Non-réponse et données manquantes. Sylvie Rousseau & Gilbert Saporta décembre 2011
|
|
|
- Maxime Guérard
- il y a 10 ans
- Total affichages :
Transcription
1 Non-réponse et données manquantes Sylvie Rousseau & Gilbert Saporta décembre
2 EXEMPLES DE TAUX DE RÉPONSE À CERTAINES ENQUÊTES Pour les enquêtes auprès des entreprises, le taux de non-réponse est de l ordre de 10 % à 15 % pour les enquêtes obligatoires 2
3 DEUX GRANDS TYPES DE NON-RÉPONSE La non-réponse totale : L individu n a pas du tout répondu à l enquête On peut tout de même avoir de l information sur le non-répondant les éléments de la base de sondage des informations collectées de visu sur le terrain Exemple : le type de logement (individuel ou collectif) La non-réponse partielle : l individu refuse de répondre à certaines questions 3
4 LES CAUSES DE LA NON-RÉPONSE TOTALE Impossibilité de contacter l individu Exemple : déménagement, absence, digicode, Refus de l individu de répondre à l ensemble de l enquête Incapacité de l individu de répondre Exemple : problème de langue Perte du questionnaire ou impossibilité de l exploiter Exemple : difficulté à lire une écriture (localités au recensement), incohérences des réponses Abandon de l individu au tout début du questionnaire Exemple : temps d interview jugé trop long, questions jugées indiscrètes 4
5 LES CAUSES DE LA NON-RÉPONSE PARTIELLE Refus de répondre à certaines questions jugées indiscrètes Exemple : enquête sur les revenus, sur les comportements de violence, sur la consommation de produits illicites, sur les marges commerciales, Non-compréhension de la question posée par l enquêté Non-compréhension de la réponse par l enquêteur Abandon de l individu en cours d enquête Par lassitude par exemple (enquêtes à vague, panels, carnets de dépense) 5
6 LES CONSÉQUENCES DE LA NON-RÉPONSE Introduction d un biais Exemples Enquête sur les compétences à l écrit et à l oral où les personnes peu diplômées répondent moins bien Enquête sur les revenus avec des ménages d une personne plus difficilement joignables Perte de précision Diminution de la taille de l échantillon 6
7 Biais de non -réponse Deux strates Y 0 P 0 Non - répondant P 1 Répondant Y 1 N N N N N Y = Y + Y = Y + Y Y N N N N En l'absence d'hypothèse sur le mécanisme des données manquantes, seul Y Biais : peut être estimé N Y Y = Y Y N ( )
8 2 PRINCIPES VIS-À-VIS DE LA NON-RÉPONSE Minimiser la non-réponse, l idéal étant de ne pas en avoir Faciliter la collecte Soigner le questionnaire Anticiper avec un plan de sondage adapté Après collecte, étudier le comportement de réponse observé 8
9 COMMENT LIMITER LA NON-RÉPONSE LORS DE LA COLLECTE? Prévenir l enquêté Exemple : envoyer une lettre-avis Établir un rapport de confiance avec l enquêté Informer sur l aspect confidentiel Le secret statistique est défini dans la loi n du 7 juin 1951 modifiée sur l'obligation, la coordination et le secret en matière de statistiques Offrir des conditions agréables pour le passage du questionnaire Donner des incitatifs, voire rémunérer l enquêté 9
10 COMMENT LIMITER LA NON-RÉPONSE LORS DE LA CONCEPTION DU QUESTIONNAIRE? Poser des questions courtes Éviter les questions trop complexes, les tournures négatives Eviter les abréviations Disposer d une bonne traduction dans le cas où le questionnaire doit être passé en plusieurs langues Exemple : le recensement de la population Éviter les questionnaires trop longs (pas plus d une heure) 10
11 Questions sensibles ou indiscrètes: la méthode des questions aléatoires (Warmer, 1965) Première technique: On tire au sort dans une urne avec θ boules blanches et 1- θ boules noires la question Si blanc: question A: «Avez-vous fraudé le fisc?» Si noire: question : «Je n ai pas fraudé» On veut estimer P A. A On recueille Π = Proba de Oui = % de «Oui» A ( 1 )( 1 P ) θ P + θ A Π ( 1 θ) P A = 2θ 1 Inconvénient: aussi indiscrète que A! A ( ) 1 ( ) PA 1 PA 1 θ 1 θ V PA = V Π + 2θ 1 n n 2θ 1 ( ) ( ) ( ) ( )
12 Deuxième technique: Si blanche, question A sensible Si noire, question B banale Π= P θ+ P ( 1 θ) Π ( θ) A B 1 PB P B peut être connu à l avance ou estimé par une autre enquête. Exemple: A: combien de fois avez-vous avorté? B: nombre idéal d enfants? P ( ) Π 1 Π PB 1 PB 1 θ V PA nθ nθ A = ( ) ( )( ) 2 θ 12
13 Exemple: Brown 320 officiers Consommation de drogue: 2 enquêtes, une anonyme, l autre à question aléatoire Drogue Q. Anonyme Q. aléatoire Marijuana 5% (1.2) 9% (4.1) Hallucinogène 1.6% (0.7) 11.6% (4.1) Amphétamine 1.9% (0.7) 8% (3.3) Barbiturique 0.6% (0.7) 7.9% (3.9) Narcotique 0.3% (0.3) 4% (3.9) 13
14 LE TRAITEMENT DE LA NON-RÉPONSE Non-réponse totale : par repondération On augmente le poids des répondants de sorte à faire les parler aussi pour les non-répondants Non-réponse partielle : par imputation On renseigne la valeur manquante par une donnée plausible 14
15 LES MÉTHODES DE REPONDÉRATION LE PRINCIPE Augmenter le poids des individus répondants La non-réponse peut être modélisée comme la deuxième phase d'un sondage : 1ère phase : le choix des enquêtés 2ème phase : le choix des non-répondants U R S Il faut donc connaître ou estimer les probabilités de réponse des individus 15
16 LES MÉTHODES DE REPONDÉRATION Pour estimer un total : LA TECHNIQUE En l absence de non-réponse, on utilise l estimateur d'horvitz-thompson : Yˆ = En présence de non-réponse, un estimateur sans biais est donné par : Y Yˆ r où p k est la probabilité de réponse de l'individu k Le poids des individus répondants est augmenté Mais les p k sont inconnues il faut les estimer par un «modèle de réponse» Y = = Y k k U k R π k k p k k S Y k π k 16
17 MÉCANISME DE RÉPONSE GLOBALEMENT UNIFORME Chaque individu a la même probabilité de répondre Estimée par le taux de réponse empirique : r pˆ = k n avec r = nombre de répondants, n = nombre d enquêtés Dans le cas d un sondage aléatoire simple, cela revient à estimer la moyenne d'une variable par la moyenne calculée sur les répondants Epilogue : Ne rien faire revient à postuler un mécanisme de réponse globalement uniforme Cela sous-entend que les non-répondants ont le même comportement que les répondants au regard de la variable d intérêt Cette hypothèse est très forte Exemple d une enquête sur la santé, l état de santé influe sur le comportement de réponse 17
18 MÉCANISME DE RÉPONSE HOMOGÈNE À L'INTÉRIEUR DE SOUS-POPULATIONS On suppose un taux de réponse constant au sein de souspopulations supposées homogènes en termes de comportement de non-réponse : U = U... U... U p k = 1 p h Cela implique de disposer d informations sur les non-répondants Pour constituer ces sous-populations, on peut utiliser : des méthodes d analyse des données des méthodes économétriques. La probabilité de réponse au sein de la sous-population h est estimée par : rh pˆ h= k U h n h h k U h H avec r h = nombre de répondants dans U h et n h = nombre d'unités de l'échantillon dans U h 18
19 CALAGE ET NON-RÉPONSE Si on a réalisé une correction de la non-réponse totale (par repondération des répondants), ce sont ces nouveaux poids qu'il faut utiliser en entrée de Calmar Si on procède directement au calage sur l échantillon des répondants sans traitement préalable de la non-réponse totale, on montre que ceci permet à la fois de corriger la non-réponse totale et d'améliorer la précision des estimations, sous la condition que les variables explicatives de la non-réponse soient incluses dans les variables de calage 19
20 Données manquantes Les mécanismes (Rubin,1976) MCAR (Missing Completely at Random) P(Y manquant) indépendant de Y et du reste Hypothèse forte mais réaliste si volontaire MAR (Missing at random) P(Y manquant/y,x)=p(ymanquant/x) Non testable MCAR et MAR: données manquantes ignorables Cas non ignorable: nécessité de modéliser le mécanisme pour obtenir des estimations sans biais Ignorer ou estimer les données manquantes? 20
21 Supprimer les DM? «listwise» Perte d information Marche pour MCAR et en régression pour les X si MAR selon Y «Pairwise» Utilisable pour modéle linéaire, ACP Matrices non positives, statistiques de tests biaisées 21
22 Estimer les DM: l imputation Compléter la non-réponse par une valeur plausible. Méthodes implicites modèles Attention, en traitant les données imputées comme de vraies réponses : distributions faussées estimateurs de variance incorrects 22
23 PRINCIPALES MÉTHODES D'IMPUTATION Méthode déductive : On déduit la donnée manquante à partir des données renseignées o Exemple : le revenu total obtenu par sommation de ses composantes Cold-deck : On remplace la donnée manquante par une donnée obtenue en dehors de l'enquête o Exemple : le nombre de salariés lu dans le répertoire Sirène 23
24 PRINCIPALES MÉTHODES D'IMPUTATION Prédiction par la moyenne : On impute la moyenne observée sur les répondants La distribution des valeurs est fortement modifiée o Exemple : imputation du revenu moyen Prédiction par la moyenne par classe : On partitionne l'échantillon en classes (sous-populations) On impute la moyenne observée sur les répondants de la même classe o Exemple : imputation du revenu moyen par catégorie socioprofessionnelle 24
25 PRINCIPALES MÉTHODES D'IMPUTATION Hot-deck ou Hot-deck par classe : On impute la valeur observée pour un répondant choisi au hasard, par un sondage aléatoire simple avec ou sans remise o Exemple : imputation du chiffres d affaires d entreprises de même taille et de même activité Hot-deck séquentiel : On impute la valeur du répondant précédent o Importance du choix de la variable de tri Hot-deck métrique : On impute la valeur observée de l'individu le plus proche au sens d'une distance donnée, mesurée sur les caractéristiques disponibles de tous les individus o Exemple : imputation des dépenses pour un produit donné par un ménage de même catégorie socio-professionnelle, de la même commune 25
26 PRINCIPALES MÉTHODES D'IMPUTATION Prédiction par le ratio : On impute Y k = X Prédiction par un modèle de régression : On considère le modèle Y = X ' β + ε On estimé β sur les répondants k ˆ Y ˆ X r r 26
27 Estimation basée sur des modèles Une donnée manquante sur une variable Y est modélisée à partir des variables X selon un modèle de régression régression simple en prenant la variable la plus corrélée. régression multiple modèle linéaire général si X est nominale et la variable à expliquer est quantitative. Analyse discriminante, ou régression logistique si Y nominal Remarque: cas particulier de l estimation par la moyenne 27
28 Algorithme EM (espérance, maximisation) étape E: espérance conditionnelle de chaque donnée manquante sachant les données observées, d où estimation des paramètres. étape M calcule les estimateurs du maximum de vraisemblance des paramètres, avec les lois conditionnelles des données manquantes. convergence vers la valeur la plus probable de chaque donnée manquante pour l'estimation obtenue des paramètres 28
29 Maximisation de la cohérence interne, ou de l'homogénéité Présentation hollandaise de l ACM de G=(G1 G2 Gm) comme la minimisation d une fonction de perte: m 1 ' ' ' σ (X,Y) = (X -G jy j) (X -G jy j) m j= 1 m j= 1 1 X = G Y m j j 29
30 Les données manquantes sont complétées pour avoir σ minimal: ACM avec valeurs propres maximales. MCA with missing data Unit Income Age Car 1 x young am 2 medium medium am 3 y old jap 4 low young jap 5 medium young am 6 high old am 7 low young jap 8 high medium am 9 high z am 10 low young am 30
31 Results of the 27 MCA x y z λ 1 x y z λ 1 x y z λ 1 l l j m l y h l y l l m m l m h l m l l o m l o h l o l m j m m y h m y l m m m m m h m m l m o m m o h m o l h j m h y h h y l h m m h m h h m l h o * m h o h h o
32 Solution unidimensionnelle peu réaliste: max (l 1 +l 2 + +l k ) Recherche exhaustive impossible. Algorithmes itératifs. 32
33 deux inconvénients majeurs pour les imputations par modèle: risque d incohérence: si plusieurs données manquantes sont estimées une par une et non conjointement, sans prendre en compte les corrélations variabilité sous-estimée: deux unités ayant les mêmes valeurs de X auront la même estimation pour la valeur manquante de Y 33
34 IMPUTATION MULTIPLE (Rubin) imputer chaque donnée par m>2 valeurs obtenues par tirage dans un ou plusieurs modèles d'estimation. Puis analyse des données sur chacun des m jeux de données complétés simulation de la distribution a posteriori des données manquantes, variances correctes. Mais: complexité des calculs, temps de calcul et volume considérable. 34
35 Fusions de fichiers Combiner des données provenant de sources différentes: enquêtes, sources administratives, fichiers clients, données socio-économiques agrégées, etc. Chaque base peut être constituée d'unités statistiques différentes ou d'agrégation de ces unités à différents niveaux. 35
36 Fusion de fichiers. Cas élémentaire: deux fichiers: F1 p+q variables mesurées sur n 0 unités, F2 sous-ensemble de p variables pour n 1 unités. Souvent n 0 est faible par rapport à n 1. X 0 Y 0 X 1? 36
37 Un cas plus complexe X 0 Y 0 X 1 Z 1 37
38 Modèles et méthodes pour la fusion de données Appliquer industriellement une technique de traitement de données manquantes. Deux approches: Méthodes d imputation: compléter la non-réponse par une valeur plausible. Repondération :affecter aux répondants des pondérations pour compenser les non-réponses Conditions à vérifier préalablement: la taille de la population du fichier donneur est suffisamment importante par rapport au fichier receveur les variables communes et les variables spécifiques possèdent des liaisons relativement fortes entre elles. 38
39 Les méthodes implicites: fusion par appariements intra-cellulaires, imputation par Hot-Deck, méthode des plus proches voisins etc. donner simultanément aux variables du fichier receveur toute l'information et les renseignements détenus par les variables du fichier donneur. 39
40 FICHIER DONNEUR I X 0 Y 0 Plus proche voisin Imputation X 1? J FICHIER RECEVEUR 40
41 La fusion sur référentiel factoriel Fréquemment utilisée en France. Son principe (Santini 1984) repose sur : - les variables critiques : servent à déterminer pour l'individu du fichier receveur ses donneurs éligibles. - les variables de rapprochement : une partie des variables communes, par un calcul de distance, permettant de choisir pour chaque receveur le donneur éligible le plus proche 41
42 Réferentiel factoriel: ACM sur l ensemble des variables critiques ou communes Détermination d un voisinage du receveur Choix final parmi les donneurs éligibles selon les variables de rapprochement (sexe, age, ) Pénalisation pour éviter de prendre trop souvent les mêmes donneurs (voir fusion par mariage) 42
43 Fusion par mariages éviter qu'un même donneur transmette son information à plusieurs receveurs (mariages multiples) si un donneur est déjà marié à n receveurs, d est pénalisée par : d ' = 1 (1 d) n 43
44 G. Santini a imaginé 6 types différents de relations de voisinage par mariage : A receveur, B donneur. le mariage par coup de foudre (voisins réciproques) : si A est le plus proche voisin de B et si B est le plus proche voisin de A et n'a jamais été marié, alors A et B sont immédiatement mariés. le mariage avec l'ami d'enfance : si B est le plus proche voisin de A, mais B est déjà marié à A', alors A sera marié à B' qui est le plus proche voisin de A après B. le mariage par adultère : variante du cas précédent quand d(b,a) est plus grand que la distance pénalisée entre A et B (puisque B est déjà marié a A'). On marie alors A et B. 44
45 Fusion avec collage du vecteur entier du donneur moins bon pour la reconstitution de données individuelles,mais garde la structure de corrélation et évite les incohérences Régression variable par variable. C est l inverse Dans tous les cas il est nécessaire d'avoir: Un nombre suffisant de variables communes Des corrélations élevées entre variables communes et variables à imputer. Une structure commune entre fichier donneur et fichier receveur: distributions comparables des variables communes ou critiques, sinon résultats biaisés. Redressements souvent nécessaires. 45
46 Validation procédures empiriques où on estime des données connues mais cachées que l'on compare ensuite aux vraies valeurs:validation croisées, bootstrap Indicateurs: reconstitutions de données individuelles prévisions au niveau de groupes reconstitutions de marges, de croisements 46
47 Un exemple: Données SPAD 992 interviews, divisées aléatoirement en deux fichiers : 800 donneur 192 receveur. 4 variables communes: Q1 - classe d'age(5 catégories), Q2 - taille d'agglomération (5 catégories), Q3 - heure de coucher (7 catégories), Q4 - age de fin d'études (5 catégories). 3 variables d opinion Y à imputer: Q5 - La famille est le seul endroit où on se sent bien? (oui, non) Q6 - Plus haut diplôme obtenu (7 catégories), Q7 - Taux d'écoute TV (4 catégories). 47
48 Table 3 performances individuelles Méthode Classifications correctes Aléatoire 49% Homogénéité max. 54% FRF 47% Table 4 performances marginales Q5 Vraies marges Homogénéité max FRF Q Q
49 Le score de «propensity» Origine: essais cliniques avec affectation nonaléatoire entre traitement et témoin (contrôle) Z=1 traité, Z=0 sinon. p covariables X= (x 1,x 2,..,x p ) propensity score e(x)=p(z=1/x) Résumé unidimensionnel: permet de stratifier, de chercher des jumeaux (appariement), de repondérer en cas de données manquantes Estimé habituellement par une régression logistique 49
50 Application: données manquantes Si mécanisme ignorable: Y ˆ ˆ Y 0 N = 1 zy i i N e( x ) 1 n 0 i= 1 N i= 1 i zy cf Horwitz-Thomson (1 e( x )) i i i e( x ) i 50
51 Application en fusion S.Rässler,
52 Propriétés (1) Equilibrage: Pour un score donné e(x), on tire des échantillons aléatoires simples parmi Z=1 et Z=0. Alors les lois de X dans chaque groupe sont les mêmes: P(X / Z=1,e(X))= P(X / Z=0,e(X)) Avantage: facile de fabriquer des échantillons appariés même si X est de grande dimension Si appariement exact impossible : ppv ou strates 52
53 Propriétés (2) Consistence : estimation sans biais de l effet τ d un traitement Y : τ = E(Y t )-E(Y c ) si l effet de l affectation traitement-contrôle est ignorable conditionnellement à X (donc à e(x)) et si 0<P(Z=1/X)<1 (Y t et Y c sont indépendants de Z conditionnellement à X) alors τ est estimé sans biais par la moyenne des différence entre observations appariées selon e(x) 53
54 Propriétés (3) Etudes d observation non randomisées résout le problème de l inférence causale réduit les biais «ouverts»: ex: comparer la mortalité des fumeurs et non-fumeurs alors que les fumeurs sont en moyenne plus vieux que les non-fumeurs à comparer avec la post-stratification 54
55 Rééquilibrage d enquête Exemple une enquête de référence aléatoire, une enquête web 55
56 Yoshimura, Plus simple que la post-stratification sur plusieurs variables (calage sur marges) Mais hypothèses fortes 56
57 Conclusions Techniques: L estimation de données manquantes massives: stimulant pour les statisticiens. besoin réel de fournir à l'utilisateur final une base unique sans trou. 57
58 Prudence quand on utilise des données qui sont en réalité des estimations et non des valeurs observées: ne jamais utiliser à un niveau individuel, mais uniquement agrégé. Conséquence perverse: un moindre effort de collecte, puisque l'on peut reconstituer des données Nécessité de valider 58
59 Déontologiques (confidentialité et protection de la vie privée) : des données qui n'ont pas été recueillies mais estimées, peuvent être ajoutées dans des fichiers à l'insu des individus concernés. Quid de La loi Informatique et Liberté? paradoxe alors que les INS développent des techniques pour assurer la confidentialité 59
60 Références Allison P. (2002) Missing data, Sage Publications Caron, N.(2006) : Les principales techniques de correction de la non-réponse,et les modèles associés, Série des Documents de Travail «Méthodologie Statistique» de l Insee, n 9604 Co V. (1997) Méthodes statistiques et informatiques pour le traitement des données manquantes. Doctorat, CNAM. Paris. Fischer N. (2004) Fusion Statistique de Fichiers de Données. Doctorat, CNAM, Paris. Rässler S. (2002), Statistical matching, Springer Rosenbaum P.R., Rubin D. (1983) The central role of propensity scores in observational studies for causal effects, Biometrika 70, Saporta G. (2002) Data fusion and data grafting. Computational Statistics and Data Analysis, 38(4),
Approche modèle pour l estimation en présence de non-réponse non-ignorable en sondage
Approche modèle pour l estimation en présence de non-réponse non-ignorable en sondage Journées de Méthodologie Statistique Eric Lesage Crest-Ensai 25 janvier 2012 Introduction et contexte 2/27 1 Introduction
LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING»
LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING» Gilbert Saporta Professeur de Statistique Appliquée Conservatoire National des Arts et Métiers Dans leur quasi totalité, les banques et organismes financiers
Structure du cours : Il existe de nombreuses méthodes intéressantes qui couvrent l Analyse des Données
Structure du cours : Il existe de nombreuses méthodes intéressantes qui couvrent l Analyse des Données et le Data Mining Nous suivons le plan suivant : Fonctionnement de Spad Catalogue des méthodes (statistiques
Chapitre 11 METHODOLOGIE D ENQUÊTES
Chapitre 11 METHODOLOGIE D ENQUÊTES PLAN DU CHAPITRE 11 11.1 LE QUESTIONNAIRE 11.1.1 Qu est-ce qu un questionnaire? 11.1.2 Etapes de la construction d un questionnaire 11.1.3 Règles de base pour l élaboration
Fiche qualité relative à l enquête Santé et Itinéraire Professionnel 2010 (SIP) Carte d identité de l enquête
Fiche qualité relative à Santé et Itinéraire Professionnel 2010 (SIP) Nom Années de Périodicité Panel (suivi d échantillon) Services concepteurs Service réalisant Sujets principaux traités dans Carte d
CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures)
CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE Cinquième épreuve d admissibilité STATISTIQUE (durée : cinq heures) Une composition portant sur la statistique. SUJET Cette épreuve est composée d un
Exploitation et analyse des données appliquées aux techniques d enquête par sondage. Introduction.
Exploitation et analyse des données appliquées aux techniques d enquête par sondage. Introduction. Etudes et traitements statistiques des données : le cas illustratif de la démarche par sondage INTRODUCTION
La nouvelle planification de l échantillonnage
La nouvelle planification de l échantillonnage Pierre-Arnaud Pendoli Division Sondages Plan de la présentation Rappel sur le Recensement de la population (RP) en continu Description de la base de sondage
Probabilités sur un univers fini
[http://mp.cpgedupuydelome.fr] édité le 7 août 204 Enoncés Probabilités sur un univers fini Evènements et langage ensembliste A quelle condition sur (a, b, c, d) ]0, [ 4 existe-t-il une probabilité P sur
Théorie des sondages : cours 5
Théorie des sondages : cours 5 Camelia Goga IMB, Université de Bourgogne e-mail : [email protected] Master Besançon-2010 Chapitre 5 : Techniques de redressement 1. poststratification 2. l estimateur
Impact du mobile banking sur les comportements d épargne et de transferts à Madagascar. Florence Arestoff Baptiste Venet
Impact du mobile banking sur les comportements d épargne et de transferts à Madagascar Florence Arestoff Baptiste Venet 1 Introduction : contexte du contrat de recherche Ce contrat de recherche fait suite
TABLE DES MATIERES. C Exercices complémentaires 42
TABLE DES MATIERES Chapitre I : Echantillonnage A - Rappels de cours 1. Lois de probabilités de base rencontrées en statistique 1 1.1 Définitions et caractérisations 1 1.2 Les propriétés de convergence
La survie nette actuelle à long terme Qualités de sept méthodes d estimation
La survie nette actuelle à long terme Qualités de sept méthodes d estimation PAR Alireza MOGHADDAM TUTEUR : Guy HÉDELIN Laboratoire d Épidémiologie et de Santé publique, EA 80 Faculté de Médecine de Strasbourg
La classification automatique de données quantitatives
La classification automatique de données quantitatives 1 Introduction Parmi les méthodes de statistique exploratoire multidimensionnelle, dont l objectif est d extraire d une masse de données des informations
Les Français et le chauffage. Résultats de l étude menée
Les Français et le chauffage Résultats de l étude menée par IPSOS pour Via sèva Méthodologie et échantillon METHODOLOGIE : Cette étude a été réalisée en adhoc online, auprès d un échantillon issu de l
Introduction au Data-Mining
Introduction au Data-Mining Alain Rakotomamonjy - Gilles Gasso. INSA Rouen -Département ASI Laboratoire PSI Introduction au Data-Mining p. 1/25 Data-Mining : Kèkecé? Traduction : Fouille de données. Terme
LE ROLE DES INCITATIONS MONETAIRES DANS LA DEMANDE DE SOINS : UNE EVALUATION EMPIRIQUE.
LE ROLE DES INCITATIONS MONETAIRES DANS LA DEMANDE DE SOINS : UNE EVALUATION EMPIRIQUE. Synthèse des travaux réalisés 1. Problématique La question D7 du plan d exécution du Programme National de Recherches
Déroulement d un projet en DATA MINING, préparation et analyse des données. Walid AYADI
1 Déroulement d un projet en DATA MINING, préparation et analyse des données Walid AYADI 2 Les étapes d un projet Choix du sujet - Définition des objectifs Inventaire des données existantes Collecte, nettoyage
données en connaissance et en actions?
1 Partie 2 : Présentation de la plateforme SPSS Modeler : Comment transformer vos données en connaissance et en actions? SPSS Modeler : l atelier de data mining Large gamme de techniques d analyse (algorithmes)
CONCEPTION ET TIRAGE DE L ÉCHANTILLON
CHAPITRE 4 CONCEPTION ET TIRAGE DE L ÉCHANTILLON Ce chapitre technique 1 s adresse principalement aux spécialistes de sondage, mais aussi au coordinateur et aux autres responsables techniques de l enquête.
Introduction au datamining
Introduction au datamining Patrick Naïm janvier 2005 Définition Définition Historique Mot utilisé au départ par les statisticiens Le mot indiquait une utilisation intensive des données conduisant à des
BD/MSPS. Guide de création de la base de données
BD/MSPS Guide de création de la base de données Le Guide de création de base de données décrit les techniques utilisées pour la construction de la BDSPS. Table des matières Sommaire...i Introduction...1
CALCUL D UN SCORE ( SCORING) Application de techniques de discrimination LES OBJECTIFS DU SCORING
CALCUL D UN SCORE ( SCORING) Application de techniques de discrimination LES OBJECTIFS DU SCORING SÉLECTION DES RISQUES PRÉVISION DES DÉFAUTS SUIVI ET CONTRÔLE Pierre-Louis GONZALEZ Différents types de
UFR de Sciences Economiques Année 2008-2009 TESTS PARAMÉTRIQUES
Université Paris 13 Cours de Statistiques et Econométrie I UFR de Sciences Economiques Année 2008-2009 Licence de Sciences Economiques L3 Premier semestre TESTS PARAMÉTRIQUES Remarque: les exercices 2,
Chapitre 3. Les distributions à deux variables
Chapitre 3. Les distributions à deux variables Jean-François Coeurjolly http://www-ljk.imag.fr/membres/jean-francois.coeurjolly/ Laboratoire Jean Kuntzmann (LJK), Grenoble University 1 Distributions conditionnelles
Probabilités conditionnelles Loi binomiale
Exercices 23 juillet 2014 Probabilités conditionnelles Loi binomiale Équiprobabilité et variable aléatoire Exercice 1 Une urne contient 5 boules indiscernables, 3 rouges et 2 vertes. On tire au hasard
Introduction au Data-Mining
Introduction au Data-Mining Gilles Gasso, Stéphane Canu INSA Rouen -Département ASI Laboratoire LITIS 8 septembre 205. Ce cours est librement inspiré du cours DM de Alain Rakotomamonjy Gilles Gasso, Stéphane
Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes
IUT HSE Probabilités et Statistiques Feuille : variables aléatoires discrètes 1 Exercices Dénombrements Exercice 1. On souhaite ranger sur une étagère 4 livres de mathématiques (distincts), 6 livres de
Chapitre 3 : INFERENCE
Chapitre 3 : INFERENCE 3.1 L ÉCHANTILLONNAGE 3.1.1 Introduction 3.1.2 L échantillonnage aléatoire 3.1.3 Estimation ponctuelle 3.1.4 Distributions d échantillonnage 3.1.5 Intervalles de probabilité L échantillonnage
Les conducteurs automobiles évaluent-ils correctement leur risque de commettre un accident?
Les conducteurs automobiles évaluent-ils correctement leur risque de commettre un accident? Nathalie LEPINE GREMAQ, Université de Toulouse1, 31042 Toulouse, France GRAPE, Université Montesquieu-Bordeaux
Introduction à l approche bootstrap
Introduction à l approche bootstrap Irène Buvat U494 INSERM buvat@imedjussieufr 25 septembre 2000 Introduction à l approche bootstrap - Irène Buvat - 21/9/00-1 Plan du cours Qu est-ce que le bootstrap?
Santé environnement. Description du budget espace-temps et estimation de l exposition de la population française dans son logement
Santé environnement Description du budget espace-temps et estimation de l exposition de la population française dans son logement Sommaire Abréviations 2 1. Introduction 3 2. Données recueillies 4 2.1
VI. Tests non paramétriques sur un échantillon
VI. Tests non paramétriques sur un échantillon Le modèle n est pas un modèle paramétrique «TESTS du CHI-DEUX» : VI.1. Test d ajustement à une loi donnée VI.. Test d indépendance de deux facteurs 96 Différentes
L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ
L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ INTRODUCTION Données : n individus observés sur p variables quantitatives. L A.C.P. permet d eplorer les liaisons entre variables et
TABLE DES MATIÈRES. Bruxelles, De Boeck, 2011, 736 p.
STATISTIQUE THÉORIQUE ET APPLIQUÉE Tome 2 Inférence statistique à une et à deux dimensions Pierre Dagnelie TABLE DES MATIÈRES Bruxelles, De Boeck, 2011, 736 p. ISBN 978-2-8041-6336-5 De Boeck Services,
Cours de méthodes de scoring
UNIVERSITE DE CARTHAGE ECOLE SUPERIEURE DE STATISTIQUE ET D ANALYSE DE L INFORMATION Cours de méthodes de scoring Préparé par Hassen MATHLOUTHI Année universitaire 2013-2014 Cours de méthodes de scoring-
Probabilités. C. Charignon. I Cours 3
Probabilités C. Charignon Table des matières I Cours 3 1 Dénombrements 3 1.1 Cardinal.................................................. 3 1.1.1 Définition............................................. 3
TABLE DES MATIÈRES. PRINCIPES D EXPÉRIMENTATION Planification des expériences et analyse de leurs résultats. Pierre Dagnelie
PRINCIPES D EXPÉRIMENTATION Planification des expériences et analyse de leurs résultats Pierre Dagnelie TABLE DES MATIÈRES 2012 Presses agronomiques de Gembloux [email protected] www.pressesagro.be
Évaluations aléatoires : Comment tirer au sort?
Évaluations aléatoires : Comment tirer au sort? William Parienté Université Catholique de Louvain J-PAL Europe povertyactionlab.org Plan de la semaine 1. Pourquoi évaluer? 2. Comment mesurer l impact?
Théorie et Codage de l Information (IF01) exercices 2013-2014. Paul Honeine Université de technologie de Troyes France
Théorie et Codage de l Information (IF01) exercices 2013-2014 Paul Honeine Université de technologie de Troyes France TD-1 Rappels de calculs de probabilités Exercice 1. On dispose d un jeu de 52 cartes
La baisse tendancielle des rentes réduitelle la demande d épargne retraite? Leçons tirées d une réforme des tables de mortalité
La baisse tendancielle des rentes réduitelle la demande d épargne retraite? Leçons tirées d une réforme des tables de mortalité Alexis DIRER LEO, Université d Orléans Co-écrit avec Rim Ennajar-Sayadi Journée
Exercices supplémentaires sur l introduction générale à la notion de probabilité 2009-2010
Exercices supplémentaires sur l introduction générale à la notion de probabilité 2009-2010 Exercices fortement conseillés : 6, 10 et 14 1) Un groupe d étudiants est formé de 20 étudiants de première année
P1 : Corrigés des exercices
P1 : Corrigés des exercices I Exercices du I I.2.a. Poker : Ω est ( l ensemble ) des parties à 5 éléments de l ensemble E des 52 cartes. Cardinal : 5 I.2.b. Bridge : Ω est ( l ensemble ) des parties à
Probabilités Loi binomiale Exercices corrigés
Probabilités Loi binomiale Exercices corrigés Sont abordés dans cette fiche : (cliquez sur l exercice pour un accès direct) Exercice 1 : épreuve de Bernoulli Exercice 2 : loi de Bernoulli de paramètre
ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #4-5
ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #4-5 ARTHUR CHARPENTIER 1 Un certain test médical révèle correctement, avec probabilité 0.85, qu une personne a le sida lorsqu elle l a vraiment et révèle incorrectement,
Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé
Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé EXERCICE 1 5 points Commun à tous les candidats 1. Réponse c : ln(10)+2 ln ( 10e 2) = ln(10)+ln ( e 2) = ln(10)+2 2. Réponse b : n 13 0,7 n 0,01
Les simulations dans l enseignement des sondages Avec le logiciel GENESIS sous SAS et la bibliothèque Sondages sous R
Les simulations dans l enseignement des sondages Avec le logiciel GENESIS sous SAS et la bibliothèque Sondages sous R Yves Aragon, David Haziza & Anne Ruiz-Gazen GREMAQ, UMR CNRS 5604, Université des Sciences
FOTO - L OMNIBUS MENSUEL DE CROP LE NOUVEAU CROP-EXPRESS
FOTO - L OMNIBUS MENSUEL DE CROP LE NOUVEAU CROP-EXPRESS 550, RUE SHERBROOKE OUEST MONTRÉAL (QUÉBEC) H3A 1B9 BUREAU 900 TOUR EST T 514 849-8086, POSTE 3064 Réflexions méthodologiques Depuis des années,
Répondants et non-répondants dans les enquêtes. Analyse des séquences de contact
Répondants et non-répondants dans les enquêtes Analyse des séquences de contact 7 ème colloque francophone sur les sondages Alexandre Pollien (FORS), Dominique Joye (ISS), Michèle Ernst Stähli (FORS et
POINTS DE VUE DES CANADIENS SUR LA COUVERTURE DES MÉDICAMENTS D ORDONNANCE
www.ekos.com POINTS DE VUE DES CANADIENS SUR LA COUVERTURE DES MÉDICAMENTS D ORDONNANCE [Ottawa 22 mai 2013] Selon un nouveau sondage commandé par la Coalition canadienne de la santé (CCS) et la Fédération
Un outil pour l étude des dépenses de santé et des «restes à charge» des ménages : le modèle Omar
SANTÉ Un outil pour l étude des dépenses de santé et des «restes à charge» des ménages : le modèle Omar Rémi Lardellier, Renaud Legal, Denis Raynaud et Guillaume Vidal* Les «restes à charge» des ménages
Probabilités sur un univers fini
[http://mp.cpgedupuydelome.fr] édité le 10 août 2015 Enoncés 1 Proailités sur un univers fini Evènements et langage ensemliste A quelle condition sur (a,, c, d) ]0, 1[ 4 existe-t-il une proailité P sur
Débouchés professionnels
Master Domaine Droit, Economie, Gestion Mention : Monnaie, Banque, Finance, Assurance Spécialité : Risque, Assurance, Décision Année universitaire 2014/2015 DIRECTEUR de la spécialité : Monsieur Kouroche
Études épidémiologiques analytiques et biais
Master 1 «Conception, évaluation et gestion des essais thérapeutiques» Études épidémiologiques analytiques et biais Roxane Schaub Médecin de santé publique Octobre 2013 1 Objectifs pédagogiques Connaitre
Actuariat I ACT2121. septième séance. Arthur Charpentier. Automne 2012. [email protected]. http ://freakonometrics.blog.free.
Actuariat I ACT2121 septième séance Arthur Charpentier [email protected] http ://freakonometrics.blog.free.fr/ Automne 2012 1 Exercice 1 En analysant le temps d attente X avant un certain événement
En 2014, comment mener à bien une enquête aléatoire en population générale par téléphone?
En 2014, comment mener à bien une enquête aléatoire en population générale par téléphone? Prémila Choolun 1, François Beck 2, Christophe David 1, Valérie Blineau 1, Romain Guignard 3, Arnaud Gautier 3,
Projet SINF2275 «Data mining and decision making» Projet classification et credit scoring
Projet SINF2275 «Data mining and decision making» Projet classification et credit scoring Année académique 2006-2007 Professeurs : Marco Saerens Adresse : Université catholique de Louvain Information Systems
MODÈLE CROP DE CALIBRATION DES PANELS WEB
MODÈLE CROP DE CALIBRATION DES PANELS WEB 550, RUE SHERBROOKE OUEST MONTRÉAL (QUÉBEC) H3A 1B9 BUREAU 900 TOUR EST T 514 849-8086, POSTE 3064 WWW.CROP.CA Le Protocole CROP de calibration des panels en ligne
Techniques du Data Mining pour la prédiction de faillite des entreprises et la gestion du risque de crédit
Techniques du Data Mining pour la prédiction de faillite des entreprises et la gestion du risque de crédit Adil Belhouari HEC - Montréal - Journées de l Optimisation 2005-09 Mai 2005 PLAN DE LA PRÉSENTATION
Imputation du salaire d ego dans TeO
Imputation du salaire d ego dans TeO Objet de la note : linéariser la réponse en tranche du salaire, et imputer le salaire en cas de non réponse Champ et principe de la méthode Les individus qui se sont
METHODOLOGIE GENERALE DE LA RECHERCHE EPIDEMIOLOGIQUE : LES ENQUETES EPIDEMIOLOGIQUES
Enseignement du Deuxième Cycle des Etudes Médicales Faculté de Médecine de Toulouse Purpan et Toulouse Rangueil Module I «Apprentissage de l exercice médical» Coordonnateurs Pr Alain Grand Pr Daniel Rougé
Chapitre 3 - L'enquête descriptive simple
Chapitre 3 - L'enquête descriptive simple Version 1.2 AUTEURS PRINCIPAUX : NELLY AGRINIER - CÉDRIC BAUMANN - ISABELLE FOURNEL CO-AUTEURS : FRANCIS GUILLEMIN - GUY HÉDELIN Septembre 2010 Table des matières
1. Les types d enquêtes
La conduite d une enquête par questionnaire La conception d un questionnaire ne doit pas être réalisée de façon hasardeuse. Elle suit une méthodologie stricte qui permet d atteindre des résultats utilisables
Probabilité. Table des matières. 1 Loi de probabilité 2 1.1 Conditions préalables... 2 1.2 Définitions... 2 1.3 Loi équirépartie...
1 Probabilité Table des matières 1 Loi de probabilité 2 1.1 Conditions préalables........................... 2 1.2 Définitions................................. 2 1.3 Loi équirépartie..............................
Exercices sur le chapitre «Probabilités»
Arnaud de Saint Julien - MPSI Lycée La Merci 2014-2015 1 Pour démarrer Exercices sur le chapitre «Probabilités» Exercice 1 (Modélisation d un dé non cubique) On considère un parallélépipède rectangle de
Feuille 6 : Tests. Peut-on dire que l usine a respecté ses engagements? Faire un test d hypothèses pour y répondre.
Université de Nantes Année 2013-2014 L3 Maths-Eco Feuille 6 : Tests Exercice 1 On cherche à connaître la température d ébullition µ, en degrés Celsius, d un certain liquide. On effectue 16 expériences
APPLICATION DU SCN A L'EVALUATION DES REVENUS NON DECLARES DES MENAGES
4 mars 1996 FRANCAIS Original : RUSSE COMMISSION DE STATISTIQUE et COMMISSION ECONOMIQUE POUR L'EUROPE CONFERENCE DES STATISTICIENS EUROPEENS OFFICE STATISTIQUE DES COMMUNAUTES EUROPEENNES (EUROSTAT) ORGANISATION
Relation entre deux variables : estimation de la corrélation linéaire
CHAPITRE 3 Relation entre deux variables : estimation de la corrélation linéaire Parmi les analyses statistiques descriptives, l une d entre elles est particulièrement utilisée pour mettre en évidence
Probabilités. Rappel : trois exemples. Exemple 2 : On dispose d un dé truqué. On sait que : p(1) = p(2) =1/6 ; p(3) = 1/3 p(4) = p(5) =1/12
Probabilités. I - Rappel : trois exemples. Exemple 1 : Dans une classe de 25 élèves, il y a 16 filles. Tous les élèves sont blonds ou bruns. Parmi les filles, 6 sont blondes. Parmi les garçons, 3 sont
Article. Peut-on établir des statistiques officielles à partir d enquêtes en ligne reposant sur le principe de l autosélection? par Jelke Bethlehem
Composante du produit n o -5-X au catalogue de Statistique Canada La série des symposiums internationaux de Statistique Canada : recueil Article Symposium 008 : Collecte des données : défis, réalisations
Probabilités (méthodes et objectifs)
Probabilités (méthodes et objectifs) G. Petitjean Lycée de Toucy 10 juin 2007 G. Petitjean (Lycée de Toucy) Probabilités (méthodes et objectifs) 10 juin 2007 1 / 19 1 Déterminer la loi de probabilité d
Qu est-ce qu une probabilité?
Chapitre 1 Qu est-ce qu une probabilité? 1 Modéliser une expérience dont on ne peut prédire le résultat 1.1 Ensemble fondamental d une expérience aléatoire Une expérience aléatoire est une expérience dont
ESSEC. Cours «Management bancaire» Séance 3 Le risque de crédit Le scoring
ESSEC Cours «Management bancaire» Séance 3 Le risque de crédit Le scoring Les méthodes d évaluation du risque de crédit pour les PME et les ménages Caractéristiques Comme les montants des crédits et des
Coup de Projecteur sur les Réseaux de Neurones
Coup de Projecteur sur les Réseaux de Neurones Les réseaux de neurones peuvent être utilisés pour des problèmes de prévision ou de classification. La représentation la plus populaire est le réseau multicouche
Analyse stochastique de la CRM à ordre partiel dans le cadre des essais cliniques de phase I
Analyse stochastique de la CRM à ordre partiel dans le cadre des essais cliniques de phase I Roxane Duroux 1 Cadre de l étude Cette étude s inscrit dans le cadre de recherche de doses pour des essais cliniques
Travaux dirigés d introduction aux Probabilités
Travaux dirigés d introduction aux Probabilités - Dénombrement - - Probabilités Élémentaires - - Variables Aléatoires Discrètes - - Variables Aléatoires Continues - 1 - Dénombrement - Exercice 1 Combien
Arbres binaires de décision
1 Arbres binaires de décision Résumé Arbres binaires de décision Méthodes de construction d arbres binaires de décision, modélisant une discrimination (classification trees) ou une régression (regression
I. Cas de l équiprobabilité
I. Cas de l équiprobabilité Enoncé : On lance deux dés. L un est noir et l autre est blanc. Calculer les probabilités suivantes : A «Obtenir exactement un as» «Obtenir au moins un as» C «Obtenir au plus
Etude Fraude Sociale. Rencontres provinciales printemps 2014
Etude Fraude Sociale Rencontres provinciales printemps 2014 Contexte En 2013, la secrétaire d Etat à l intégration sociale a chargé la société de consultance PwC de réaliser une étude sur l impact de la
Item 169 : Évaluation thérapeutique et niveau de preuve
Item 169 : Évaluation thérapeutique et niveau de preuve COFER, Collège Français des Enseignants en Rhumatologie Date de création du document 2010-2011 Table des matières ENC :...3 SPECIFIQUE :...3 I Différentes
AICp. Vincent Vandewalle. To cite this version: HAL Id: inria-00386678 https://hal.inria.fr/inria-00386678
Sélection prédictive d un modèle génératif par le critère AICp Vincent Vandewalle To cite this version: Vincent Vandewalle. Sélection prédictive d un modèle génératif par le critère AICp. 41èmes Journées
Capacité d un canal Second Théorème de Shannon. Théorie de l information 1/34
Capacité d un canal Second Théorème de Shannon Théorie de l information 1/34 Plan du cours 1. Canaux discrets sans mémoire, exemples ; 2. Capacité ; 3. Canaux symétriques ; 4. Codage de canal ; 5. Second
Data Mining. Vincent Augusto 2012-2013. École Nationale Supérieure des Mines de Saint-Étienne. Data Mining. V. Augusto.
des des Data Mining Vincent Augusto École Nationale Supérieure des Mines de Saint-Étienne 2012-2013 1/65 des des 1 2 des des 3 4 Post-traitement 5 représentation : 6 2/65 des des Définition générale Le
IBM SPSS Regression 21
IBM SPSS Regression 21 Remarque : Avant d utiliser ces informations et le produit qu elles concernent, lisez les informations générales sous Remarques sur p. 46. Cette version s applique à IBM SPSS Statistics
Le Data Mining au service du Scoring ou notation statistique des emprunteurs!
France Le Data Mining au service du Scoring ou notation statistique des emprunteurs! Comme le rappelle la CNIL dans sa délibération n 88-083 du 5 Juillet 1988 portant adoption d une recommandation relative
Introduction et aperçu
BD/MSPS Introduction et aperçu Le présent guide présente la BD/MSPS et en fait un survol. Il décrit la construction d une simulation avec le MSPS et il contient plusieurs exemples d utilisation du modèle.
Correction du baccalauréat ES/L Métropole 20 juin 2014
Correction du baccalauréat ES/L Métropole 0 juin 014 Exercice 1 1. c.. c. 3. c. 4. d. 5. a. P A (B)=1 P A (B)=1 0,3=0,7 D après la formule des probabilités totales : P(B)=P(A B)+P(A B)=0,6 0,3+(1 0,6)
Why Software Projects Escalate: The Importance of Project Management Constructs
Why Software Projects Escalate: The Importance of Project Management Constructs Why Software Projects Escalate: The Importance of Project Management Constructs 1. Introduction 2. Concepts de la gestion
Statistiques Appliquées à l Expérimentation en Sciences Humaines. Christophe Lalanne, Sébastien Georges, Christophe Pallier
Statistiques Appliquées à l Expérimentation en Sciences Humaines Christophe Lalanne, Sébastien Georges, Christophe Pallier Table des matières 1 Méthodologie expérimentale et recueil des données 6 1.1 Introduction.......................................
Chapitre 7. Statistique des échantillons gaussiens. 7.1 Projection de vecteurs gaussiens
Chapitre 7 Statistique des échantillons gaussiens Le théorème central limite met en évidence le rôle majeur tenu par la loi gaussienne en modélisation stochastique. De ce fait, les modèles statistiques
Christophe CANDILLIER Cours de DataMining mars 2004 Page 1
Christophe CANDILLIER Cours de DataMining mars 2004 age 1 1. Introduction 2. rocessus du DataMining 3. Analyse des données en DataMining 4. Analyse en Ligne OLA 5. Logiciels 6. Bibliographie Christophe
L'intelligence d'affaires: la statistique dans nos vies de consommateurs
L'intelligence d'affaires: la statistique dans nos vies de consommateurs Jean-François Plante, HEC Montréal Marc Fredette, HEC Montréal Congrès de l ACFAS, Université Laval, 6 mai 2013 Intelligence d affaires
L évolution des modes de communication, comment adapter les enquêtes en population générale? L expérience de l enquête KABP VIH/sida 2010
L évolution des modes de communication, comment adapter les enquêtes en population générale? L expérience de l enquête KABP VIH/sida 2010 Session 2 : Méthodes Nathalie Beltzer, ORS Île-de-France Et le
Probabilités conditionnelles Exercices corrigés
Terminale S Probabilités conditionnelles Exercices corrigés Exercice : (solution Une compagnie d assurance automobile fait un bilan des frais d intervention, parmi ses dossiers d accidents de la circulation.
La fumée de tabac secondaire (FTS) en Mauricie et au Centre-du- Québec, indicateurs du plan commun tirés de l ESCC de 2007-2008
La fumée de tabac secondaire (FTS) en Mauricie et au Centre-du- Québec, indicateurs du plan commun tirés de l ESCC de 2007-2008 Ce document se veut une analyse succincte des indicateurs se rapportant à
Examen de Logiciels Statistiques
G. Hunault Angers, mai 2011 Licence MEF Examen de Logiciels Statistiques On s intéresse ici au dossier EAEF01 qui contient un extrait des données du recensement américain. On trouvera ces données et leur
Probabilités. I Petits rappels sur le vocabulaire des ensembles 2 I.1 Définitions... 2 I.2 Propriétés... 2
Probabilités Table des matières I Petits rappels sur le vocabulaire des ensembles 2 I.1 s................................................... 2 I.2 Propriétés...................................................
Analyse des risques financiers
Analyse des risques financiers Version du 1 er octobre 2014 Cette fiche s'adresse aux services de l État mandatés pour mener une analyse financière et est susceptible de contribuer à la définition du niveau
STA108 Enquêtes et sondages. Sondages àplusieurs degrés et par grappes
STA108 Enquêtes et sondages Sondages àplusieurs degrés et par grappes Philippe Périé, novembre 2011 Sondages àplusieurs degrés et par grappes Introduction Sondages à plusieurs degrés Tirage des unités
ENSEIGNEMENT ET MONDE PROFESSIONNEL. Illustration d un lien fort au travers d un cours de scoring. Jean-Philippe KIENNER 7 novembre 2013
ENSEIGNEMENT ET MONDE PROFESSIONNEL Illustration d un lien fort au travers d un cours de scoring Jean-Philippe KIENNER 7 novembre 2013 CONTEXTE Une bonne insertion professionnelle des étudiants passe par
