Université de Nantes Année scolaire Cours de RMN L3 ICA. Evelyne Baguet

Documents pareils
Résonance Magnétique Nucléaire : RMN

Compléments - Chapitre 5 Spectroscopie

Interaction milieux dilués rayonnement Travaux dirigés n 2. Résonance magnétique : approche classique

Partie Observer : Ondes et matière CHAP 04-ACT/DOC Analyse spectrale : Spectroscopies IR et RMN

ANALYSE SPECTRALE. monochromateur

Caractéristiques des ondes

Champ électromagnétique?

THEME 2. LE SPORT CHAP 1. MESURER LA MATIERE: LA MOLE

Chapitre 6. Réactions nucléaires. 6.1 Généralités Définitions Lois de conservation

Chapitre 11: Réactions nucléaires, radioactivité et fission

Fiche professeur. L analyse spectrale : spectroscopies IR et RMN

Chapitre 2 Les ondes progressives périodiques

Atelier : L énergie nucléaire en Astrophysique

Chapitre n 6 MASSE ET ÉNERGIE DES NOYAUX

a. Fusion et énergie de liaison des noyaux b. La barrière Coulombienne c. Effet tunnel & pic de Gamov

Lycée Galilée Gennevilliers. chap. 6. JALLU Laurent. I. Introduction... 2 La source d énergie nucléaire... 2

Transformations nucléaires

Transformations nucléaires

TD 9 Problème à deux corps

Compétence 3-1 S EXPRIMER A L ECRIT Fiche professeur

Comment déterminer la structure des molécules organiques?

A retenir : A Z m n. m noyau MASSE ET ÉNERGIE RÉACTIONS NUCLÉAIRES I) EQUIVALENCE MASSE-ÉNERGIE

Chapitre 5 : Noyaux, masse et énergie

Professeur Eva PEBAY-PEYROULA

Mesure de la surface spécifique

Chapitre 7. Circuits Magnétiques et Inductance. 7.1 Introduction Production d un champ magnétique

TD1 Signaux, énergie et puissance, signaux aléatoires

M1107 : Initiation à la mesure du signal. T_MesSig

Interactions des rayonnements avec la matière

INTRODUCTION A L ELECTRONIQUE NUMERIQUE ECHANTILLONNAGE ET QUANTIFICATION I. ARCHITECTURE DE L ELECRONIQUE NUMERIQUE

Module d Electricité. 2 ème partie : Electrostatique. Fabrice Sincère (version 3.0.1)

Structure quantique cohérente et incohérente de l eau liquide

Chapitre 10 : Radioactivité et réactions nucléaires (chapitre 11 du livre)

DM 10 : La fusion nucléaire, l énergie de l avenir? CORRECTION

Nombres, mesures et incertitudes en sciences physiques et chimiques. Groupe des Sciences physiques et chimiques de l IGEN

TP 03 B : Mesure d une vitesse par effet Doppler

Energie nucléaire. Quelques éléments de physique

... IRM bas champ : développement d un système pour son intégration en imagerie multimodale in vivo du petit animal

À propos d ITER. 1- Principe de la fusion thermonucléaire

Équivalence masse-énergie

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. - Section Orthoptiste / stage i-prépa intensif -

Chapitre I La fonction transmission

3 Charges électriques

Comment réaliser physiquement un ordinateur quantique. Yves LEROYER

5. Les conducteurs électriques

Chapitre 02. La lumière des étoiles. Exercices :

FUSION PAR CONFINEMENT MAGNÉTIQUE

INTRODUCTION À LA SPECTROSCOPIE

SUIVI CINETIQUE PAR SPECTROPHOTOMETRIE (CORRECTION)

10 leçon 2. Leçon n 2 : Contact entre deux solides. Frottement de glissement. Exemples. (PC ou 1 er CU)

8/10/10. Les réactions nucléaires

Chapitre 2 Caractéristiques des ondes

TS1 TS2 02/02/2010 Enseignement obligatoire. DST N 4 - Durée 3h30 - Calculatrice autorisée

DIFFRACTion des ondes

Multichronomètre SA10 Présentation générale

Semi-conducteurs. 1 Montage expérimental. Expérience n 29

Traitement du signal avec Scilab : la transformée de Fourier discrète

Premier principe de la thermodynamique - conservation de l énergie

EXERCICE 2 : SUIVI CINETIQUE D UNE TRANSFORMATION PAR SPECTROPHOTOMETRIE (6 points)

Erratum de MÉCANIQUE, 6ème édition. Introduction Page xxi (milieu de page) G = 6, m 3 kg 1 s 2

EXERCİCE N 1 : «Synthèse de l éthanamide» (7 pts)

Chapitre 4 - Spectroscopie rotationnelle

5 >L énergie nucléaire: fusion et fission

Stabilité et Réactivité Nucléaire

G.P. DNS02 Septembre Réfraction...1 I.Préliminaires...1 II.Première partie...1 III.Deuxième partie...3. Réfraction

Energie Nucléaire. Principes, Applications & Enjeux. 6 ème /2015

MODELES DE DUREE DE VIE

DIPLÔME INTERUNIVERSITAIRE D ECHOGRAPHIE. Examen du Tronc Commun sous forme de QCM. Janvier h à 16 h

TP : Suivi d'une réaction par spectrophotométrie

A. Énergie nucléaire 1. Fission nucléaire 2. Fusion nucléaire 3. La centrale nucléaire

La physique nucléaire et ses applications

Calculateur quantique: factorisation des entiers

C4: Réactions nucléaires, radioactivité et fission

EXERCICE II. SYNTHÈSE D UN ANESTHÉSIQUE : LA BENZOCAÏNE (9 points)

Rapport. Mesures de champ de très basses fréquences à proximité d antennes de stations de base GSM et UMTS

Précision d un résultat et calculs d incertitudes

DM n o 8 TS Physique 10 (satellites) + Chimie 12 (catalyse) Exercice 1 Lancement d un satellite météorologique

MESURE ET PRECISION. Il est clair que si le voltmètre mesure bien la tension U aux bornes de R, l ampèremètre, lui, mesure. R mes. mes. .

TSTI 2D CH X : Exemples de lois à densité 1

Oscillations libres des systèmes à deux degrés de liberté

BAC BLANC SCIENCES PHYSIQUES. Durée : 3 heures 30

Automatique Linéaire 1 Travaux Dirigés 1A ISMIN

TP Modulation Démodulation BPSK

Développements en imagerie RMN spirale et application

TRAVAUX PRATIQUES SCIENTIFIQUES SUR SYSTÈME

Dynamique des protéines, simulation moléculaire et physique statistique

Introduction. Mathématiques Quantiques Discrètes

METHODES D ANALYSE DES COMPOSES AMORPHES

CH IV) Courant alternatif Oscilloscope.

Chapitre II PHÉNOMÈNES RADIATIFS: PROPRIÉTÉS D EMISSION. f AB = mc 2 e 2. β 1 k(υ)dυ N

CHAPITRE V. Théorie de l échantillonnage et de la quantification

Chapitre 2 : Techniques de transmission

Communication parlée L2F01 TD 7 Phonétique acoustique (1) Jiayin GAO <jiayin.gao@univ-paris3.fr> 20 mars 2014

Physique Chimie. Utiliser les langages scientifiques à l écrit et à l oral pour interpréter les formules chimiques

ACIDES BASES. Chap.5 SPIESS

Didier Pietquin. Timbre et fréquence : fondamentale et harmoniques

Plan du chapitre «Milieux diélectriques»

BTS Groupement A. Mathématiques Session Spécialités CIRA, IRIS, Systèmes électroniques, TPIL

PHYSIQUE Discipline fondamentale

Transcription:

Université de Nantes Année scolaire 2009-2010 Cours de RMN L3 ICA Evelyne Baguet

Chapitre I Bibliographie I.1 En Français H. Günther La spectroscopie RMN (1994) D. Canet La RMN : Concept et méthodes (1991) I.2 Ouvrages de base A. E. Derome Modern NMR Techniques for Chemistry research (1987) M. L. Martin, G. J. Martin et J. J. Depuech Practical NMR spectroscopy (1980) I.3 Ouvrages plus avancés R. R. Ernst, G. Bodenhausen et A. Wokaun Principle of Nuclear Magnetic Resonance in one and two dimensions (1987) R. Freeman A handbook of nuclear magnetic resonance (1987) I.4 Ouvrages fondamentaux C. P. Slichter Principles of Magnetic resonance (1990) M. Goldman Quantum Description of High-Resolution NMR in liquids (1988) A. Abragam The principles of Nucle 1

Chapitre II Présentation de la RMN II.1 Instrumentation Ce qui est utilisé à l heure actuelle, les principaux composants : Un aimant de champ magnétique aussi intense, stable et homogène que possible. C est le plus souvent un cryoaimant, obtenu par circulation de courant dans des fils supraconducteurs, sans pertes énergétiques. Les fils employés ne sont supraconducteurs qu à très basse température. Ils sont refroidis par de l hélium liquide et de l azote liquide, placés dans deux dewares distincts. De taille suffisante pour pouvoir contenir l échantillon, qui peut aller du tube cylindrique de diamètre 5 mm au corps humain en entier. Une sonde Intermédiaire entre l aimant et l échantillon, elle permet notamment de détecter le signal émis par l échantillon. Un ordinateur pour lancer l expérience et analyser le signal. Le spectromètre de RMN comprend également de nombreux composants électroniques. II.2 II.2.1 Emploi dans des domaines très variés Spectroscopie de systèmes en phase liquide La spectrométrie de RMN est employée principalement pour : La caractérisation de produits chimiques, l étude de leurs propriétés dynamiques L analyse de la composition de liquides biologiques La détermination de la structure de macromolécules biologiques (protéines, acides nucléiques...) Etude in vivo du métabolisme de systèmes vivants : cellules en perfusion, étude localisée d un organisme entier, ex. foie. 2

II.2.2 Spectroscopie de systèmes en phase solide RMN basse résolution A cause des interactions entre noyaux en phase solide, les raies obtenues par spectroscopie de RMN sont particulièrement larges : En RMN liquide, la largeur des raies peut aller jusqu à quelques dizaines de hertz, alors qu en RMN solide, elle est plutôt de l ordre de quelques khz. Les spectres contiennent peu d information. Mais la spectroscopie basse résolution reste toujours employée, pour déterminer la fraction d eau dans les aliments, par exemple. RMN haute résolution Des techniques particulières permettent d annuler certaines des interactions entre noyaux. On obtient alors des spectres avec des raies quasiment aussi fines qu en RMN liquide. II.2.3 Imagerie de RMN Il existe des applications dans le domaine médical, pour l aide au pronostic chez l homme (IRM) en physico-chimie du solide, pour étudier la porosité de roches par exemple. II.3 Comparaison de la spectroscopie de RMN avec les autres spectroscopies II.3.1 Description simple d une technique spectroscopique Considérons un système à deux niveaux d énergie α et β. L écart d énergie entre ces deux niveaux est E β E α = hν En simplifiant à l extrême, on peut dire que la fréquence ν de l onde permettant de changer d état énergétique est la grandeur caractéristique de la spectroscopie. II.3.2 Fréquences mises en jeu Cf Document 1. II.3.3 Conséquences i. La spectroscopie de RMN est la technique la moins perturbante. ii. C est aussi une technique peu sensible. iii. Un système peut rester très longtemps hors équilibre. 3

Chapitre III Principe de la spectroscopie de RMN par transformée de Fourier III.1 III.1.1 Le spin - ses propriétés Le spin Un électron gravitant autour d un noyau peut être schématisé, de façon classique, comme une boucle de courant. En présence d un champ magnétique statique B 0, cette boucle se trouvera dans un état énergétique différent, selon le sens de déplacement de l électron. De la même manière, la mécanique quantique dit que l énergie de l électron isolé est quantifiée et peut prendre un nombre discret de valeurs. On dit que l électron a un spin. Le noyau d un atome peut lui aussi avoir un spin. Il est composé de particules élémentaires, protons et neutrons. Leur nombre va déterminer la valeur du spin nucléaire. Exemples : 1 H proton spin 1/2 2 H deutérium spin 1 12 C carbone 12 spin 0 13 C carbone 13 spin 1/2 14 N azote 14 spin 1 15 N azote 15 spin 1/2 16 O oxygène spin 0 17 O oxygène 17 spin 5/2 Attention!! Un nombre de spin est toujours soit entier, soit demi-entier. Rq : Il existe quelques règles pour avoir une idée de la valeur du spin d un noyau. A impair I demi-entier A et Z pair I = 0 A pair et Z impair I entier. Question : Quelle est la valeur du spin nucléaire de l oxygène 18? 4

III.1.2 Dégénérescence des niveaux d énergie Un noyau de spin I non nul se comporte comme un petit aimant pouvant prendre différentes orientations. En présence d un champ magnétique statique B 0 le long de l axe z, la valeur de son moment magnétique selon ce même axe peut prendre les valeurs suivantes : L énergie correspondante est : µ z = γ m I avec m I = I, I + 1... I. et peut donc prendre les valeurs suivantes : III.1.3 E = µ. B 0 E mi = γ m I B 0 avec m I = I, I + 1... I Apparition d une aimantation macroscopique Soit un ensemble de noyaux identiques de spin I dans un champ magnétique statique B 0. La répartition des noyaux entre les différents niveaux énergétiques n est pas uniforme mais obéit à la loi de Boltzman : ( ) EmI exp P(m I ) = j=i j= I kt ( Emj exp kt Il y a plus de noyaux dans l état de plus basse énergie. Il y a donc apparition d une aimantation macroscopique M, orientée parallèlement à l axe du champ B 0. Le module de l aimantation macroscopique vaut : M z = j=i j= I γ 2 NP(m j)m j où N est le nombre total de noyaux de spin I dans l échantillon. Exercice : Le proton a un spin 1/2. Déterminer le rapport des populations α (I = 1 ) et β (I = 1 ) ainsi que le rapport aimantation macroscopique/champ magnétique 2 2 (susceptibilité magnétique). On fera l approximation des hautes températures ( E kt ). Solution : N β = P( 1) ( 2 N α P( 1) = exp E ) ( = exp γ B ) 0 1 γ B 0 kt kt kt 2 ) Donc, N α N 2 N α + N β = N ( 1 + γ B ) 0 et N β N 2kT 2 5 ( 1 γ B ) 0 2kT

M z = µ α N α + µ β N β M z = 1 ( 4 γ N 1 + γ B 0 2kT 1 + γ B ) 0 2kT = N (γ )2 B 0 4kT A.N. : h = 6,626 10 34 J.s k = 1,38 J.K 1 γ = 2,69 10 8 N = 6, 022 10 23 Calculer N α /N β à un champ de 1 T et à 1 K. L approximation des hautes températures est-elle justifiée? On pourra aussi calculer la susceptibilité magnétique de l hydrogène (rapport aimantation/ champ magnétique) par mole d hydrogène. III.2 Le phénomène de résonance III.2.1 Représentation à l aide des niveaux d énergie Considérons des noyaux identiques, de spin 1/2. En présence d un champ magnétique statique B 0, ils peuvent occuper 2 états énergétiques. Appliquons un champ électromagnétique, de fréquence ν variable. Pour hν = E l onde électromagnétique de fréquence ν sera absorbée, alors que pour les autres fréquences, elle n interagira pas avec les noyaux. Si on trace le spectre d absorbtion en fonction de la fréquence, on va observer une raie d absorption, ou raie de résonance, qui va permettre de connaitre E, et de caractériser le noyau. Il est possible que tous les noyaux ne soient pas strictement identiques (par exemple, des protons dans des environnements chimiques différents). Alors, chacun des noyaux légèrement différent aura des niveaux énergétiques différents et aura une fréquence de résonance différente. On observera des raies de résonance différente pour chaque type de noyau. III.2.2 Description classique du phénomène de résonance Effet d un champ magnétique statique sur une aimantation macroscopique Positions d équilibre de l aimantation parallèle antiparallèle (une seule des positions étant stable). Lorsque l aimantation est placée hors équilibre, elle précesse autour du champ magnétique statique à la pulsation de Larmor : ω 0 = γ B 0 6

Effet conjoint d un champ magnétique tournant Soit un champ B 1 tournant à la pulsation ω 0 et d intensité très faible vis à vis de B 0. Il est possible de démontrer que dans le référentiel tournant à vitesse angulaire ω 0, M se comporte comme si le système était seulement soumis au champ B 1. Quelle que soit l intensité de B 1, M peut être placé hors résonance, et même inversé. Ceci peut être compris intuitivement en considérant que M et B 1 sont en phase. Une faible mise hors équilibre par le champ tournant ne va pas être replacée à l équilibre par le champ statique. III.2.3 Limite des deux descriptions du phénomène de résonance La description par niveaux d énergie ne permet pas de prévoir le comportement de l aimantation macroscopique en dehors de l axe z. La vision classique ne permet pas de décrire toutes les interactions entre spins. Il existe un formalisme plus général, c est la mécanique quantique appliquée à un système statistique de spins. L opérateur densité donne la population des différents niveaux d énergie. On peut également calculer l aimantation macroscopique selon tous les axes, et bien d autres choses encore.... Mais ce formalisme peut devenir très rapidement compliqué et éloigné du phénomène à étudier. C est pourquoi il est toujours utile de garder en tête les deux modèles simples présentés précédemment. III.2.4 Quelques ordres de grandeur de la RMN La fréquence de résonance dépend de : i) γ : le rapport gyromagnétique, dont la valeur est caractéristique de l isotope considéré ii) B 0 : Le champ magnétique appliqué et plus précisément du champ perçu au niveau du noyau, qui est légèrement différent de B 0 et dépend de l environnement local du noyau. ω, pour un noyau donné, est légèrement différent de γb 0, ν, pour un noyau donné, est légèrement différent de γb 0 /2π. A B 0 = 9,4 T : ν 0 ( 1 H) = 400 MHz ν 0 ( 13 C) = 101 MHz ν 0 ( 17 O) = 54 MHz ν 0 ( 31 P) = 162 MHz ν 0 ( 19 F) = 360 MHz ν 0 ( 2 H) = 62 MHz Les fréquences de résonance des différents noyaux sont très différentes. Par contre, pour un noyau donné, les fluctuations de ν à cause de l environnement chimique sont très faibles. 7

A l heure actuelle, il n est possible d étudier par RMN que le signal proche d une fréquence donnée. ON doit régler la sonde pour qu elle soit sensible au signal correspondant à cette fréquence. On ne peut détecter qu un type de noyau par expérience RMN. III.2.5 Le phénomène de relaxation L aimantation qui a été placée hors équilibre doit y retourner après un temps plus ou moins long. Deux phénomènes vont se produire : M x et M y 0 (l aimantation va tendre vers la position le long de l axe z et ne présentera plus de mouvement de précession) M z M 0 (répartition des niveaux d énergie selon la loi de Boltzman). En général, l aimantation retourne à l équilibre exponentiellement (phénomène observé expérimentalement). Mais comme la relaxation transversale (perpendiculaire au champ B 0 ) et la relaxation longitudinale (parallèle au champ B 0 ), correspondent à des phénomènes différents, elles vont se faire à des vitesses différentes. L énergie d une aimantation M placée dans un champ B 0 est : E = M. B 0 La relaxation transversale se fait sans variation énergétique du système. A l inverse, la relaxation longitudinale se fait avec variation énergétique du système. Elle ne peut se faire que s il interagit avec l extérieur, qu on peut représenter comme un réservoir (Figure III.1) En conséquence, la relaxation transversale se fera plus rapidement que la relaxation longitudinale. Des temps caractéristiques définissent les vitesses de retour à l équilibre des aimantations. T 1 : temps de relaxation longitudinale : dm z dt T 2 : temps de relaxation transversale : Dans le référentiel propre de l aimantation : = M 0 M z T 1 dm x,y dt = M x,y T 2 La relation entre ces temps de relaxation et la vitesse de retour à l équilibre est montrée Figure III.2. On a toujours la relation : T 2 T 1 8

Figure III.1 Les relaxations longitudinale et transversale Figure III.2 Retour à l équilibre des aimantations III.2.6 Obtention d un spectre RMN Deux approches sont possibles : Pour un noyau donné, il est possible de faire un balayage en fréquence su champ RF. A chaque fréquence, on détecte s il y a absorption ou non. On obtient ainsi un spectre. Problème : Le changement de fréquence de détection doit se faire lentement. Sinon, on a des artefacts. Cette méthode est très longue. Il est beaucoup plus avantageux d exciter simultanément tous les noyaux d un isotope 9

donné, à l aide d un champ B 1 plus intense mais appliqué pendant une durée très courte. Quand l aimantation retourne à l équilibre, chaque noyau se trouvant dans un environnement différent est caractérisé par une fréquence de précession particulière. On étudie simultanément l ensemble des noyaux pour un type d isotope donné. On peut obtenir un spectre donnant les différentes fréquences de résonance en effectuant la transformation de Fourier du signal temporel. III.3 Quelques propriétés de la Transformation de Fourier Soit un signal temporel f(t) Sa transformée de Fourier s écrit : F (ν) = f(t) exp( 2iπνt)dt (Pour information : exp(iθ) = cos(iθ) + i sin(iθ) possède des propriétés analogues à la fonction exponentielle réelle). Transformée de Fourier inverse de F ( ν) : f(t) = F (ν) exp(+2iπνt)dν III.3.1 Transformée de Fourier de fonctions particulières a Fonction de Dirac C est une fonction telle que : δ(t) = 0 pour t 0 δ(0) = + δ(t)dt = 1 On peut la schématiser de la façon suivante : Considérons une fonction rectangulaire centrée en 0, de largeur a, d intensité 1 a : R a (t) = 0 pour t < a 2 et t > a 2 R a (t) = 1 a pour a 2 t a 2 R a (t)dt = 1 10

Lorsque a 0, R a (t) δ(t). Remarque : On peut définir de la même façon δ(x x 0 ), fonction de Dirac centrée en x 0. T.F.(δ(t)) = δ(t) = 0 pour t 0 T.F.(δ(t)) = δ(t) exp( 2iπνt)dt δ(t) exp( 2iπν 0)dt = 1 C est une fonction constante, indépendante de la fréquence. Il est également intéressant de connaître la transformée de Fourier inverse de la fonction de Dirac : T.F. 1 (δ(ν ν 0 )) = = δ(ν ν 0 ) exp(2iπνt)dν δ(ν ν 0 ) exp(2iπν 0 t)dν = exp(2iπν 0 t) C est une fonction sinusoïdale, de fréquence ν 0. b Fonction sinusoïdale f(t) = exp(2iπν 0 t) F (ν) = T.F. {exp(2iπν 0 t)} = F (ν) = 0 si ν 0 ν = si ν 0 = ν exp(2iπν 0 t) exp( 2iπνt)dt = exp {2iπ(ν ν 0 )t} dt F (ν) = δ(ν ν 0 ). C est la fonction de Dirac centrée en ν 0. c Impulsion de durée finie On modélise une impulsion de durée finie par une fonction rectangulaire Π(t) telle que : Π(t) = 0 pour t < τ 2 et t > τ 2 Π(t) = 1 pour τ 2 t τ 2 11

T.F. (Π(t)) = = + τ 2 τ 2 1 2iπν = τ sin(πντ) (πντ) exp( 2iπνt)dt [ ( exp 2iπν τ ) ( exp 2iπν τ )] 2 2 = τ sin c (πντ) La transformée de Fourier est proportionnelle à la fonction sinus cardinal (Fig. III.3). Figure III.3 Transformée de Fourier d une impulsion de durée finie d Fonction exponentielle ( décroissante Soit f(t) = A exp t ) pour t 0. T.F.(f(t)) = = T 2 0 ( exp t ) exp( 2iπνt)dt T 2 AT 2 1 + 4π 2 ν 2 T 2 2 C est une fonction Lorentzienne. e Fonction sinusoïdale décroissante C est le produit d une fonction sinusoïdale par une fonction décroissante (par exemple, une fonction exponentielle décroissante). La transformée de Fourier d une fonction décroissante est un pic centré à fréquence nulle, d autant plus large que la fonction temporelle décroît rapidement. La transformée de Fourier d une fonction sinusoïdale à fréquence ν 0 décroissante va être un pic centré à fréquence ν 0. III.3.2 Quelques propriétés mathématiques de la transformation de Fourier a Quelques propriétés fondamentales 12

Figure III.4 Transformée de Fourier d une fonction exponentielle décroissante ( ) T.F. s i (t) = T.F. (s i (t)) i i Exemple : Soient les fonctions temporelles a(t), b(t) et c(t) : T.F. {a(t) + b(t) + c(t)} = {a(t) + b(t) + c(t)} exp( 2iπνt)dt = T.F. {a(t)} + T.F. {b(t)} + T.F. {c(t)} De même, soit α un nombre, réel ou imaginaire, on peut montrer que : T.F. {αf(t)} = αt.f. {f(t)} b Relation entre signal à l origine et aire d un pic Soit s(t) une fonction du temps quelconque et s(0), son intensité à l instant t = 0, soit F (ν) sa transformée de Fourier, que vaut l aire délimitée par la courbe F (ν)? Que vaut l aire délimitée par la courbe F (ν)? [ ] F (ν)dν = exp( 2iπνt)s(t)dt dν [ ] = exp( 2iπνt)s(t)dν dt [ ] = s(t) exp( 2iπνt)dν dt On reconnaît entre crochets la fonction de Dirac. L aire du pic est égale à s(0). F (ν)dν = 13 s(t)δ(t)dt = s(0)

III.4 Application : la spectroscopie de RMN par transformée de Fourier i. On applique un champ RF pendant une très courte durée, à l instant t = 0. En première approximation, cela correspond à une impulsion de type fonction de Dirac. Cela revient à appliquer toute une gamme de fréquences simultanément. Donc, tous les noyaux sont également excités. En fait, l impulsion a une durée finie, il y a donc une excitation fréquentielle de type sinus cardinal. On s arrange (en choisissant la durée d impulsion suffisamment courte) pour que tous les noyaux du même isotope soient tous excités de la même façon. ii. On détecte le signal temporel des aimantations retournant à l équilibre. n i ) noyaux de fréquence propre ν i émettent un signal (aimanttaion transversale) qui est détecté avant le retour à l éuilibre des aimanttaions. iii. On effectue la transformée de Fourier du signal globalement détecté. Le spectre ainsi obtenu est la somme de i raies, d aires proportionnelles à n i et centrées en ν i. 14

Chapitre IV Les paramètres de la RMN haute résolution IV.1 IV.1.1 Le déplacement chimique Définition La fréquence de résonance des différents types de noyaux est déterminée en comparaison d une fréquence fixée (fréquence de résonance d une espèce chimique donnée). Elle est appelée déplacement chimique (chemical shift). Il est possible d exprimer le déplacement chimique : en Hz en ppm : part par million. δ(ppm) = ν ν 0 10 6 ppm ν 0 ν 0 : fréquence de référence IV.1.2 Origine Les noyaux, à cause de leur environnement électronique, ne vont pas percevoir le champ B 0, mais un champ écranté B 0 (1 σ) σ : appelé constante d écran, dépend du type de noyau σ << 1 C est une grandeur sans unité, qui ne dépend pas de B 0. Rappel : Les électrons, en présence de B 0, ont tendance à courant, de sorte à créer un champ induit s opposant à B 0. 15 décrire des boucles de

IV.1.3 Intéret de l expression du déplacement chimique en ppm La fréquence de résonance du noyau i s écrit : ν i ν 0 estproportionnel à B 0 ν i = 2πγB 0 (1 σ i ) ν i ν 0 = 2πγB 0 (1 σ i ) 2πγB 0 (1 σ réf ) 2πγB 0 (σ réf σ i ) δ(ppm) = ν i ν 0 ν 0 σ réf σ i indépendant de B 0 Si on veut caractériser un produit sur différents spectromètres, le déplacement chimique exprimé en ppm sera toujours identique, mais pas celui exprimé en Hz. C est pourquoi on exprime généralement les déplacements chimiques en ppm. IV.1.4 Représentation du déplacement chimique sur un spectre Pour des raisons historiques, on représente toujours, de la gauche vers la droite, les déplacements chimiques décroissants. Les déplacements chimiques élevés correspondent à des champs élevés. σ est peu important. Cela correspond au déblindage. A l inverse les déplacements chimiques faibles correspondent à des champs faibles. σ est important. L effet d écran est important. Cela correspond au blindage. IV.2 L intensité du signal L aire de chaque pic de résonance est proportionnelle au nombre de noyaux qui résonnent à une fréquence donnée. Applications : Mesures absolues = détermination de la quantité de noyaux (en résonance) par rapport à une référence. Mesures de concentration Mesures relatives = Pour une molécule donnée, comparaison du nombre de noyaux résonnant pour chaque groupement chimique différentiable ( Détermination de la formule développée). Exemple : Mélange benzène et méthane. La mesure se fait à l aide d un intégrateur. En général, les pics sont de forme lorentzienne : hauteur : A T 2 largeur à mi-hauteur : 1 πt 2 IV.3 Les temps de relaxation La connaissance des temps de relaxation est importante pour choisir les paramètres expérimentaux lors de l acquisition de spectres RMN. Elle donne également une information sur la mobilité des molécules et leurs interactions éventuelles. 16

Mais l interprétation est rendue difficile par les nombreuses causes qui peuvent perturber la valeur expérimentale des temps de relaxation. La valeur des temps de relaxation est peu utile pour l interprétation des spectres. En théorie, la margeur à mi-hauteur des raies 1 est. En pratique, ce n est pas toujours le cas. A cause du champ B 0 pas complètement πt 2 homogène, les raies sont plus larges. IV.4 IV.5 Le couplage spin-spin Comparaison avec les paramètres de la RMN haute résolution 17