Test de Student. Stéphane Canu June 14, M8 - Principes du traitement de l information

Documents pareils
Cours (7) de statistiques à distance, élaboré par Zarrouk Fayçal, ISSEP Ksar-Said, LES STATISTIQUES INFERENTIELLES

Chapitre 3. Les distributions à deux variables

La problématique des tests. Cours V. 7 mars Comment quantifier la performance d un test? Hypothèses simples et composites

Commun à tous les candidats

Analyse de la variance Comparaison de plusieurs moyennes

Relation entre deux variables : estimation de la corrélation linéaire

Principe d un test statistique

Biostatistiques : Petits effectifs

TABLE DES MATIERES. C Exercices complémentaires 42

Cours de Tests paramétriques

Lecture critique d article. Bio statistiques. Dr MARC CUGGIA MCU-PH Laboratoire d informatique médicale EA-3888

Moments des variables aléatoires réelles

Chapitre 3 : Principe des tests statistiques d hypothèse. José LABARERE

PRIME D UNE OPTION D ACHAT OU DE VENTE

Tests de comparaison de moyennes. Dr Sahar BAYAT MASTER 1 année UE «Introduction à la biostatistique»

Tests paramétriques de comparaison de 2 moyennes Exercices commentés José LABARERE

Estimation et tests statistiques, TD 5. Solutions

3. Conditionnement P (B)

Chapitre 6 Test de comparaison de pourcentages χ². José LABARERE

IFT3245. Simulation et modèles

LEÇON N 7 : Schéma de Bernoulli et loi binomiale. Exemples.

Travaux dirigés d introduction aux Probabilités

Exercice 3 (5 points) A(x) = 1-e -0039' e- 0,039x A '() -'-,..--,-,--,------:-- X = (l_e-0,039x)2

Analyse stochastique de la CRM à ordre partiel dans le cadre des essais cliniques de phase I

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://

distribution quelconque Signe 1 échantillon non Wilcoxon gaussienne distribution symétrique Student gaussienne position

TESTS D HYPOTHÈSE FONDÉS SUR LE χ².

M2 IAD UE MODE Notes de cours (3)

Introduction à l approche bootstrap

ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #16

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures)

Théorie et Codage de l Information (IF01) exercices Paul Honeine Université de technologie de Troyes France

VI. Tests non paramétriques sur un échantillon

Statistiques Décisionnelles L3 Sciences Economiques & Gestion Faculté d économie, gestion & AES Université Montesquieu - Bordeaux

Capacité d un canal Second Théorème de Shannon. Théorie de l information 1/34

21 mars Simulations et Méthodes de Monte Carlo. DADI Charles-Abner. Objectifs et intérêt de ce T.E.R. Générer l'aléatoire.

Leçon N 4 : Statistiques à deux variables

Fonctions de plusieurs variables

Chapitre 7. Statistique des échantillons gaussiens. 7.1 Projection de vecteurs gaussiens

Introduction à la Statistique Inférentielle

Probabilités. Rappel : trois exemples. Exemple 2 : On dispose d un dé truqué. On sait que : p(1) = p(2) =1/6 ; p(3) = 1/3 p(4) = p(5) =1/12

Validation probabiliste d un Système de Prévision d Ensemble

O, i, ) ln x. (ln x)2

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

(51) Int Cl.: H04L 29/06 ( ) G06F 21/55 ( )

Probabilités III Introduction à l évaluation d options

choisir H 1 quand H 0 est vraie - fausse alarme

Calcul élémentaire des probabilités

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques.

Statistiques. Rappels de cours et travaux dirigés. Master 1 Biologie et technologie du végétal. Année

Chapitre 2 Le problème de l unicité des solutions

Item 169 : Évaluation thérapeutique et niveau de preuve

Biostatistiques Biologie- Vétérinaire FUNDP Eric Depiereux, Benoît DeHertogh, Grégoire Vincke

4. Martingales à temps discret

Probabilités sur un univers fini

Limites finies en un point

Introduction à la statistique non paramétrique

Variables Aléatoires. Chapitre 2

DUT Techniques de commercialisation Mathématiques et statistiques appliquées

Tests d indépendance en analyse multivariée et tests de normalité dans les modèles ARMA

STA108 Enquêtes et sondages. Sondages àplusieurs degrés et par grappes

1 Complément sur la projection du nuage des individus

Ecran : Processeur : OS : Caméra : Communication : Mémoire : Connectique : Audio : Batterie : Autonomie : Dimensions : Poids : DAS :

NOTE SUR LA MODELISATION DU RISQUE D INFLATION

23. Interprétation clinique des mesures de l effet traitement

Exercices supplémentaires sur l introduction générale à la notion de probabilité

3 Approximation de solutions d équations

Feuille 6 : Tests. Peut-on dire que l usine a respecté ses engagements? Faire un test d hypothèses pour y répondre.

Loi d une variable discrète

PROBABILITÉS CONDITIONNELLES

Introduction au Data-Mining

1 Définition de la non stationnarité

Cours d Analyse. Fonctions de plusieurs variables

Théorie des sondages : cours 5

TESTS PORTMANTEAU D ADÉQUATION DE MODÈLES ARMA FAIBLES : UNE APPROCHE BASÉE SUR L AUTO-NORMALISATION

Bases : Probabilités, Estimation et Tests.

Probabilités sur un univers fini

Vous incarnez un surdoué en informatique qui utilise son ordinateur afin de pirater des comptes bancaires un peu partout dans le monde et s en mettre

INTRODUCTION A L ELECTRONIQUE NUMERIQUE ECHANTILLONNAGE ET QUANTIFICATION I. ARCHITECTURE DE L ELECRONIQUE NUMERIQUE

Introduction à la théorie des files d'attente. Claude Chaudet

MESURE ET PRECISION. Il est clair que si le voltmètre mesure bien la tension U aux bornes de R, l ampèremètre, lui, mesure. R mes. mes. .

Le Modèle Linéaire par l exemple :

Fluctuation d une fréquence selon les échantillons - Probabilités

UFR de Sciences Economiques Année TESTS PARAMÉTRIQUES

Systèmes de transmission

Quantification Scalaire et Prédictive

Température corporelle d un castor (une petite introduction aux séries temporelles)

Programmation linéaire et Optimisation. Didier Smets

PROBABILITES ET STATISTIQUE I&II

I. Polynômes de Tchebychev

Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes

Modèle GARCH Application à la prévision de la volatilité

4 Distributions particulières de probabilités

MODELE A CORRECTION D ERREUR ET APPLICATIONS

DOCM Solutions officielles = n 2 10.


FONCTION DE DEMANDE : REVENU ET PRIX

Exo7. Calculs de déterminants. Fiche corrigée par Arnaud Bodin. Exercice 1 Calculer les déterminants des matrices suivantes : Exercice 2.

Mesures gaussiennes et espaces de Fock

TD1 Signaux, énergie et puissance, signaux aléatoires

Transcription:

Test de Student Stéphane Canu stephane.canu@litislab.eu M8 - Principes du traitement de l information June 14, 2012

Stéphane Canu (INSA Rouen - ASI) Test de Student June 14, 2012 2 / 33 Plan 1 Comparaisons d une variable quantitative et d une variables qualitative : le test de Student L exemple de l effet d un médicament Si la variance est connue Si la variance est inconnue La loi de Student Définition Propriétés et approximation Le cas de la moyenne d un échantillon gaussien Le cas de deux échantillons gaussien Le test de Student (t-test) 2 Comparaisons de deux variables quantitatives : le test de Student 3 Conclusion

L exemple de l effet d un médicament patient Groupe Pression sanguine t1 traitement 88 t2 traitement 83 t3 traitement 82 t4 traitement 101 t5 traitement 99 t6 traitement 85 t7 traitement 87 t8 traitement 89 t9 traitement 88 p10 placebo 88 p11 placebo 82 p12 placebo 101 p13 placebo 106 p14 placebo 96 p15 placebo 92 p16 placebo 112 p17 placebo 97 qualitative quantitative Question : le traitement fait-il diminuer significativement la pression sanguine? les hypothèses : { H0 : le traitement est inefficace H 1 : le traitement la fait baisser Réponse : comparer les deux échantillons à travers la différence entre leurs moyennes x t x p = 90, 2 96, 7 = 6, 5 La question posée se résume ainsi cette valeur de -6,5 peut elle s expliquer par un hasard raisonnable?

Un hasard raisonnable x t x p = 6, 5 peut elle s expliquer par un hasard raisonnable? x t = 1 n t=9 n t x ti x p = 1 n p n p x pi Figure: Illustration des eux cas de figure. Dans le premier cas (à gauche) la variance est grande et donc la distance de 6.5 est petite et due au hasard. Dans le second cas (à droite) la variance est petite et la distance de 6,5 est grande. pour répondre......il faut prendre en compte la variance

Prendre en compte la variance : le modèle Les trois hypothèses 1 l hypothèse gaussiènne : mesure des patients avec traitement : X t N ( µ t, σ 2) mesure des patients sous placébo : Xp N ( µ p, σ 2) 2 même variance : σ 2 t = σ 2 p = σ 2 3 avec la variance connue donc par exemple : σ 2 = 60. les hypothèses : { H0 : inefficace µ t = µ p H 1 : la pression baisse µ t < µ p Nous savons que les moyennes des échantillons suivent une loi normale moyenne avec traitement : X t N ( ) µ t, σ2 n t moyenne sous placébo : X p N ( ) µ p, σ2 n p car IE(X ) = IE( 1 n n X 1 n i) V (X ) = V ( = 1 n n IE(X n X i) i) = = 1 1 n n n µ = µ n 2 V (X i) = 1 n n 2 σ2 = σ2 n

Prendre en compte la variance : le modèle Les trois hypothèses 1 l hypothèse gaussiènne : mesure des patients avec traitement : Xt N ( µ t, σ 2) mesure des patients sous placébo : Xp N ( µ p, σ 2) 2 même variance : σ 2 t = σ 2 p = σ 2 3 avec la variance connue donc par exemple : σ 2 = 60. les hypothèses : { H0 : inefficace µ t = µ p H 1 : la pression baisse µ t < µ p Nous savons que les moyennes des échantillons suivent une loi normale moyenne avec traitement : X t N ( ) µ t, σ2 n t moyenne sous placébo : X p N ( ) µ p, σ2 n p La différence des moyennes suit aussi une loi normale : ( X t X p N µ t µ p, σ 2( 1 + 1 ) ) n t n p

Le test 1(variance connue) Le modèle : X t X p N ( µ t µ p, σ 2( 1 n t + 1 n p ) ) Le test se rapporte aux deux hypothèses suivantes : { H0 : le traitement n a pas d effet µ t µ p = 0 H 1 : le traitement est efficace µ t µ p < 0 Maintenant nous faisons l hypothèse que le traitement n a pas d effet. X t X p ( ) sous H 0 : U = σ 2( 1 n t + 1 ) N 0, 1 n p Avec les données dont nous disposons nous pouvons calculer 90, 2 96, 7 u = 60 ( 1 9 + ) = 1.73 1 8-1,73 est-ce grand ou petit?

Le test 2 (variance connue) X t X p ( ) sous H 0 : U = σ 2( 1 n t + 1 ) N 0, 1 n p Avec les données dont nous disposons nous pouvons calculer 90, 2 96, 7 u = 60 ( 1 9 + ) = 1.73 1 8 En prenant les tables de la loi normale nous constatons que IP(U 1.7343) = 0, 041 Il y a donc moins de 5% de chances d observer un tel résultat. Il ne nous apparait donc pas raisonnable d expliquer cette différence entre le moyennes par le hasard seul. Nous concluons dans ce cas en rejetant cette hypothèse. Il nous semble plus raisonnable d admettre que le traitement à un effet.

Récapitulons : le test de comparaison des moyennes 1 la question : les deux groupes sont ils des réalisation de la même loi 2 le modèle : gaussien 3 les hypothèses : même variance σ 2 connue 4 caclul de u = x t x p σ 2( 1 n t + 1 ) n p x t moyenne avec traitement x p moyenne sans traitement n t nombre de cas avec traitement n p nombre de cas sans traitement 5 calcul de la p-valeur U N ( 0, 1 ) (ou lecture sur les tables) pval = IP(U u) 6 on décide qu on ne peut pas conclure à l efficacité du traitement si la p-valeur est supérieure à 0,05, si pval 0, 05

Les trois variantes : la pression : diminue augmente varie. { H0 : µ t µ p = 0 H 1 : µ t µ p < 0 { H0 : µ t µ p = 0 H 1 : µ t µ p > 0 { H0 : µ t µ p = 0 H 1 : µ t µ p 0 pval = IP(U u) IP(U u) IP(U u ) + IP(U u ) quand la question change... Exemple : pour u = 1, 73, pval = dim : IP(U 1, 73) = 0, 041 le calcul de la pval change aug : IP(U 1, 73) = 1 0, 041 = 0, 959 var : IP(U 1, 73) + IP(U 1, 73) = 0, 041 + 0, 041 = 0, 082

une interprétation de la statistique u = signal bruit = = écart entre les moyennes des deux groupes variabilité des observations x t x p ( σ 2 1 nt + 1 np )

Stéphane Canu (INSA Rouen - ASI) Test de Student June 14, 2012 11 / 33 Plan 1 Comparaisons d une variable quantitative et d une variables qualitative : le test de Student L exemple de l effet d un médicament Si la variance est connue Si la variance est inconnue La loi de Student Définition Propriétés et approximation Le cas de la moyenne d un échantillon gaussien Le cas de deux échantillons gaussien Le test de Student (t-test) 2 Comparaisons de deux variables quantitatives : le test de Student 3 Conclusion

Si la variance est inconnue Dans ce cas on remplace la variance inconnue σ 2 par sont estimateur σ 2. En conséquence la nouvelle variable aléatoire ainsi construire n est plus distribué selon une loi normale mais suit une loi et Student à n t + n p 2 degrés de liberté. X t X p T nt+np 2 = σ 2( 1 n t + 1 ) T nt+np 2 n p avec σ 2 = ( 1 nt n t +n p 2 (X ti X t) 2 + n p (X pi X p) ). 2 t = 90, 2 96, 7 63, 4 ( 1 9 + 1 ) = 1.68 8 En prenant les tables de la loi de Student nous constatons que pval = IP(T nt+n p 2 1.68) = 0, 056 Il y a dans ce cas plus de 5% de chances d observer un tel résultat. Il nous apparait donc plausible d expliquer cette différence entre le moyennes par le seul effet du hasard. Nous concluons dans ce cas en gardant cette hypothèse. Il n y a pas assez d évidence expérimentale pour nous convaincre que le traitement a vraiment un effet. Si le médecin souhaite poursuivre, il lui faut refaire une expérience sur plus de sujets.

Récapitulons : le test de comparaison des moyennes 1 la question : les deux groupes sont ils des réalisation de la même loi 2 le modèle : gaussien 3 les hypothèses : même variance σ 2 inconnue 4 caclul de x t x p t = σ 2( 1 n t + 1 ) n p x t moyenne avec traitement x p moyenne sans traitement ( n t n p σ 2 1 = n t+n p 2 (x ti x t ) 2 + (x pi x p ) 2) n t nombre de cas avec traitement n p nombre de cas sans traitement 5 calcul de la p-valeur T T nt+n p 2 (ou lecture sur les tables) pval = IP(T t) 6 on décide qu on ne peut pas conclure à l efficacité du traitement si la p-valeur est supérieure à 0,05, si pval 0, 05

Stéphane Canu (INSA Rouen - ASI) Test de Student June 14, 2012 14 / 33 Plan 1 Comparaisons d une variable quantitative et d une variables qualitative : le test de Student L exemple de l effet d un médicament Si la variance est connue Si la variance est inconnue La loi de Student Définition Propriétés et approximation Le cas de la moyenne d un échantillon gaussien Le cas de deux échantillons gaussien Le test de Student (t-test) 2 Comparaisons de deux variables quantitatives : le test de Student 3 Conclusion

La loi de Student : définition Soit N N (0, 1) une variable aléatoire normale centrée réduite. Soit X n la variable aléatoire distribuée suivant une loi du χ 2 à n ddl C est le cas par exemple, si N1, N 2,..., N n un échantillon de n réalisation n i.i.d. une variable aléatoire normale centrée réduite quand X n = supposons que N et X n sont indépendantes (i.e. cov(y, X n) = 0) N 2 i Definition (La loi de student) On appelle loi de student à n degrés de libertés la loi de la variable aléatoire T n T n = N N N (0, 1) X n n X n χ 2 n

La loi de Student : T n = N Xn n Figure: Exemples de loi de student pour 1 (bleu), 2 (rouge), 5 (vert), 10 (violet) et 20 (bleu ciel) degrés de liberté. La courbe en pointillés noir est la courbe de Gauss donnée comme référence. La figure de droite montre un zoom sur la «queue» de la distribution. Loi de Student et loi normale T n n + N (0, 1)

Propriétés et approximation Publiée pour la première fois en 1908 par William Sealy Gosset qui travaillait chez Guinness (la brasserie de Dublin). Pour des raisons commerciales, il a du utiliser le pseudonyme de Student, qui restera attaché à cette loi. tend vers une loi normale n > 30 attention la différence est plus importante dans les «queue» de la distribution : N N (0, 1) : IP(N > 2) = 0, 023 p1 = 1-cdf( norm,2,0,1) T T1 : IP(T > 2) = 0, 148 p2 = 1-cdf( t,2,1) T T 2 : IP(T > 2) = 0, 092 p2 = 1-cdf( t,2,2) T T 10 : IP(T > 2) = 0, 038 p2 = 1-cdf( t,2,10) U N (0, σ 2 ) N = U σ N (0, 1) T = Ṋ σ = N N1 2+N2 2 2 T 2

Le cas de la moyenne d un échantillon gaussien Soit X N (µ, σ 2 ) une variable aléatoire normale d espérance µ et de variance σ 2. Soit X 1, X 2,..., X n un échantillon de n réalisation i.i.d. de cette variable aléatoire. La moyenne X = 1 n n X i de cet échantillon suit aussi une loi normale ) X N (µ, σ2 n car IE(X ) = µ et V (X ) = σ2 n : IE(X ) = IE( 1 n n X 1 i) V (X ) = V ( n = 1 n n IE(X n X i) i) = = 1 1 n n n µ = µ n 2 V (X i) = 1 n n 2 σ2 = σ2 n

Le cas de la moyenne d un échantillon gaussien Soit X N (µ, σ 2 ) une variable aléatoire normale d espérance µ et de variance σ 2. Soit X 1, X 2,..., X n un échantillon de n réalisation i.i.d. de cette variable aléatoire. La moyenne X = 1 n n X i de cet échantillon suit aussi une loi normale ) X N (µ, σ2 n On peut donc construire la variable normale centrée réduite Y = X µ N (0, 1). Or Z σ n 1 = n (X i X ) 2 2 χ 2 σ 2 n 1 n On peut construire une variable aléatoire suivant une loi de Student T n 1 = Y Zn 1 n 1 = X µ σ 2 n n n 1 avec Sn 1 2 = 1 n n 1 (X i X ) 2. (X i X ) 2 σ 2 = 1 n 1 X µ n (X i X ) 2 n = X µ S n 1 n

Le test de Student (t-test) : deux échantillons gaussien Soit X N (µ x, σ 2 ) et Y N (µ y, σ 2 ) deux loi de même variance. On tire deux échantillons suivant ces deux loi. Soient X 1,..., X nx et Y 1,..., Y ny ces deux échantillons. Les variables suivantes X = 1 nx n X i et Sx 2 = n x (X i X ) 2 sont caractérisées par les lois : X N (µ x, σ2 ) ; Y N ( µ y, σ2 ) ; n x n y S 2 x σ 2 χ2 n x 1 ; S 2 y σ 2 χ2 n y 1 et donc X Y N ( µ x µ y, ( 1 + 1 ) ) σ 2 n x n y ; S 2 x σ 2 + S 2 y σ 2 χ2 n x +n y 2

Le test de Student (t-test) X Y N ( µ x µ y, ( 1 + 1 ) ) σ 2 n x n y ; S 2 x σ 2 + S 2 y σ 2 χ2 n x +n y 2 On définit alors la variable de Student suivante : T nx +n y 2 = n x + n y 2 X Y (µ x µ y ) ( ) 1 n x + 1 n y Sxy 2 n x avec Sxy 2 = Sx 2 + Sy 2 = (X i X ) 2 + (Y i Y ) 2 Si l on fait l hypothèse que µ x = µ y n y T = n x + n y 2 X Y ( ) 1 n x + 1 n y Sxy 2 suit une loi de Student à n x + n y 2 degrés de liberté.

Stéphane Canu (INSA Rouen - ASI) Test de Student June 14, 2012 21 / 33 Plan 1 Comparaisons d une variable quantitative et d une variables qualitative : le test de Student L exemple de l effet d un médicament Si la variance est connue Si la variance est inconnue La loi de Student Définition Propriétés et approximation Le cas de la moyenne d un échantillon gaussien Le cas de deux échantillons gaussien Le test de Student (t-test) 2 Comparaisons de deux variables quantitatives : le test de Student 3 Conclusion

Le test de Student (t-test) les deux échantilons : X t1,..., X ti,..., X tnt, X p1,..., X pi,..., X pnp i.i.d Les deux hypothèses 1 l hypothèse gaussiènne : soit Xti N ( µ t, σ 2) et X pi N ( µ p, σ 2) 2 même variance : σ 2 t = σ 2 p = σ 2 la question : les deux échantillons que nous observons sont-ils des réalisations d une même variable aléatoire? les hypothèses : { H0 : échantillons de même loi µ t = µ p H 1 : de lois différentes µ t > µ p X t X p la statistique : T = σ 2( 1 n t + 1 ) T nt+np 2 n p avec σ 2 = 1 n t+n p 2 ( n t (X ti X t ) 2 + (X pi X p ) 2) n p

Mise en œuvre du test de student 1 caclul de x t = 1 n t x p = 1 n p n t x ti n p x pi ( n t 2 caclul de σ 2 1 = n t+n p 2 (x ti x t ) 2 + 3 caclul de x t x p t = σ 2( 1 n t + 1 ) n p moyenne avec traitement moyenne sans traitement n p (x pi x p ) 2) n t nombre de cas avec traitement n p nombre de cas sans traitement 4 calcul du nombre de degrés de liberté d = n t + n p 2 5 calcul de la p-valeur T T d (ou lecture sur les tables) pval = IP(T t) 6 on décide qu on ne peut pas conclure à l efficacité du traitement si la p-valeur est supérieure à 0,05, si pval 0, 05

Exemple de mise en œuvre du test de student groupe avec traitement (t) 30.02 29.99 30.11 29.97 30.01 29.99 groupe sans traitement (p) 29.89 29.93 29.72 29.98 30.02 29.98 Question : le traitement augmente-t-il la mesure?

Exemple de mise en œuvre du test de student groupe avec traitement (t) 30.02 29.99 30.11 29.97 30.01 29.99 groupe sans traitement (p) 29.89 29.93 29.72 29.98 30.02 29.98 Question : le traitement augmente-t-il la mesure? Réponse : on effectue le test de student : 1 x t = 30.015, x p = 29.92 x t x p = 0.095 ( 6 6 2 σ 2 = 1 10 (x ti 30.015) 2 + (x pi 29.92) 2) 0.0071 3 x t x p t = σ 2( ) 1 n t + 1 n p 0.095 0.0071 ( 1 6 + ) = 1.959 1 6 4 calcul du nombre de degrés de liberté d = n t + n p 2 = 10 5 calcul de la p-valeur T T d (ou lecture sur les tables) pval = IP(T 1.959) = 1-cdf( t,1.959,10) = 0.0393 6 on décide qu on peut conclure à l efficacité du traitement car la p-valeur est inférieure à 0,05.

Stéphane Canu (INSA Rouen - ASI) Test de Student June 14, 2012 25 / 33 Plan 1 Comparaisons d une variable quantitative et d une variables qualitative : le test de Student L exemple de l effet d un médicament Si la variance est connue Si la variance est inconnue La loi de Student Définition Propriétés et approximation Le cas de la moyenne d un échantillon gaussien Le cas de deux échantillons gaussien Le test de Student (t-test) 2 Comparaisons de deux variables quantitatives : le test de Student 3 Conclusion

L exemple de la relation entre oxygène dissout et pression patient O 2 Pression sanguine p1 0,31 88 p2 0,30 83 p3 0,29 82 p4 0,35 101 p5 0,33 99 p6 0,31 85 p7 0,30 87 p8 0,34 89 p9 0,32 88 p10 0,28 88 p11 0,30 82 p12 0,33 101 p13 0,31 106 p14 0,32 96 p15 0,30 92 p16 0,35 112 p17 0,31 97 quantitative quantitative Question : Il y a t il une relation entre ces deux variables? { H0 : indépendance les hypothèses H 1 : dépendance Réponse : tester la pente de la droite pression = ao 2 + b + ε les hypothèses { H0 : a = 0 H 1 : a 0 la regression donne â = 0, 12 Cette valeur peut elle s expliquer par un hasard raisonnable?

un hasard raisonnable... 1 supposons qu il y a indépendance a = 0 2 générons plein (m = 1000, 1000000, + ) d échantillons (x i, y ij = ax i + b + ε ij ), i = 1, n j = 1, m 3 pour chacun de ces échantillon calculons â j 4 regardons la probabilité IP( â > 0, 12) 5 si cette probabilité est trop petite, il n est pas «raisonnable» de considérer que l hypothèse d indépendance est exacte.

Comparaisons de deux variables quantitatives et régression y i = ax i + b + ε i ε i N (0, σ 2 ) indépendance des ε i â = n (x i x)(y i y) n (x i x) 2 ( ) â N a, σ 2 1 n (x i x) 2 â a σ 2 n (x i x) 2 N (0, 1) ε i = y i (âx i + b) ε i σ N (0, 1) 1 σ 2 n ε 2 i χ 2 n 1 σ 2 n ε 2 i χ 2 n 2

Pente de la droite de régression et loi de student â a σ 2 n (x i x) 2 N (0, 1) 1 σ 2 n ε 2 i χ 2 n 2 or N χ 2 n n T 2 n avec σ 2 = 1 n 2 suit une loi de student à n degrés de libertés â a σ 2 n (x i x) 2 1 σ 2 (n 2) n ε2 i T n 2 = n ( yi (âx i + b) ) 2 et S 2 x = â a σ 2 S 2 x n (x i x) 2 T n 2

Mise en œuvre du test sur la pente de la régression { H0 : indépendance a = 0 1 les hypothèses : H 1 : dépendance a 0 n 2 caclul de â = (x i x)(y i y) n (x i x) 2 3 calcul de σ 2 = 1 n 2 4 caclul de n ( yi (âx i + b) ) 2 et de S 2 x = t = â σ 2 n (x i x) 2 5 calcul du nombre de degrés de liberté d = n 2 6 calcul de la p-valeur T T d (ou lecture sur les tables) S 2 x pval = IP( T t) 7 on décide qu on ne peut pas conclure à l efficacité du traitement si la p-valeur est supérieure à 0,05, si pval 0, 05

Stéphane Canu (INSA Rouen - ASI) Test de Student June 14, 2012 31 / 33 Plan 1 Comparaisons d une variable quantitative et d une variables qualitative : le test de Student L exemple de l effet d un médicament Si la variance est connue Si la variance est inconnue La loi de Student Définition Propriétés et approximation Le cas de la moyenne d un échantillon gaussien Le cas de deux échantillons gaussien Le test de Student (t-test) 2 Comparaisons de deux variables quantitatives : le test de Student 3 Conclusion

Conclusion La question cette variable quantitative est elle indépendantes de cette variable qualitative? comparaison de deux échantillons quantitatifs il vérifier les hypothèses avant d effectuer un test de student distribution normale (par exemple un test du χ 2 adapté) égalité de variances (test de Fisher) sinon il faut faire un autre test comme celui de Wilcoxon ou de Mann et Whitney il existes plusieurs variations du test de student... un échantillon (test d une valeur de l espérance) puisque X µ S n 1 n deux échantillons appariés test de la pente de la régression simple Il existe une théorie et des théorèmes pour définir les test théorème de Neyman Pearson T n 1

Repéres bibliographiques http://en.wikipedia.org/wiki/student s_t-test http://www.iumsp.ch/enseignement/pregradue/student.pdf http://www.socialresearchmethods.net/kb/stat_t.php http: //nte-serveur.univ-lyon1.fr/immediato/math/enseignement/ 07%20Statistiques/19.%20Comparaison%20de%20deux% 20moyennes%20-%20test%20de%20Student/chapitre_19.htm