Detecting a moving obstacle in an ideal fluid by a boundary measurement



Documents pareils
0 h(s)ds et h [t = 1 [t, [ h, t IR +. Φ L 2 (IR + ) Φ sur U par

Symétrie des solutions d équations semi-linéaires elliptiques

Estimations de convexité pour des équations elliptiques nonlinéaires

RULE 5 - SERVICE OF DOCUMENTS RÈGLE 5 SIGNIFICATION DE DOCUMENTS. Rule 5 / Règle 5

Arithmetical properties of idempotents in group algebras

Natixis Asset Management Response to the European Commission Green Paper on shadow banking

Instructions Mozilla Thunderbird Page 1

How to Login to Career Page

BILAN du projet PEPS 1 EOLIN (Eolien LMI INSA)

IPSAS 32 «Service concession arrangements» (SCA) Marie-Pierre Cordier Baudouin Griton, IPSAS Board

L. Obert, T. Lascar, A. Adam

Technologies quantiques & information quantique

Paxton. ins Net2 desktop reader USB

APPENDIX 6 BONUS RING FORMAT

Démonstration de la conjecture de Dumont

Instructions pour mettre à jour un HFFv2 v1.x.yy v2.0.00

that the child(ren) was/were in need of protection under Part III of the Child and Family Services Act, and the court made an order on

Principe de symétrisation pour la construction d un test adaptatif

Mon Service Public - Case study and Mapping to SAML/Liberty specifications. Gaël Gourmelen - France Telecom 23/04/2007

1.The pronouns me, te, nous, and vous are object pronouns.

Improving the breakdown of the Central Credit Register data by category of enterprises

DOCUMENTATION - FRANCAIS... 2

Contents Windows

MELTING POTES, LA SECTION INTERNATIONALE DU BELLASSO (Association étudiante de lʼensaparis-belleville) PRESENTE :

Règlement sur le télémarketing et les centres d'appel. Call Centres Telemarketing Sales Regulation

BILL 203 PROJET DE LOI 203

Compléter le formulaire «Demande de participation» et l envoyer aux bureaux de SGC* à l adresse suivante :

Exemple PLS avec SAS

DOCUMENTATION - FRANCAIS... 2

Contrôle d'accès Access control. Notice technique / Technical Manual

Gestion des prestations Volontaire

PROJET DE LOI. An Act to Amend the Employment Standards Act. Loi modifiant la Loi sur les normes d emploi

3615 SELFIE. HOW-TO / GUIDE D'UTILISATION

DOCUMENTATION MODULE BLOCKCATEGORIESCUSTOM Module crée par Prestacrea - Version : 2.0

English Q&A #1 Braille Services Requirement PPTC Q1. Would you like our proposal to be shipped or do you prefer an electronic submission?

COUNCIL OF THE EUROPEAN UNION. Brussels, 18 September 2008 (19.09) (OR. fr) 13156/08 LIMITE PI 53

AMENDMENT TO BILL 32 AMENDEMENT AU PROJET DE LOI 32

Notice Technique / Technical Manual

Exercices sur SQL server 2000

Le No.1 de l économie d énergie pour patinoires.

EXISTENCE OF ALGEBRAIC HECKE CHARACTERS ( C. R. ACAD. SCI. PARIS SER. I MATH, 332(2001) ) Tonghai Yang

Once the installation is complete, you can delete the temporary Zip files..

Cheque Holding Policy Disclosure (Banks) Regulations. Règlement sur la communication de la politique de retenue de chèques (banques) CONSOLIDATION

I. Programmation I. 1 Ecrire un programme en Scilab traduisant l organigramme montré ci-après (on pourra utiliser les annexes):

Bourses d excellence pour les masters orientés vers la recherche

EN UNE PAGE PLAN STRATÉGIQUE

CONSOLIDATION OF ABORIGINAL CUSTOM ADOPTION RECOGNITION ACT S.N.W.T. 1994,c.26 In force September 30, 1995; SI

LOI SUR LA RECONNAISSANCE DE L'ADOPTION SELON LES COUTUMES AUTOCHTONES ABORIGINAL CUSTOM ADOPTION RECOGNITION ACT

INDIVIDUALS AND LEGAL ENTITIES: If the dividends have not been paid yet, you may be eligible for the simplified procedure.

AIDE FINANCIÈRE POUR ATHLÈTES FINANCIAL ASSISTANCE FOR ATHLETES

PIB : Définition : mesure de l activité économique réalisée à l échelle d une nation sur une période donnée.

Bill 69 Projet de loi 69

Application Form/ Formulaire de demande

If you understand the roles nouns (and their accompanying baggage) play in a sentence...

CONVENTION DE STAGE TYPE STANDART TRAINING CONTRACT

WEB page builder and server for SCADA applications usable from a WEB navigator

Surveillance de Scripts LUA et de réception d EVENT. avec LoriotPro Extended & Broadcast Edition

First Nations Assessment Inspection Regulations. Règlement sur l inspection aux fins d évaluation foncière des premières nations CONSOLIDATION

Logitech Tablet Keyboard for Windows 8, Windows RT and Android 3.0+ Setup Guide Guide d installation

I>~I.J 4j1.bJ1UlJ ~..;W:i 1U

Package Contents. System Requirements. Before You Begin

Judge Group: P Title: Quel est meilleur: le compost ou le fertilisant chimique? Student(s): Emma O'Shea Grade: 6

ONTARIO Court File Number. Form 17E: Trial Management Conference Brief. Date of trial management conference. Name of party filing this brief

Edna Ekhivalak Elias Commissioner of Nunavut Commissaire du Nunavut

COPYRIGHT Danish Standards. NOT FOR COMMERCIAL USE OR REPRODUCTION. DS/EN 61303:1997

Confirmation du titulaire de la carte en cas de contestation de transaction(s) Cardholder s Certification of Disputed Transactions

FÉDÉRATION INTERNATIONALE DE NATATION Diving

THÈSE. présentée à TÉLÉCOM PARISTECH. pour obtenir le grade de. DOCTEUR de TÉLÉCOM PARISTECH. Mention Informatique et Réseaux. par.

22/09/2014 sur la base de 55,03 euros par action

C. R. Acad. Sci. Paris, Ser. I

AUDIT COMMITTEE: TERMS OF REFERENCE

Modélisation géostatistique des débits le long des cours d eau.

String topology for loop stacks

de stabilisation financière

Form of Deeds Relating to Certain Successions of Cree and Naskapi Beneficiaries Regulations

CLIM/GTP/27/8 ANNEX III/ANNEXE III. Category 1 New indications/ 1 re catégorie Nouvelles indications

Credit Note and Debit Note Information (GST/ HST) Regulations

Practice Direction. Class Proceedings

Laboratory accredited by the French Home Office (official gazette date February 5 th, 1959, modified) Valid five years from August 27 th, 2013

Dans une agence de location immobilière...

THE LAW SOCIETY OF UPPER CANADA BY-LAW 19 [HANDLING OF MONEY AND OTHER PROPERTY] MOTION TO BE MOVED AT THE MEETING OF CONVOCATION ON JANUARY 24, 2002

PARIS ROISSY CHARLES DE GAULLE

Tammy: Something exceptional happened today. I met somebody legendary. Tex: Qui as-tu rencontré? Tex: Who did you meet?

physicien diplômé EPFZ originaire de France présentée acceptée sur proposition Thèse no. 7178

Bill 204 Projet de loi 204

UNIVERSITE DE YAOUNDE II

Lesson Plan Physical Descriptions. belle vieille grande petite grosse laide mignonne jolie. beau vieux grand petit gros laid mignon

Guide d'installation rapide TFM-560X YO.13

Warning: Failure to follow these warnings could result in property damage, or personal injury.

lundi 3 août 2009 Choose your language What is Document Connection for Mac? Communautés Numériques L informatique à la portée du Grand Public

calls.paris-neuroscience.fr Tutoriel pour Candidatures en ligne *** Online Applications Tutorial

Archived Content. Contenu archivé

I. COORDONNÉES PERSONNELLES / PERSONAL DATA

Le passé composé. C'est le passé! Tout ça c'est du passé! That's the past! All that's in the past!

Discours du Ministre Tassarajen Pillay Chedumbrum. Ministre des Technologies de l'information et de la Communication (TIC) Worshop on Dot.

Photoactivatable Probes for Protein Labeling

Export Permit (Steel Monitoring) Regulations. Règlement sur les licences d exportation (surveillance de l acier) CONSOLIDATION CODIFICATION

Differential Synchronization

RISK-BASED TRANSPORTATION PLANNING PRACTICE: OVERALL METIIODOLOGY AND A CASE EXAMPLE"' RESUME

APPENDIX 2. Provisions to be included in the contract between the Provider and the. Holder

Transcription:

Partial Differential Equations/Optimal Control Detecting a moving obstacle in an ideal fluid by a boundary measurement Carlos Conca a, Patricio Cumsille a,b, Jaime Ortega a,b, Lionel Rosier a,c a Departamento de Ingeniería Matemática (DIM) and Centro de Modelamiento Matemático (CMM), Universidad de Chile (UMI CNRS 807), Avda Blanco Encalada 10, Casilla 170-3, Correo 3, Santiago, Chile b Depto. Ciencias Básicas, Fac. Ciencias, U. del Bío-Bío, Avda Andrés Bello, Chillán, Chile c Institut Élie-Cartan, UMR 750 UHP/CNRS/INRIA, B.P. 39, 54506 Vandœuvre-lès-Nancy cedex, France Abstract In this Note we investigate the problem of the detection of a moving obstacle in a perfect fluid occupying a bounded domain in R from the measurement of the velocity of the fluid on one part of the boundary. We show that when the obstacle is a ball, we may identify the position and the velocity of its center of mass from a single boundary measurement. Linear stability estimates are also established by using shape differentiation techniques. Résumé Détection d un obstacle en mouvement dans un fluide parfait à partir d une mesure sur le bord du domaine. Dans cette Note, on s intéresse au problème de la détection d un obstacle en mouvement dans un fluide parfait incompressible à partir de la mesure de la vitesse du fluide sur une partie du bord du domaine. Lorsque l obstacle est une boule, on montre que la position et la vitesse de son centre de gravité peuvent être identifiées à l aide d une seule mesure. La stabilité linéaire par rapport à la mesure est prouvée par des techniques de différentiation par rapport au domaine. Version française abrégée Dans cette Note, on étudie le problème inverse consistant à déterminer la position et la vitesse d un obstacle en mouvement dans un fluide incompressible à partir d une mesure localisée de la vitesse du fluide. La détermination de la forme d un obstacle fixe dans un domaine borné Ω R d a été étudiée récemment dans [,4] et [5] pour un fluide E-mail addresses: cconca@dim.uchile.cl (C. Conca), pcumsill@dim.uchile.cl (P. Cumsille), jortega@dim.uchile.cl (J. Ortega), rosier@iecn.u-nancy.fr (L. Rosier).

réel (de type Navier Stokes) et d =, 3. Dans le cas d un fluide parfait potentiel, la question se ramène à un problème classique (cf. [1] pour la détection de fissures en dimension deux). Nous considérons dans cette Note un fluide parfait potentiel occupant un ouvert borné régulier Ω R. Pour simplifier, on suppose que l obstacle est la boule B 1 (h(t)) centrée en h(t) et de rayon 1. On obtient le système ϕ = 0 ( ) dans Ω \ B 1 h(t), (1) n = l n sur B ( ) 1 h(t), () n = g sur Ω (3) où v(x,t) = ϕ(x,t) est la vitesse du fluide, l(t) = h (t) est la vitesse du centre de la boule, et g H s ( Ω) (s 0) est le flux sortant à travers Ω. On suppose que ϕ est mesuré sur une partie Γ m de Ω, et on se demande si la connaissance de cette mesure à un instant donné t suffit à identifier (h, l). Il est clair que la donnée g(x) = l n(x), où l R est un vecteur fixe, est à exclure, car la boule peut se mouvoir à la même vitesse l que le fluide et être indiscernable. Le résultat principal de cette Note montre qu en dehors de cette situation, l identifiabilité est possible. On note (e 1,e ) la base canonique de R, V = span(e 1 n, e n) L ( Ω), et pour tout (h i,l i ) R 4, ϕ i la solution (définie à une constante près) de (1) (3) associée à (h, l) = (h i,l i ) et g. Théorème 0.1. Soient g H s ( Ω) \ V avec s>1/ et Ω g dσ = 0, et pour i = 1,, (h i,l i ) R 4 avec dist(h i, Ω)>1.Alors ϕ 1 = ϕ sur Γ m h 1 = h et l 1 = l. La preuve du Théorème 0.1 repose sur une analyse des singularités d un problème de Dirichlet non-homogène sur un domaine à coins. On peut établir une estimation de stabilité linéaire pour l application de mesure Λ : (h,l,g) ϕ Γm.Onfixeg comme dans le Théorème 0.1, avec s 1, et un couple (h 0,l 0 ) dans R 4 avec dist(h 0, Ω)>1. Le résultat qui suit s obtient par une technique de différentiation par rapport au domaine. Théorème 0.. Il existe deux nombres ρ>0, c>0 tels que pour (h h 0,l l 0 ) R 4 <ρ,onait Λ(h, l, g) Λ(h 0,l 0,g) H s+1 (Γ m )/R c (h h 0,l l 0 ) R 4. Les preuves détaillées des résultats de cette Note figurent dans [3]. 1. Introduction In this Note we investigate the issue of the detection of a moving obstacle in an incompressible fluid filling a bounded domain in R from the measurement of the velocity of the fluid on one part of the boundary of the domain. The problem of the detection of a fixed obstacle in a real fluid of Navier Stokes type has been tackled in [,4] and [5]. For an ideal fluid with a potential flow, the identification of fixed obstacles reduces to a classical problem (see e.g. [1] for the detection of multiple cracks). However, for a moving obstacle of known form with an unknown velocity, the identifiability of the position of the obstacle seems not to be a direct consequence of the unique continuation property for Laplace equation, nor of topological arguments as in [1]. For the sake of simplicity, we shall assume here that the obstacle is the ball B 1 (h(t)) of radius one centered at the point h(t), and that the fluid is ideal with a potential velocity v(x,t) = ϕ(x,t). (Notice that no identification result can be expected for general Eulerian flows as in [8], because of the existence of ghost solutions compactly supported in space [7].) Setting l = h, the system reads ( ) ϕ = 0 inω \ B 1 h(t), n = l n on B ( ) 1 h(t), n = g on Ω (4) (5) (6)

and we assume that ϕ is measured on an open set Γ m Ω. We wonder whether only one pair (h, l) may be associated with a given measurement. Clearly, the data g(x) = l x, with l R a given fixed vector, has to be excluded, for it may lead to the situation where the ball, which is surrounded by a fluid flowing at the same velocity (ϕ(x,t) = l x), is not identifiable. The first main result in this Note asserts that for any data g which is not of this form, the identifiability property holds true. Let (e 1,e ) denote the canonical basis in R, V = span(e 1 n, e n) L ( Ω), and for any (h i,l i ) R 4,letϕ i be the solution (defined up to an additive constant) of (4) (6) associated with (h, l) = (h i,l i ) and g. Theorem 1.1. Let g H s ( Ω) \ V with s>1/ and Ω g dσ = 0, and for i = 1,, (h i,l i ) R 4 with dist(h i, Ω)>1. Then ϕ 1 = ϕ on Γ m h 1 = h and l 1 = l. The proof of Theorem 1.1 rests on the analysis of the singularities for a non-homogeneous Dirichlet problem in an open set with corners. A linear stability estimate for the measurement map Λ : (h,l,g) ϕ Γm can also be derived. Fix g as in Theorem 1.1 with s 1, and a pair (h 0,l 0 ) in R 4 with dist(h 0, Ω)>1. The following estimate is obtained in using a shape differentiation result due to Simon [9]: Theorem 1.. There exist two numbers ρ>0, c>0 such that for (h h 0,l l 0 ) R 4 <ρ, we have Λ(h, l, g) Λ(h 0,l 0,g) H s+1 (Γ m )/R c (h h 0,l l 0 ) R 4. The proofs of Theorems 1.1 and 1. are sketched in the next sections. Detailed proofs are given in [3].. Sketch of the proof of Theorem 1.1 We shall use in this section complex analysis, denoting the coordinates by (x, y) instead of (x 1,x ), and identifying a couple (x, y) of real numbers with the complex number z = x + iy. For i = 1,, let ϕ i, h i and l i be as in the statement of Theorem 1.1, and let B i = B 1 (h i (t)). Since ϕ 1 = ϕ on Γ m, and 1 n = g = n on Γ m, we infer by unique continuation that ϕ 1 = ϕ on Ω \ B 1 B. Define a function ϕ : Ω \ B 1 B R by { ϕ1 (x, y) if (x, y) Ω \ B 1, ϕ(x,y) := (7) ϕ (x, y) if (x, y) Ω \ B. If B 1 B =,orifl 1 = l and h 1 h, then it is easily seen that g V, which is excluded. The non-trivial case is the one for which 0 < h 1 h < and l 1 l. An application of Green s formula gives (l l 1 ) (h h 1 ) = 0. After simple transformations, we may assume that h 1 = (0,δ)= h, with 0 <δ<1, and that l 1 = e 1 = (1, 0) = l. Thus the function ϕ : Ω \ B 1 B R satisfies the system ϕ = 0 inω \ B 1 B, n = g on Ω, n = e 1 n on B 1, n = e 1 n on B. By Schwarz Reflection Principle [6], ϕ may be extended as an harmonic function on a neighborhood of B 1 and B. If we prove that ϕ can be extended as an harmonic function on B 1 B, then we are done since it follows from (8) (10) that g V. We introduce the harmonic conjugate function ψ, which is defined (up to a constant) by ψ = ( ϕ) ;it is analytic on the same set as ϕ. By an appropriate choice of the constant, ψ satisfies (8) (9) (10) (11)

ψ = 0 ind 1 := B 1 \ B, ψ = y on Γ 1 := ( B 1 ) \ B, ψ = y on γ := ( B ) B 1. A similar Dirichlet problem is satisfied by ψ on D 1 = B \ B 1, and from the uniqueness of the solution we infer that ψ(x, y) = ψ(x,y) = ψ( x,y). To prove that ϕ has no singularity in B 1 B, it is therefore sufficient to check that ψ does not have any singularity in the set B {z = x + iy; y 0}. We first transform problem (1) (14) into a Dirichlet problem in a convex cone. We introduce the points M ± = (± 1 δ, 0) located at the intersection of the circles B 1 and B. Let T 1 : z z 1 = x 1 + iy 1 = (z + 1 δ ) 1 denote the inversion of pole M = 1 δ.ast 1 is a Moebius transformation, it carries circles into circles or lines (see [6]). Since M is mapped to, T 1 maps D 1 onto a convex cone C 1. For notational convenience, we translate and rotate the cone C 1.WeletC = T (C 1 ), where T (z 1 ) := z = x + iy = (z 1 ( 1 δ ) 1 ). Then C = { z C ; π θ < arg z < π + θ }, where θ (0,π)stands for the angle of C 1 at T 1 (M + ),orof D 1 at M + by conformal invariance. Let ψ (z ) := ψ(z). Then ψ solves the system ψ = 0 inc, y ψ (z ) = (x + c) + y y on d 1, ψ (z ) = (x + c) + y on d 0, ψ (z ) 0 asz,z C, where c := ( 1 δ ) 1, and for any k Z, d k denotes the half-line { } d k = z C π + (k + 1)θ ; arg z = θ k :=. Notice that (T T 1 )(B {y 0}) is the corner C ={z C ; θ 0 < arg z π}. To prove that ψ does not have any singularity in B {y 0}, it is therefore sufficient to check that ψ can be extended as a harmonic function on C. This is done by applying several times the following reflection principle for harmonic functions proved in [3]. Lemma 1. Let θ 0 R and θ (0,π/). Let l ± ={z C ; arg z = θ 0 ± θ}, and let l 0 ={z C ; arg z = θ 0 }. Let C + ={z C ; θ 0 < arg z<θ 0 + θ} (resp. C ={z C ; θ 0 θ<arg z<θ 0 }) be the sectors bounded by the half-lines l 0 and l + (resp. by the half-lines l and l 0 ). Let ψ be a harmonic function on C such that lim ψ(z)= Im f (Z) z Z, z C Z l, (19) lim ψ(z)= Im f 0 (Z) z Z, z C Z l 0, (0) where f (resp. f 0 ) is a holomorphic function in a neighborhood of l (resp. on C l 0 C + ). Then ψ can be extended as a harmonic function on the set C l 0 C +, and ( lim ψ(z)= Im f e iθ Z ) + lim Im ( ( f 0 (z) + f 0 e iθ 0 z )) z Z, z C + z Z, z C + (1) for each Z l + for which the limit in the right-hand side of (1) exists. Assume first that θ = π/(n + 1) for some N N. Then one can prove by induction on k that ψ can be extended in an analytic way on the sector d 1 d k for each k N + 1, with ( ) 1 k ψ (z ) = Im z + c + e liθ z d k. () z + c l=1 (1) (13) (14) (15) (16) (17) (18)

The first singularity encountered in the extension procedure is the point z = c exp(iθ N+1 ) d N+1. As it is outside C, we are done. If π/(n + 3)<θ<π/(N + 1) for some N N, then ψ can again be extended analytically on the sector d 1 d N+1, hence on C. Therefore, the function ψ does not have any singularity in B {y 0}. The proof of Theorem 1.1 is complete. 3. Sketch of the proof of Theorem 1. Let h 0,l 0 and g be as in the statement of Theorem 1., and let B 0 = B 1 (h 0 ). Without loss of generality, we may assume that h 0 = (0, 0). LetdΛ(h 0,l 0,g) denote the differential of Λ at the point (h 0,l 0,g), and let L = dλ(h 0,l 0,g) R R {0}. It is clearly sufficient to prove that the map L : R4 H s+1 (Γ m )/R is one-to-one. If (ĥ, ˆl) R 4 is given, then by a classical result due to Simon [9] we have that L(ĥ, ˆl) = ψ Γm, where ψ denotes the solution (defined up to a constant) of ψ = 0 inω \ B 0, (3) ψ n = 0 on Ω, (4) ψ n = ĥ n ϕ 0 n + ( ϕ 0 l 0 ) grad Ω (ĥ n) + ˆl n on B 0. (5) In the above system, ϕ 0 denotes the solution of (4) (6) with (h, l) = (h 0,l 0 ), and grad Ω stands for the tangential gradient, defined as grad Ω f := f ( f n)n. If the map L is not one-to-one, then we can pick a pair (ĥ, ˆl) (0, 0) such that L(ĥ, ˆl) = 0, i.e. ψ Γm = Const. Since ψ n = 0 and ψ = 0inΩ \ B Γ m 0, we infer that ψ Const in Ω \ B 0 by unique continuation. Therefore, (5) gives 0 = ĥ n ϕ 0 n + ( ϕ 0 l 0 ) grad Ω (ĥ n) + ˆl n on B 0. (6) Notice that ĥ 0, otherwise ˆl = 0 by (6). Let (r, θ) denote the polar coordinates with respect to the origin, and let e r := (cos θ,sin θ) and e θ := er = ( sin θ,cos θ). Since g H 1 ( Ω), it follows from a classical regularity result for elliptic problems that ϕ 0 H 5 (Ω), hence 0 = ϕ 0 = ϕ 0 r + 1 0 r r + 1 ϕ 0 r θ on B 0. (7) Using (6) (7), we arrive to ( (ĥ e r ) ) 0 = (ĥ e θ )(l 0 e θ ) (ĥ e r )(l 0 e r ) ˆl e r. θ θ (8) Integrating with respect to θ in (8), we infer that ˆl = λĥ for some constant λ, and that 0 θ = l 0 e θ + λ. It follows that ϕ 0 (x) = l 0 x + λθ + Const, and that g V, which contradicts the assumptions. Acknowledgements This work was achieved while the last author (LR) was visiting the Centro de Modelamiento Matemático at the Universidad de Chile (UMI CNRS 807). He thanks this institution for its hospitality, and the CNRS for its support. The first author thanks the Millennium ICDB for partial support through grant ICM P05-001-F. The second author was partially supported by CONICYT-FONDECYT grant 3070040. The authors also thank the Chilean and French Governments through Ecos-Conicyt Grant C07 E05. References [1] G. Alessandrini, A. Diaz Valenzuela, Unique determination of multiple cracks by two measurements, SIAM J. Control Optim. 34 (3) (1996) 913 91. [] C. Alvarez, C. Conca, L. Friz, O. Kavian, J.H. Ortega, Identification of immersed obstacles via boundary measurements, Inverse Problems 1 (5) (005) 1531 155.

[3] C. Conca, P. Cumsille, J. Ortega, L. Rosier, On the detection of a moving obstacle in an ideal fluid by a boundary measurement, Inverse Problems 4 (008) 045001 (18 p.). [4] A. Doubova, E. Fernández-Cara, J.H. Ortega, On the identification of a single body immersed in a Navier Stokes fluid, Eur. J. Appl. Math. 18 (1) (007) 57 80. [5] H. Heck, G. Uhlmann, J.-N. Wang, Reconstruction of obstacles immersed in an incompressible fluid, Inverse Probl. Imaging 1 (1) (007) 63 76. [6] P. Henrici, Applied and Computational Complex Analysis, Volume 1: Power Series Integration Conformal Mapping Location of Zeros, Pure and Applied Mathematics, John Wiley & Sons, New York, 1974. [7] A. Majda, Vorticity and the mathematical theory of incompressible fluid flow, Comm. Pure Appl. Math. 39 (Suppl.) (1986) S187 S0. [8] J.H. Ortega, L. Rosier, T. Takahashi, On the motion of a rigid body immersed in a bidimensional incompressible perfect fluid, Ann. Inst. H. Poincaré Anal. Non Linéaire 4 (1) (007) 139 165. [9] J. Simon, Differentiation with respect to the domain in boundary value problems, Numer. Funct. Anal. Optim. (7 8) (1980) 649 687.