Cristaux moléculaires : liaisons intermoléculaires Polarisation, polarisabilité, pouvoir polarisant

Documents pareils
Partie Observer : Ondes et matière CHAP 04-ACT/DOC Analyse spectrale : Spectroscopies IR et RMN

CHAPITRE 2 : Structure électronique des molécules

ACIDES BASES. Chap.5 SPIESS

1.2 Coordinence. Notion de liaison de coordinence : Cas de NH 3. et NH 4+ , 3 liaisons covalentes + 1 liaison de coordinence.

THEME 2. LE SPORT CHAP 1. MESURER LA MATIERE: LA MOLE

EXERCICE II. SYNTHÈSE D UN ANESTHÉSIQUE : LA BENZOCAÏNE (9 points)

Plan du chapitre «Milieux diélectriques»

ANALYSE SPECTRALE. monochromateur

1 ère partie : tous CAP sauf hôtellerie et alimentation CHIMIE ETRE CAPABLE DE. PROGRAMME - Atomes : structure, étude de quelques exemples.

Molécules et Liaison chimique

BTS BAT 1 Notions élémentaires de chimie 1

Chapitre 02. La lumière des étoiles. Exercices :

Physique Chimie. Utiliser les langages scientifiques à l écrit et à l oral pour interpréter les formules chimiques

Contenu pédagogique des unités d enseignement Semestre 1(1 ère année) Domaine : Sciences et techniques et Sciences de la matière

Effets électroniques-acidité/basicité

Les liaisons intermoléculaires de l eau étudiées dans

TECHNIQUES: Principes de la chromatographie

Principe de fonctionnement des batteries au lithium

Résonance Magnétique Nucléaire : RMN

Enseignement secondaire

PHYSIQUE CHIMIE. Notions de première indispensables. Table des matières. pour la Terminale S 1 LE PHOTON 2 LES SOLUTIONS COLORÉES

Partie 1. Addition nucléophile suivie d élimination (A N + E) 1.1. Réactivité électrophile des acides carboxyliques et groupes dérivés

Chapitre 4 - Spectroscopie rotationnelle

Compétence 3-1 S EXPRIMER A L ECRIT Fiche professeur

Energie Nucléaire. Principes, Applications & Enjeux. 6 ème /2015

Des molécules hydrophobes dans l eau

Les isomères des molécules organiques

Fiche professeur. Rôle de la polarité du solvant : Dissolution de tâches sur un tissu

Rappels sur les couples oxydantsréducteurs

pka D UN INDICATEUR COLORE

EXERCİCE N 1 : «Synthèse de l éthanamide» (7 pts)

Sophie Guézo Alexandra Junay

Atelier : L énergie nucléaire en Astrophysique

Comment expliquer ce qu est la NANOTECHNOLOGIE

Correction ex feuille Etoiles-Spectres.

Niveau 2 nde THEME : L UNIVERS. Programme : BO spécial n 4 du 29/04/10 L UNIVERS

Marine PEUCHMAUR. Chapitre 4 : Isomérie. Chimie Chimie Organique

INTRODUCTION À LA SPECTROSCOPIE

Etudier le diagramme température-pression, en particulier le point triple de l azote.

4 ème PHYSIQUE-CHIMIE TRIMESTRE 1. Sylvie LAMY Agrégée de Mathématiques Diplômée de l École Polytechnique. PROGRAMME 2008 (v2.4)

Fiche professeur. L analyse spectrale : spectroscopies IR et RMN

Panorama de l astronomie. 7. Spectroscopie et applications astrophysiques

Application à l astrophysique ACTIVITE

Comprendre l Univers grâce aux messages de la lumière

BREVET DE TECHNICIEN SUPÉRIEUR QUALITÉ DANS LES INDUSTRIES ALIMENTAIRES ET LES BIO-INDUSTRIES

TS1 TS2 02/02/2010 Enseignement obligatoire. DST N 4 - Durée 3h30 - Calculatrice autorisée

Transformations nucléaires

La reconnaissance moléculaire: la base du design rationnel Modélisation moléculaire: Introduction Hiver 2006

LES SUBSTITUTIONS NUCLÉOPHILES EN SÉRIE ALIPHATIQUE S N 1 ET S N 2

3 Charges électriques

Comment déterminer la structure des molécules organiques?

CHAPITRE VI : HYBRIDATION GEOMETRIE DES MOLECULES

Chapitre 11: Réactions nucléaires, radioactivité et fission

CHIMIE ET ENVIRONNEMENT : LA «CHIMIE VERTE»

Chapitre 6 : les groupements d'étoiles et l'espace interstellaire

Production mondiale d énergie

K W = [H 3 O + ] [OH - ] = = K a K b à 25 C. [H 3 O + ] = [OH - ] = 10-7 M Solution neutre. [H 3 O + ] > [OH - ] Solution acide

Les solutions. Chapitre 2 - Modèle. 1 Définitions sur les solutions. 2 Concentration massique d une solution. 3 Dilution d une solution

La physique nucléaire et ses applications

Chapitre 10 : Radioactivité et réactions nucléaires (chapitre 11 du livre)

Transformations nucléaires

SUIVI CINETIQUE PAR SPECTROPHOTOMETRIE (CORRECTION)

Cours d électricité. Introduction. Mathieu Bardoux. 1 re année. IUT Saint-Omer / Dunkerque Département Génie Thermique et Énergie

Chapitre n 6 MASSE ET ÉNERGIE DES NOYAUX

Compléments - Chapitre 5 Spectroscopie

LABORATOIRES DE CHIMIE Techniques de dosage

Lycée Galilée Gennevilliers. chap. 6. JALLU Laurent. I. Introduction... 2 La source d énergie nucléaire... 2

Électricité. 1 Interaction électrique et modèle de l atome

Méthodes de Caractérisation des Matériaux. Cours, annales

À propos d ITER. 1- Principe de la fusion thermonucléaire

Eléments de caractérisation des diamants naturels et synthétiques colorés

INTRODUCTION À L'ENZYMOLOGIE

SP. 3. Concentration molaire exercices. Savoir son cours. Concentrations : Classement. Concentration encore. Dilution :

Comment réaliser physiquement un ordinateur quantique. Yves LEROYER

Utilisation historique de nanomatériaux en pneus et possibilités de nouveaux développements

5.5.5 Exemple d un essai immunologique

Perrothon Sandrine UV Visible. Spectrophotométrie d'absorption moléculaire Étude et dosage de la vitamine B 6

CLASSE DE PREMIÈRE Série : Science et technique de laboratoire Spécialité : Chimie de laboratoire et de procédés industriels

Pourquoi un fort intérêt de l industrie du pneumatique pour les nanomatériaux?

L ÉNERGIE C EST QUOI?

a. Fusion et énergie de liaison des noyaux b. La barrière Coulombienne c. Effet tunnel & pic de Gamov

C3. Produire de l électricité

Semi-conducteurs. 1 Montage expérimental. Expérience n 29

Formavie Différentes versions du format PDB Les champs dans les fichiers PDB Le champ «ATOM» Limites du format PDB...

Stabilité et Réactivité Nucléaire

Energie nucléaire. Quelques éléments de physique

Chapitre 11 Bilans thermiques

BALAIS Moteur (charbons)

PHYSIQUE Discipline fondamentale

Équivalence masse-énergie

Chap 1: Toujours plus vite... Introduction: Comment déterminer la vitesse d une voiture?

PHYSIQUE-CHIMIE. Partie I - Propriétés de l atome

Chapitre II PHÉNOMÈNES RADIATIFS: PROPRIÉTÉS D EMISSION. f AB = mc 2 e 2. β 1 k(υ)dυ N

La gravure. *lagravureparvoiehumide *lagravuresèche

BACCALAURÉAT GÉNÉRAL PHYSIQUE-CHIMIE

2 C est quoi la chimie?

DM 10 : La fusion nucléaire, l énergie de l avenir? CORRECTION

1 ère Partie : Concepts de Base

Chapitre 5 : Noyaux, masse et énergie

SPECTROSCOPIE D ABSORPTION DANS L UV- VISIBLE

Transcription:

Cristaux moléculaires : liaisons intermoléculaires 1.1. Polarisation, polarisabilité, pouvoir polarisant Liaison polarisée C est une liaison covalente (mise en commun d un ou plusieurs doublets d électrons) entre deux atomes d électronégativités différentes. Sur l exemple d une liaison simple, le nuage électronique est déplacé vers l atome le plus électronégatif, ce qui crée un décalage entre le barycentre des charges positives contenues dans les loyaux et le barycentre des charges négatives du nuage électronique. Moment dipolaire permanent (conséquence de l existence de liaisons polarisées) Voir définition en physique : vecteur qui a comme direction l axe joignant les barycentres, comme sens du vers le +, comme norme le produit q.d, q valeur absolue commune des charges, d distance qui les sépare. En chimie, on choisit d implanter les charges sur les noyaux et de chiffrer q en % de charge élémentaire. C est le % de liaison ionique. Si la molécule est polyatomique et contient plusieurs liaisons polarisées, le moment dipolaire total est la somme vectorielle des moments dipolaires individuels des liaisons. Molécule polarisable Qu elle possède ou non un moment dipolaire permanent, la molécule peut voir son nuage électronique se déformer sous l effet d un champ électrique extérieur, créé par un ion ou par le dipôle permanent d une autre molécule. Elle acquiert alors un moment dipolaire induit, de même direction et de même sens que le champ appliqué, dont la norme est proportionnelle au champ extérieur et à une grandeur caractéristique de la molécule : la polarisabilité, notée α, exprimée avec une unité de volume (vous pouvez vérifier que le quotient d un moment dipolaire par un champ électrique est homogène à un volume). Cette grandeur traduit la capacité du nuage à se déformer, elle est d autant plus grande que le nuage électronique est étendu, puisque alors les électrons extérieurs sont loin du noyau, donc il est facile de les déplacer «un petit peu». On retient que, pour des structures de même type, les grosses molécules sont plus polarisables que les petites. Et on vérifie dans le tableau ci-dessous, à la colonne α ( en Angström, pas envie de le retaper en nm 3 )

Pouvoir polarisant des cations Ça c est pour les cristaux ioniques, ça consiste à comparer les champs à la périphérie des cations : en q/r², donc d autant plus fort que le cation est petit et/ou chargé. 1.2. Liaison de Van der Waals 1.2.1. Interactions attractives à courte distance : Keesom, Debye, London. Keesom : entre dipôles permanents qui s alignent et s attirent. Il faut donc fournir de l énergie pour les séparer, cette énergie est donnée dans la 4 ème colonne du tableau précédent. Elle est d autant plus grande que les moments dipolaires sont grands, mais elle est en 1/T, souvent négligeable à T ambiante. Dans le tableau, r désigne la distance entre les deux particules qui interagissent. Debye : entre un dipôle permanent et un dipôle induit. London : entre dipôles instantanés (oscillations des nuages, qui interagissent entre eux, donc oscillent en phase) Ces deux sortes ne varient pas avec la température, et sont souvent prédominantes à température ambiante. Cf. 1 er tableau. Évidemment, pour les molécules qui n ont pas de moment dipolaire permanent, l interaction de London est seule et représente 100% du total. Donc pour comparer la solidité des associations, regarder d abord la polarisabilité. 1.2.2. Interaction répulsive : à très courte distance Si seules les interactions de Keesom, Debye et London se manifestaient (attractives), les particules s écraseraient les une contre les autres. Mais quand les nuages commencent à se toucher, il apparaît une répulsion à très courte distance. L interaction de Van der Waals est la somme de toutes ces interactions attractives et répulsive.

notée r dans les tableaux précédents 1.2.3. Bilan global : la liaison de Van der Waals, énergie et longueur. Tout ça fait que globalement les particules se stabilisent à une distance d équilibre, notée d 0 ci-dessus, que l on déclare égale à la somme des rayons de Van der Waals. (Comme on a défini les rayons covalents, métalliques, ioniques). L énergie nécessaire pour séparer deux particules (-Ep 0 ) est de l ordre de quelques kj/mol, c est très faible, c est l énergie de la liaison de Van der Waals. 1.3. Liaison hydrogène 1.3.1. Interaction attractive coulombienne Même principe que Van der Waals, mais plus forte, et indépendante de la température. C est une interaction entre charges et non entre dipôles. 1.3.2. Interaction répulsive à très courte distance Exactement la même que dans la description de van des Waals 1.3.3. Bilan global : la liaison hydrogène, énergie et longueur La superposition des deux interactions, attractive et répulsive, conduit à une distance d équilibre, plus courte que Van der Waals et à une énergie de liaison, plus forte que Van der Waals (quelques dizaines de kj/mol). Noter que la liaison hydrogène peut s établir entre deux sites d une même molécule (ex entre le OH et le O=C de la forme énolique de l acétoacétate d éthyle représenté ci-contre) O H O

1.4. Liaisons intermoléculaires et cohésion des cristaux 1.4.1. Mesure de la cohésion Par l enthalpie de sublimation, qui se détermine par calorimétrie ou par Vant Hoff ou Clapeyron simplifiée dans le cas d une transition avec un état gazeux. On peut aussi avoir une idée du classement en comparant les températures de changement d état. 1.4.2. Phénomènes en compétition Si la liaison H est présente, elle «écrase» la liaison de Van der Waals. Or la liaison H n existe que si on a un atome très électronégatif (en haut de la classification périodique) lié à un atome d hydrogène. Sinon, la liaison de Van der Waals, qui existe toujours, est d autant plus intense que l atome mis en jeu est bas dans la classification périodique. D où les courbes suivantes, qui montrent les «anomalies» observées dans la tendance générale de l évolution des températures de changement d état (ébullition, ici, mais on a la même évolution pour la fusion). L élément de la première ligne donne une substance particulièrement associée (liaison H), puis à partir de la deuxième ligne, la croissance est due à l évolution des liaisons de Van der Waals. Ce phénomène ne se produit pas dans la colonne du carbone, qui n est pas assez électronégatif pour polariser sa liaison avec H. 1.5. Autres effets des liaisons intermoléculaires. 1.5.1. Miscibilité et solubilité : classification des solvants. D une façon générale, les substances associées par le même type de liaisons sont miscibles : les solvants associés par liaisons H, comme l eau, dissolvent les substances présentant beaucoup de groupes OH, comme les sucres. Les solvants ne présentant pas de liaisons H, comme les hydrocarbures ou les hydrocarbures, dissolvent les substances associées par Van der Waals comme le diiode. Évidemment, si le soluté présente une partie de type hydrocarbure et une partie de type OH, il y a compétition et il faut regarder l importance relative des deux parties. On peut avoir une miscibilité partielle (un peu de l un dans l autre ou un peu de l autre dans l un) avec le solvant. C est le cas du phénol avec l eau. 1.5.2. Influence sur les propriétés chimiques La liaison H est stabilisante, elle stabilise donc les espèces qui la renferment. Par exemple, la forme énol de certains corps (cf. ex ci-dessus de liaison H intramoléculaire) ou bien certaines

conformations (cf. conformation du diacide à la fin de la synthèse malonique, au moment de la décarboxylation) On interprète aussi de cette façon les différences entre les pka de diacides de structure voisine, avec dans l un une monobase stabilisée par liaison H intramoléculaire et dans l autre pas. Ex : les pka de l acide maléique (isomère Z de l acide butènedioïque) 1,8 et 6,1 et de l acide fumarique (isomère E) 3,0 et 4,4. On voit qu il est plus facile d arracher le premier H +, et plus difficile d arracher le 2 ème si la première base est stabilisée par liaison H, comme c est la cas dans l acide maléique. Dans la 1 ère base de l acide fumarique, les sites concernés sont trop loin pour que la liaison H s établisse. 1.5.3. Influence sur les propriétés spectroscopiques En IR, les alcools présentent une bande large autour de 3500 cm -1 quand ils sont purs ou en solution concentrée (O-H lié) et une bande fine à 3600 cm -1 en solution diluée dans un solvant non protogène(o-h libre, plus forte que la liaison O-H liée, affaiblie par l existence simultanée de la liaison hydrogène). 1.5.4. Autres associations Hydrates et chlatrates : solides moléculaires contenant plusieurs espèces, liées les unes aux autres par des liaisons de Van der Waals ou hydrogène. Ex : hydrates de méthane (existent naturellement au fond des mers, réserve possible d hydrocarbures exploitables, ça brûle comme on voit sur la photo) ou glaces mixtes eauammoniac, détectées dans l espace. Définitions précises : Clathrate, n.m. Définition : Composé d inclusion dans lequel la molécule incluse est enfermée dans une cage formée par la molécule hôte ou par un réseau de molécules hôtes. Note : Du grec klathron, fermeture. Voir aussi : composé d inclusion. Composé d inclusion Définition : Composé dont l un des composants forme une cavité de taille limitée ou un réseau cristallin dans lesquels sont logées la ou les entités moléculaires d une seconde espèce chimique.

Note : L attraction entre l hôte et la ou les molécules incluses étant due à des forces de Van der Waals, il n y a pas de liaisons chimiques fortes entre ces espèces. Ci-contre : structure et combustion de l hydrate de méthane.