique en ajustant la longueur des jambes du trépied (illustration en bas à droite). 6. Après avoir verticalisé l'instrument avec précision, dévissez un peu la vis à pompe de manière à pouvoir glisser l'instrument sur la platine de trépied, jusqu'à ce que le point laser soit centré exactement sur le point de station. 7. Resserrez la vis à pompe. 8. Saisissez les coordonnées connues de la station (voir mode d'emploi). 9. Visez un autre point connu et entrez ses coordonnées ou la valeur d'angle horizontal correspondant à sa direction (gisement). 10. Votre instrument est à présent en station et orienté. Vous pouvez maintenant implanter des coordonnées ou mesurer d'autres points dans le même système de coordonnées. Mise en station 21

Station libre (calcul des coord. et de l'orientation de la station) La station libre est utilisée pour calculer la position et l'altitude de la station ainsi que l'orientation du cercle horizontal, à partir des mesures sur au moins deux points dont les coordonnées sont connues. Les coordonnées des points connus peuvent être entrées manuellement ou peuvent être enregistrées à l'avance dans l'appareil. La station libre présente le grand avantage, pour les grands projets de levé topographique ou d'implantation, de permettre le choix de la position la plus favorable pour 22 Mise en station l'instrument. On se libère de la contrainte de se mettre en station sur un point connu, éventuellement mal placé pour l opération en cours. Les options et les procédures de mesure sont décrites en détail dans les manuels d'utilisation. Remarque : Lors de mesures qui impliquent la détermination ou l'implantation des altitudes, n'oubliez pas de prendre en compte la hauteur de l'instrument et celle du réflecteur.

Prolonger un ligne droite Implantation polaire d'un point 1. Positionnez l instrument au point B. 2. Visez le point A, basculez la lunette verticalement et marquez le point C1. 3. Tournez l instrument horizontalement de 200 gr (180 ) et visez à nouveau le point A. 4. Basculez une nouvelle fois la lunette et marquez le point C2. Le point C, milieu de C1 C2 correspondant exactement au prolongement de la ligne AB. Les éléments d'implantation (angle et distance) sont ici en relation avec un point connu A et une direction de départ connue de A vers B. La collimation horizontale est à l'origine de l'écart entre C1 et C2. Lorsque la ligne de visée est inclinée, l'erreur commise est une combinaison de l'erreur de pointé, du tourillonnement et de la collimation verticale. 1. Mettez l'instrument en station au point A et visez le point B. 2. Réglez le cercle horizontal à zéro dans cette direction (voir le mode d'emploi). 3. Tournez l'instrument jusqu'à ce que l'angle horizontal α s'affiche à l'écran. 4. Guidez la personne qui porte le réflecteur le long de la ligne de visée de la lunette tout en mesurant la distance horizontale en continu jusqu'à ce que le point P soit atteint. C1 A B C C2 Quelques opérations de mesures simples 23

Mesure de pentes Placez l'instrument sur un point, le long de la ligne de pente à déterminer, et positionnez une canne à prisme sur un second point de cette ligne. Saisissez la hauteur d'instrument «i» et la hauteur de réflecteur «t». L affichage de lecture d angle vertical, en grades ou en degrés, peut être commuté sur un affichage de pente en % (voir mode d emploi). Visez le centre du prisme et mesurez la distance. La pente est alors calculée et affichée. V i % 24 Quelques opérations de mesures simples t

Aplombs Matérialiser ou vérifier les aplombs sur une structure peut être réalisé avec précision depuis une seule position de lunette, mais seulement si elle décrit un plan strictement vertical lorsqu'elle est basculée vers le haut et vers le bas. Pour s'assurer qu'il en soit ainsi, procédez comme suit : 1. Visez un point haut A, puis basculez la lunette vers le bas et marquez le point de B au sol. 2. Faites un double-retournement, et répéter la procédure pour marquer le point C. Le milieu des points B et C est l'aplomb exact du point A. Les points B et C ne coïncident pas à cause du tourillonnement et/ou d'un axe principal incliné. Pour un travail de ce type, assurez-vous que la station totale a été précisément mise en station, de sorte que l'influence de l'inclinaison de l'axe principal soit minimisée dans le cas de sites très pentus. A B C Quelques opérations de mesures simples 25

Levés (méthode polaire) Pour créer par exemple un plan de l'existant, la position et l'altitude des points caractéristiques est déterminée en mesurant les angles et les distances. Pour ce faire, l'appareil est installé sur un point remarquable afin de créer un système de coordonnées local. Saisissez les coordonnées telles que (X = 0, Y = 0, hauteur d'instrument i). Un deuxième point remarquable est choisi comme orientation : après qu'il ait été visé le cercle horizontal est calé à zéro (voir le mode d'emploi). Si un système de coordonnées existe déjà, mettez l'instrument en station sur un point connu et orientez le cercle horizontal à l'aide d'un second point connu (voir le mode d'emploi). Vous pouvez également utiliser la méthode de station libre (voir pages 21 et 22). 26 Quelques opérations de mesures simples

Implantation 1. Mettez en station l'instrument sur un point connu et orientez le cercle horizontal (voir la rubrique «Mise en station de l'instrument» dans le mode d'emploi). 2. Saisissez les coordonnées du point à implanter. Le programme calcule automatiquement la direction et la distance au point (les deux informations nécessaires pour l'implantation). 3. Mettez la station totale jusqu'à ce que le cercle horizontal indique zéro. 4. Alignez le réflecteur sur l axe de visée en un point (P ). 5. Mesurez la distance : l'écart en distance id jusqu'au point P s'affiche automatiquement. Au préalable les coordonnées des points à implanter peuvent être transférées de l'ordinateur dans la station totale. Dans ce cas, seul les numéros de points seront ensuite sélectionnés. Si deux points connus sont marqués sur le terrain, vous pouvez également utiliser la méthode de résection pour mettre en station et orienter votre instrument. N D a P P' Application de terrain 27

Ligne de référence Calcul de volume Toutes les stations totales et systèmes GPS/GNSS Leica Geosystems sont équipés d'applications embarquées modernes. Ligne de référence est l'une des applications les plus utilisées. Elle fonctionne selon deux méthodes. Une autre application principalement utilisée sur les chantiers de construction est le calcul de volumes. Cette application permet de mesurer des surfaces et d'en déduire des volumes (et d'autres informations). 1. Mesure par rapport à une ligne Le point métrique (abscisse curviligne mesurée sur l'axe), la dénivelée et le décalage transversal (déport) d'un point mesuré, peuvent être calculés par rapport à la ligne de référence. Mesurez les points (points sur la surface et points du périmètre) qui définissent une surface ou qui prolongent une surface existante. Les volumes sont calculés directement. Vous pouvez également utiliser les points enregistrés pour calculer les volumes. 2. Implantation par rapport à une ligne Permet de positionner un point théorique relativement à une ligne de référence, puis de l'implanter. Référez-vous au manuel d'utilisation de votre station totale ou de votre système GPS/GNSS pour voir le détail des opérations à réaliser. Référez-vous au manuel d'utilisation de votre station totale ou de votre système GPS/GNSS pour voir le détail des opérations à réaliser. 28 Application de terrain