ALIMENTATIONS A DECOUPAGE

Documents pareils
AP1.1 : Montages électroniques élémentaires. Électricité et électronique

ELEC2753 Electrotechnique examen du 11/06/2012

CHAPITRE IX : Les appareils de mesures électriques

Donner les limites de validité de la relation obtenue.

CARACTERISTIQUE D UNE DIODE ET POINT DE FONCTIONNEMENT

Circuits RL et RC. Chapitre Inductance

Université Mohammed Khidher Biskra A.U.: 2014/2015

Partie Agir : Défis du XXI ème siècle CHAP 20-ACT EXP Convertisseur Analogique Numérique (CAN)

Convertisseurs statiques d'énergie électrique

Chapitre 1 Régime transitoire dans les systèmes physiques

1. PRESENTATION DU PROJET

Études et Réalisation Génie Électrique

BACCALAURÉAT PROFESSIONNEL EPREUVE DE TRAVAUX PRATIQUES DE SCIENCES PHYSIQUES SUJET A.1

PRODUIRE DES SIGNAUX 1 : LES ONDES ELECTROMAGNETIQUES, SUPPORT DE CHOIX POUR TRANSMETTRE DES INFORMATIONS

Instruments de mesure

Elec II Le courant alternatif et la tension alternative

OBJECTIFS. I. A quoi sert un oscilloscope?

Systèmes de transmission

THESE DOCTEUR. Génie Electrique. Maxime MOREAU

Comparaison des performances d'éclairages

Charges électriques - Courant électrique

Multichronomètre SA10 Présentation générale

A. N(p) B + C p. + D p2

Chapitre 7. Circuits Magnétiques et Inductance. 7.1 Introduction Production d un champ magnétique

Oscilloscope actif de précision CONCEPT 4000M

TRAVAUX PRATIQUES SCIENTIFIQUES SUR SYSTÈME

Série 77 - Relais statiques modulaires 5A. Caractéristiques. Relais temporisés et relais de contrôle

Objet : Alimentation pour ordinateur portable et autre. Alimentation Schéma 1

LYCEE TECHNIQUE PIERRE EMILE MARTIN BOURGES ETUDE D UN TRAITEMENT DE SURFACE

Le transistor bipolaire. Page N 6 Tranlin

Union générale des étudiants de Tunisie Bureau de l institut Préparatoire Aux Etudes D'ingénieurs De Tunis. Modèle de compte-rendu de TP.

CORRECTION TP Multimètres - Mesures de résistances - I. Mesure directe de résistors avec ohmmètre - comparaison de deux instruments de mesure

Introduction : Les modes de fonctionnement du transistor bipolaire. Dans tous les cas, le transistor bipolaire est commandé par le courant I B.

La polarisation des transistors

SOMMAIRE. B5.1 Première approche

Mesure. Multimètre écologique J2. Réf : Français p 1. Version : 0110

La conversion de données : Convertisseur Analogique Numérique (CAN) Convertisseur Numérique Analogique (CNA)

CH IV) Courant alternatif Oscilloscope.

MEMOIRES MAGNETIQUES A DISQUES RIGIDES

Centrale de surveillance ALS 04

Le transistor bipolaire

Eléments constitutifs et synthèse des convertisseurs statiques. Convertisseur statique CVS. K à séquences convenables. Source d'entrée S1

CHAPITRE XIII : Les circuits à courant alternatif : déphasage, représentation de Fresnel, phaseurs et réactance.

Chapitre 2 Les ondes progressives périodiques

BTS Groupement A. Mathématiques Session Spécialités CIRA, IRIS, Systèmes électroniques, TPIL

Notice d'utilisation Afficheur multifonctions et système d'évaluation FX 360. Mode/Enter

ENREGISTREUR DE TEMPERATURE

M HAMED EL GADDAB & MONGI SLIM

BD 302 MINI. Etage de puissance pas à pas en mode bipolaire. Manuel 2059-A003 F

TP Modulation Démodulation BPSK

Contribution à la conception par la simulation en électronique de puissance : application à l onduleur basse tension

Equipement. électronique

SYSTEME DE PALPAGE A TRANSMISSION RADIO ETUDE DU RECEPTEUR (MI16) DOSSIER DE PRESENTATION. Contenu du dossier :

Références pour la commande

Chapitre 4 : Le transistor Bipolaire

I GENERALITES SUR LES MESURES

- MANIP 2 - APPLICATION À LA MESURE DE LA VITESSE DE LA LUMIÈRE

I- Définitions des signaux.

CONTRÔLE DE BALISES TYPE TB-3 MANUEL D'INSTRUCTIONS. ( Cod ) (M H) ( M / 99G ) (c) CIRCUTOR S.A.

Manipulation N 6 : La Transposition de fréquence : Mélangeur micro-ondes

Amplificateur à deux étages : gains, résistances "vues", droites de charges, distorsion harmonique

Jouve, 18, rue Saint-Denis, PARIS

Etudier l influence de différents paramètres sur un phénomène physique Communiquer et argumenter en utilisant un vocabulaire scientifique adapté

Les puissances La notion de puissance La puissance c est l énergie pendant une seconde CHAPITRE

NO-BREAK KS. Système UPS dynamique PRÉSENTATION

Relais d'arrêt d'urgence, protecteurs mobiles

Cours 9. Régimes du transistor MOS

ELECTRONIQUE ANALOGIQUE

TD1 Signaux, énergie et puissance, signaux aléatoires

2.1 Le point mémoire statique Le point mémoire statique est fondé sur le bistable, dessiné de manière différente en Figure 1.

CH 11: PUIssance et Énergie électrique

AMC 120 Amplificateur casque

TS 35 Numériser. Activité introductive - Exercice et démarche expérimentale en fin d activité Notions et contenus du programme de Terminale S

Infos. Indicateurs analogiques encastrables pour installation à courants forts. Série M W/P/ LSP BWQ BGQ TP TG WQ /0S WQ /2S FQ /2 W BI BIW DFQ

Guide d application technique Correction du Facteur de Puissance. Solution en Compensation Facteur de puissance

Centrale d alarme DA996

Système d automation TROVIS 6400 Régulateur compact TROVIS 6493

Notions d asservissements et de Régulations

L3-I.S.T. Electronique I303 Travaux pratiques

ACOUSTIQUE 3 : ACOUSTIQUE MUSICALE ET PHYSIQUE DES SONS

Numéro de publication: Al. Int. Cl.6: G01S 15/52

SIGNAUX NUMERIQUES ET MODULATIONS NUMERIQUES

CLIP. (Calling Line Identification Presentation) Appareil autonome affichant le numéro appelant

Mini_guide_Isis_v6.doc le 10/02/2005 Page 1/15

TP 7 : oscillateur de torsion

Exercice 1. Exercice n 1 : Déséquilibre mécanique

SYSTEME D ALARME. Etude d un objet technique : Centrale d alarme. LP Porte d Aquitaine - Thiviers Page 1/13

Didier Pietquin. Timbre et fréquence : fondamentale et harmoniques

Les transistors à effet de champ

Les Mesures Électriques

Système ASC unitaire triphasé. PowerScale kva Maximisez votre disponibilité avec PowerScale

L'intégration et le montage d'appareillages électriques doivent être réservés à des électriciens

Approche expérimentale du rayonnement électromagnétique émis par un téléphone portable

Automatique Linéaire 1 Travaux Dirigés 1A ISMIN

Version MOVITRANS 04/2004. Description / FR

PRODUCTION, CONVERSION OU DISTRIBUTION DE L ÉNERGIE ÉLECTRIQUE

Résonance Magnétique Nucléaire : RMN

DISPOSITIF DE CONTROLE MULTIFONCTIONNEL POUR APPAREILS A GAZ

SOLUTIONS DE CONTRÔLE INDUSTRIEL SYSTÈME AVANCÉ DE COMMANDE DU TRAÇAGE ÉLECTRIQUE NGC-30

Champ électromagnétique?

Transcription:

EPUNSA, Dép. Elec 2 ème Année T.P. d'electronique ALIMENTATIONS A DECOUPAGE I. Le mécanisme de régulation à découpage Le but de cette première partie de la manipulation est la compréhension du mécanisme de régulation par découpage. Dans la seconde partie on examinera un régulateur (ou alimentation) à découpage. On considère pour cela qu'un générateur HP délivre un signal sinusoïdal de 50 Hz comparable à ce qui serait délivré au secondaire d'un transformateur branché au 220 EDF. On cherche à transformer ce signal en un signal à peu prés continu et à réaliser un système de régulation permettant de maintenir la consigne malgré d'éventuelles fluctuations. I.1. Partie théorique Soit un signal sinusoïdal de fréquence 50 Hz ; (t)=o sin 2πFt Donner sa transformée de Fourier et sa valeur efficace. Ce signal est haché par un signal de type porte ce qui peut s'apparenter à un échantillonnage naturel. La fréquence du signal de découpage est de 1000 Hz. En première approximation, la valeur efficace du signal haché haché_eff est donnée par la racine carrée du rapport cyclique du signal de découpage multiplié par la valeur efficace du signal initial. Donner la relation permettant d obtenir haché_eff en fonction de τ largeur de la porte. I.2. Partie expérimentale Découpage Générer un signal sinusoïdal de fréquence 50 Hz sur le générateur HP 33120A. Redresser et filtrer ce signal à l'aide d'un montage équivalent à une détection d'enveloppe en modulation d'amplitude. On prendra r =100 Ω, R = 3,3 KΩ, C=100 µf, afin de fournir une tension pseudo continue r à la charge R qui est aussi la charge nominale. r R C r Tracer la courbe de r =f( eff ) pour quelques valeurs de 0 à la tension de sortie maximale du générateur en utilisant l oscilloscope et le contrôleur. Mettre en sortie du générateur la tension la plus élevée possible. Réaliser à l'aide d'un second générateur le signal carré de fréquence 1 KHz et de rapport cyclique 80 %. Réaliser le découpage du signal sinusoïdal e (t) par ce signal carré. Afficher un spectre correct à l'oscilloscope du signal ainsi obtenu. Donner les réglages de l oscilloscope. Commentaires et comparaisons par rapport à la partie théorique.

Régulation asservie manuellement On veut maintenir une tension régulée de 4,5 malgré d'éventuelles variations d amplitude de la tension e (t). Régler l amplitude de e (t) pour avoir les 4,5 régulés initiaux sur la charge nominale de 3,3 K Ω en l absence de découpage. Tracer le pourcentage de rapport cyclique du signal carré à appliquer en fonction d une augmentation de la tension e (t), pour maintenir 4,5. Aller jusqu à la limite de régulation. Donner e en tension pic pic. On veut maintenir une tension régulée de 4,5 malgré d'éventuelles variations de la charge. Rester à la limite de régulation précédente. Tracer le pourcentage de rapport cyclique du signal carré à appliquer, en fonction d une augmentation de la résistance de charge, pour maintenir 4,5. Partir de 10 KΩ et aller jusqu à la limite de régulation. II. Alimentations à découpage Dans les régulateurs à découpage, on s'efforce de faire travailler le transistor ballast exclusivement en régime bloqué saturé. Ainsi, sa dissipation est minimale, puisque proportionnelle à la tension de déchet CEsat, très inférieure à la valeur E des régulateurs linéaires. Ceci posé, le problème consiste à obtenir en sortie une tension stable en agissant sur le transistor par tout ou rien. Pour ce faire, différentes solutions sont possibles. On va s'intéresser à la solution retenue par Texas Instruments pour son circuit intégré TL497. On considère dans l'étude théorique le Ic cas du régulateur série abaisseur de tension + M L Is (Figure 1). On introduit deux éléments nouveaux I L R essentiels: une inductance L et une diode D. 1 Durant la phase de saturation du transistor, + Q l'inductance L est soumise à une tension E D C E CEsat. Si la résistance R L de la R 2 Id bobine est suffisamment faible, le courant i L augmente linéairement jusqu'à la valeur maximum I L. Pendant ce temps, l'inductance se charge en énergie magnétique. IC circuit de contrôle Le condensateur C permet de filtrer la tension de sortie, ce qui pose peu de problèmes Figure 1 puisque la fréquence de découpage peut être élevée (quelques dizaines à quelques centaines de KHz). En première approximation, on peut négliger la chute de tension dans la diode (de l'ordre de la tension de seuil soit 0.6 à 0.7 olts pour une diode au silicium). On découpe la tension E en bloquant saturant le transistor à une fréquence fixée par le circuit de contrôle. Soit la durée de la phase de découpage. Elle correspond à la charge progressive du condensateur C de sortie jusqu'à une tension de référence. Le découpage est suivi d'un temps mort pendant lequel C se décharge lentement puis le découpage recommence. La durée total d'un cycle (découpage + temps mort) est T. On a: = 1 T 0 E t dt= T E Pour réguler la tension de sortie, on peut agir sur le rapport cyclique /T avec T fixe. Ce type d'alimentation est bien adapté à la conversion des fortes puissances. Pour les faibles puissances, il est souvent plus facile d'agir sur T, en maintenant fixe (ce qui sera le cas dans le TP).

L'alimentation à découpage TL497 Il s'agit d'un circuit intégré monolithique, travaillant à durée de conduction T C fixe et à fréquence de découpage F variable. Ce circuit intègre divers éléments comme cela apparaît figure 2. Le TL497 est conçu pour accepter autour de lui différents composants annexes, en particulier la diode D et l'inductance L et donner naissance à trois types d'alimentations, selon l'agencement des composants externes. On donne ci dessous 3 types d'alimentation à découpage réalisables avec le TL497 (montages inverseur, abaisseur et élévateur de tension continue, figures 3, 4, 5). Les rendements indiqués sont obtenus pour des conditions optimales de fonctionnement. Dans tous les cas, le découpage est commandé par un oscillateur interne dont la fréquence est réglée par l'adjonction d'une capacité externe C 0. Figure 2 L'oscillateur est constitué par un générateur de courant qui charge et décharge linéairement la capacité extérieure C 0. La durée T C d'un cycle charge décharge de la capacité est fixée par sa propre valeur C 0. La valeur normale N de la tension de sortie est fixée par le pont de résistances R 1, R 2 et la référence interne 1.2. Si la tension à l'entrée est excessive, la capacité de filtrage C reçoit un excès de charge. Le potentiel tend à s'élever et ceci conduit le comparateur à stopper le découpage par introduction d'un temps mort à la suite d'une phase de découpage. Donc, l'oscillateur ne redémarre pas immédiatement après et l'on observe un cycle total (découpage temps mort) de durée T>. Les oscillogrammes de principe de alimentation à découpage TL497 sont indiqués sur la figure ci dessous ( : tension aux bornes de la capacité d accord de l oscillateur). T < T T C = T t t N N Le circuit TL497 possède un système de limitation de courant qui protège le transistor et la charge et évite de saturer l'inductance au moment du démarrage de l'alimentation. L'information est prise aux bornes d'une résistance 1 Ω placée en série avec le transistor de puissance. Lorsque la tension aux bornes de cette résistance dépasse la valeur habituelle d'une tension de jonction base émetteur, le limiteur injecte un courant de charge de sens convenable dans la capacité de commande C 0. Ceci a pour effet de réduire le temps de conduction du transistor et par suite l'énergie stockée dans l'inductance L.

PREPARATION THEORIQUE Charge et décharge d'un condensateur C 0 par une source de courant Donner l'expression du potentiel instantané v 0 t aux bornes de C 0 durant sa charge. Si 1 est la durée de la charge imposée par un système relaxateur (par exemple un transistor unijonction), donner l'expression de la tension de décharge v 0 t à travers R 0 à partir de la valeur maximale 0. Charge d'une inductance L par une tension en créneaux Donner l'expression i L t du courant qui circule dans l'inductance L quand on applique un échelon de tension d'amplitude E. r t est la résistance totale du circuit de charge de L. Déterminer r t (la résistance totale du circuit de charge de L). Donner une expression simplifiée du courant de charge i L t pour des valeurs telles que t τ c >>t (développement limité de τ e c ). Sous cette hypothèse, calculer la valeur maximale I L atteinte par le courant i L t en fonction de la durée 1 de la charge. Calculer de même la puissance moyenne reçue par l'inductance L. TRAAIL EXPERIMENTAL Montage inverseur de tension (Fig. 6) Rôle des résistances R T, R D R L : mesurer (visualiser) les courants dans les branches où elles se trouvent. Court circuiter ces résistances si elles ne sont pas utilisées pour la mesure. Prendre : E =5, C 0 =470 pf, L=100 H, R C =100. Ces conditions de mesure peuvent être éventuellement modifiées pour mieux mettre en évidence certains phénomènes. Utiliser une sonde capacitive (capacité de sonde ~ 11 pf). Relever les oscillogrammes de la tension de commande v 0 t aux bornes de la capacité C d'accord de l'oscillateur, du courant i 0 L t dans l'inductance L et de la tension en sortie immédiate du transistor v T t. Commenter les relevés d oscillogrammes Influence des variations de la source sur la tension de sortie Etudier les variations de la tension de sortie en fonction de variations de la tension E. ( C 0 =33 pf, L=100 H, R C =330, tension d'entrée : E < 7 olts). Influence de la résistance de charge sur la tension de sortie E =5 olts, C 0 =33 pf, L=100 H. La résistance de charge R C varie de 3 à 3300 Ω. Relever la tension de sortie. Faire de tableaux et commenter les résultats

EPUNSA, Dép. Elec 2ème année T.P. d'electronique ALIMENTATIONS A DECOUPAGE Appareils Nb Fonction Marque Type 1 Oscilloscope 2 voies H.P. HP 54600B 2 15 MHz Function Generator H.P. HP 33120A 1 DC Power Supply Tektronix PS 280 1 Multimeter H.P. HP 34401A 1 Support Leybold 1 Boîtier de résistances PSY R80 1 Diode 1N4004 1 Condensateur 100 µf Résistances (x1) 100 Ω, 3.3 ΚΩ