Approche modèle pour l estimation en présence de non-réponse non-ignorable en sondage
|
|
|
- Jean-Sébastien Bruneau
- il y a 10 ans
- Total affichages :
Transcription
1 Approche modèle pour l estimation en présence de non-réponse non-ignorable en sondage Journées de Méthodologie Statistique Eric Lesage Crest-Ensai 25 janvier 2012
2 Introduction et contexte 2/27 1 Introduction et contexte 2 Non-réponse ignorable 3 Non-réponse non-ignorable 4 Simulations
3 Introduction et contexte 3/27 Comment traiter la non-réponse? Le mécanisme de non-réponse constitue une sélection aléatoire mais non contrôlée par un plan de sondage L échantillon des répondants est-il représentatif de la population U? Peut-on ignorer ce mécanisme? Et si oui, comment?
4 Introduction et contexte 4/27 La non-réponse corrélée à la variable d intérêt Un mécanisme de non-réponse lié à la variable d intérêt peut biaiser l estimateur de son total Des exemples de l enquête emploi ou de l enquête patrimoine
5 Introduction et contexte 5/27 Le contexte On se place dans le cas d une enquête exhaustive U est une population finie de taille N Les éléments de U sont repérés par l indice k Pour chaque élément k on observe les réalisations (x k, y k, z k, r k ) du vecteur aléatoire (X k, Y k, Z k, R k ) Les vecteurs (X k, Y k, R k ) sont i.i.d
6 Non-réponse ignorable 6/27 1 Introduction et contexte 2 Non-réponse ignorable 3 Non-réponse non-ignorable 4 Simulations
7 Non-réponse ignorable 7/27 La non-réponse ignorable Elle peut être MCAR ou MAR MCAR : Missing completely at random ; la non-réponse n est pas corrélée à la variable d intérêt MAR : Missing at random ; la non-réponse n est corrélée à la variable d intérêt qu à travers des covariables de Y k observées. Conditionnellement à ces variables, la non-réponse n est pas corrélée à la variable d intérêt Exemple des groupes homogènes de repondération Sexe*groupes d âge
8 Non-réponse ignorable 8/27 La non-réponse ignorable, cas MAR Modèle de régression linéaire de Y k sur U : Y k = α 0 + α 1 X k + ε k où E(ε k /X k ) = 0 Modèle de réponse, E(R k /X k ) = ρ(x k ) Non-réponse MAR : E(ε k R k /X k ) = 0 E(Y k R k /X k ) = E(Y k /X k )E(R k /X k )
9 Non-réponse ignorable 9/27 Modèle de régression linéaire de Y k sur l échantillon des répondants s r : Y k = α 0 + α 1 X k + ε k = α X k + ε k où E(ε k R k /X k ) = 0, α = (α 0, α 1 ) et X k = (1, X k ) L estimateur par les MCO [ ] 1 [ ] 1 1 ˆα = R k X k X k R k X k Y k N N k U converge asymptotiquement vers α k U
10 Non-réponse ignorable 10/27 La non-réponse ignorable, cas MAR Pour estimer le total t y = k U y k, on peut utiliser une estimateur par la régression : où t x = (N, t x = k U x k) ˆt y = t x ˆα
11 Non-réponse non-ignorable 11/27 1 Introduction et contexte 2 Non-réponse ignorable 3 Non-réponse non-ignorable 4 Simulations
12 Non-réponse non-ignorable 12/27 La non-réponse non-ignorable On étudie un cas de non-réponse non-ignorable proche du cas précédent Cette fois-ci, une des variables explicatives dans le modèle modèle sur Y k n est pas une variable auxiliaire C est une variable observée uniquement sur l échantillon des répondants C est donc une autre variable d intérêt du modèle
13 Non-réponse non-ignorable 13/27 Notations Variables auxiliaires dont les totaux sont connus sur U X k = (1, X k,1, X k,2 ) Variables explicatives de la non-réponse Z k = (1, X k,1, Z k,2 ) Variables d intérêt Y k = (Y k, Z k,2 ) La variable X k,2 est corrélée positivement à la variable Z k,2
14 Non-réponse non-ignorable 14/27 Modèle de non-réponse Ou : E(R k /Z k, X k, Y k ) = E(R k /Z k ) = ρ(z k ) E(R k X k /Z k ) = E(R k /Z k )E(X k /Z k ) E(R k Y k /Z k ) = E(R k /Z k )E(Y k /Z k ) Remarque : la variable X k,2 est corrélée à Z k,2 mais n a pas d effet explicatif direct sur la non-réponse.
15 Non-réponse non-ignorable 15/27 Modèle de la variable d intérêt On suppose que Y k suit un modèle de régression linéaire Y k = α 0 + α 1 X k,1 + α 2 Z k,2 + ε k E(ε k /Z k, X k ) = 0 Pour autant, on ne peut pas proposer un estimateur Greg de t y car on ne dispose pas de la valeur du total t z2
16 Non-réponse non-ignorable 16/27 Modèle de régression à variable instrumentale On écrit un nouveau modèle "dégradé" pour Y k en utilisant la corrélation entre X k,2 et Z k,2 : Y k = β 0 + β 1 X k,1 + β 2 X k,2 + τ k E(τ k /Z k ) = 0 D un point de vue statistique, il s agit d un modèle de régression à variable instrumentale Ce modèle est moins bien ajusté que le modèle initial, par contre, il reste identifiable sur s r car E(τ k R k /Z k ) = 0
17 Non-réponse non-ignorable 17/27 Modèle de régression à variable instrumentale En effet, sur s r on prendra l estimateur : [ ] 1 [ ] ˆβ VI 1 1 = c k R k Z k X k c k R k Z k Y k N N k U k U [ ] 1 [ ] 1 1 = β + c k R k Z k X k c k R k Z k τ k, N N k U k U où c k s interprète comme un poids de l élément k et est une fonction de Z k : c k = f(z k ).
18 Non-réponse non-ignorable 18/27 Estimateur IVGreg ˆβ VI converge asymptotiquement vers β On peut utiliser cette fois-ci un estimateur par la régression (instrumentale) : ˆt V y I I = t x ˆβV = [ 1 ] c k R k t x c l R l Z l X l Z k Y k k U l U
19 Non-réponse non-ignorable 19/27 Estimateur IVGreg : estimateur linéaire ˆt V I y = k U R k w V I k Y k, où w V I k = c k t x [ 1 ] c l R l Z l X l Z k l U = c k 1 + ( t x k U est le poids d enquête de l élément k. ) [ ] 1 c k R k X k c l R l Z l X l Z k l U
20 Simulations 20/27 1 Introduction et contexte 2 Non-réponse ignorable 3 Non-réponse non-ignorable 4 Simulations
21 Simulations 21/27 Simulations Monte Carlo On génère une population de taille N = 1000 Variables explicatives de la non-réponse Z k,1 gamma(20, 20) (observée sur s r ) Z k,2 U[0, 600] (observée sur s r ) Z k,3 U[0, 600], (non observée) Variables auxiliaires X k,1 = Z k,1 X k,2 = 0, 5(Z k,2 + U k,2 ), où U k,2 N(0, ) X k,3 = 0, 5(Z k,2 + Z k,3 )
22 Simulations 22/27 Simulations Monte Carlo La variable Y k est générée par le modèle linéaire : où E N(0, ) Y k = X k,1 + 20Z k,2 + E k.
23 Simulations 23/27 Simulations Monte Carlo K = 1000 simulations du mécanisme de réponse R k suit une loi de Bernoulli de paramètre : ( ) exp( zk, z k, z k,3 ) p k = exp( z k, z k, z k,3 )
24 Simulations 24/27 Simulations Monte Carlo On compare quatre estimateurs du total t y ˆt y : moyenne des valeurs de y sur s r multipliée par N ˆt y,x x : estimateur par la régression habituel ˆt y,x3 z : estimateur par la régression instrumentale avec X 3 comme variable proxy de Z 2 ˆt y,x z : estimateur par la régression instrumentale avec Z 1 et Z 2 comme instruments et X 2 comme variable proxy de Z 2
25 Simulations 25/27 Biais relatifs ˆt y ˆt y,x x ˆt y,x3 z ˆt y,x z
26 Simulations 26/27 Biais relatifs - estimateurs de t z ˆt z2 ˆt z2,x x ˆt z2,x3 zˆt z2,x z
27 Simulations 27/27 Beaumont, J.-F. (2000). Une méthode d estimation en présence de non-réponse non-ignorable. Techniques d enquêtes, vol 26, pp Deville, J.-C. (2004). La correction de la non-réponse par calage généralisé. Actes des journées de méthodologie satistique, 16 et 17 décembre 2002, INSEE Méthodes. Fuller, A.F. (2009). Sampling Statistics. Wiley, 371. Gautier, E. (2005). Eléments sur les mécanismes de la sélection dans les enquêtes et sur la non-réponse non-igorable. Actes des journées de méthodologie satistique, INSEE. Särndal, C.E. and Sixten L. (2005). Estimation in Surveys with Nonresponse. Wiley.
Théorie des sondages : cours 5
Théorie des sondages : cours 5 Camelia Goga IMB, Université de Bourgogne e-mail : [email protected] Master Besançon-2010 Chapitre 5 : Techniques de redressement 1. poststratification 2. l estimateur
Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles
Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles Valentin Patilea 1 Cesar Sanchez-sellero 2 Matthieu Saumard 3 1 CREST-ENSAI et IRMAR 2 USC Espagne 3 IRMAR-INSA
Non-réponse et données manquantes. Sylvie Rousseau & Gilbert Saporta décembre 2011
Non-réponse et données manquantes Sylvie Rousseau & Gilbert Saporta décembre 2011 1 EXEMPLES DE TAUX DE RÉPONSE À CERTAINES ENQUÊTES Pour les enquêtes auprès des entreprises, le taux de non-réponse est
Les simulations dans l enseignement des sondages Avec le logiciel GENESIS sous SAS et la bibliothèque Sondages sous R
Les simulations dans l enseignement des sondages Avec le logiciel GENESIS sous SAS et la bibliothèque Sondages sous R Yves Aragon, David Haziza & Anne Ruiz-Gazen GREMAQ, UMR CNRS 5604, Université des Sciences
CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures)
CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE Cinquième épreuve d admissibilité STATISTIQUE (durée : cinq heures) Une composition portant sur la statistique. SUJET Cette épreuve est composée d un
Méthodes de Simulation
Méthodes de Simulation JEAN-YVES TOURNERET Institut de recherche en informatique de Toulouse (IRIT) ENSEEIHT, Toulouse, France Peyresq06 p. 1/41 Remerciements Christian Robert : pour ses excellents transparents
Critère du choix des variables auxiliaires à utiliser dans l'estimateur par calage
des variables auxiliaires à utiliser dans l'estimateur par calage Mohammed El Haj Tirari Institut National de Statistique et d'economie Appliquée - roc Laboratoire de Statistique d'enquêtes, CREST - Ensai
Article. Peut-on établir des statistiques officielles à partir d enquêtes en ligne reposant sur le principe de l autosélection? par Jelke Bethlehem
Composante du produit n o -5-X au catalogue de Statistique Canada La série des symposiums internationaux de Statistique Canada : recueil Article Symposium 008 : Collecte des données : défis, réalisations
Modèle de troncature gauche : Comparaison par simulation sur données indépendantes et dépendantes
de troncature gauche : Comparaison par simulation sur données indépendantes et dépendantes Zohra Guessoum 1 & Farida Hamrani 2 1 Lab. MSTD, Faculté de mathématique, USTHB, BP n 32, El Alia, Alger, Algérie,[email protected]
Evaluer l ampleur des économies d agglomération
Pierre-Philippe Combes GREQAM - Université d Aix-Marseille Ecole d Economie de Paris CEPR Janvier 2008 Supports de la présentation Combes, P.-P., T. Mayer et J.-T. Thisse, 2006, chap. 11. Economie Géographique,
Faut-il pondérer? ...Ou l'éternelle question de l'économètre confronté à un problème de sondage. Laurent Davezies et Xavier D'Haultf uille.
Faut-il pondérer?...ou l'éternelle question de l'économètre confronté à un problème de sondage Laurent Davezies et Xavier D'Haultf uille Juin 2009 Résumé Ce papier précise dans quels cas les estimations
Simulation de variables aléatoires
Chapter 1 Simulation de variables aléatoires Références: [F] Fishman, A first course in Monte Carlo, chap 3. [B] Bouleau, Probabilités de l ingénieur, chap 4. [R] Rubinstein, Simulation and Monte Carlo
UNIVERSITÉ DU QUÉBEC À MONTRÉAL TESTS EN ÉCHANTILLONS FINIS DU MEDAF SANS LA NORMALITÉ ET SANS LA CONVERGENCE
UNIVERSITÉ DU QUÉBEC À MONTRÉAL TESTS EN ÉCHANTILLONS FINIS DU MEDAF SANS LA NORMALITÉ ET SANS LA CONVERGENCE MÉMOIRE PRÉSENTÉ COMME EXIGENCE PARTIELLE DE LA MAÎTRISE EN ÉCONOMIE PAR MATHIEU SISTO NOVEMBRE
LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING»
LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING» Gilbert Saporta Professeur de Statistique Appliquée Conservatoire National des Arts et Métiers Dans leur quasi totalité, les banques et organismes financiers
Évaluation de la régression bornée
Thierry Foucart UMR 6086, Université de Poitiers, S P 2 M I, bd 3 téléport 2 BP 179, 86960 Futuroscope, Cedex FRANCE Résumé. le modèle linéaire est très fréquemment utilisé en statistique et particulièrement
Température corporelle d un castor (une petite introduction aux séries temporelles)
Température corporelle d un castor (une petite introduction aux séries temporelles) GMMA 106 GMMA 106 2014 2015 1 / 32 Cas d étude Temperature (C) 37.0 37.5 38.0 0 20 40 60 80 100 Figure 1: Temperature
Table des matières. I Mise à niveau 11. Préface
Table des matières Préface v I Mise à niveau 11 1 Bases du calcul commercial 13 1.1 Alphabet grec...................................... 13 1.2 Symboles mathématiques............................... 14 1.3
Modélisation aléatoire en fiabilité des logiciels
collection Méthodes stochastiques appliquées dirigée par Nikolaos Limnios et Jacques Janssen La sûreté de fonctionnement des systèmes informatiques est aujourd hui un enjeu économique et sociétal majeur.
Tests d indépendance en analyse multivariée et tests de normalité dans les modèles ARMA
Tests d indépendance en analyse multivariée et tests de normalité dans les modèles ARMA Soutenance de doctorat, sous la direction de Pr. Bilodeau, M. et Pr. Ducharme, G. Université de Montréal et Université
TABLE DES MATIÈRES. Bruxelles, De Boeck, 2011, 736 p.
STATISTIQUE THÉORIQUE ET APPLIQUÉE Tome 2 Inférence statistique à une et à deux dimensions Pierre Dagnelie TABLE DES MATIÈRES Bruxelles, De Boeck, 2011, 736 p. ISBN 978-2-8041-6336-5 De Boeck Services,
TABLE DES MATIERES. C Exercices complémentaires 42
TABLE DES MATIERES Chapitre I : Echantillonnage A - Rappels de cours 1. Lois de probabilités de base rencontrées en statistique 1 1.1 Définitions et caractérisations 1 1.2 Les propriétés de convergence
STATISTIQUES. UE Modélisation pour la biologie
STATISTIQUES UE Modélisation pour la biologie 2011 Cadre Général n individus: 1, 2,..., n Y variable à expliquer : Y = (y 1, y 2,..., y n ), y i R Modèle: Y = Xθ + ε X matrice du plan d expériences θ paramètres
aux différences est appelé équation aux différences d ordre n en forme normale.
MODÉLISATION ET SIMULATION EQUATIONS AUX DIFFÉRENCES (I/II) 1. Rappels théoriques : résolution d équations aux différences 1.1. Équations aux différences. Définition. Soit x k = x(k) X l état scalaire
Analyses de Variance à un ou plusieurs facteurs Régressions Analyse de Covariance Modèles Linéaires Généralisés
Analyses de Variance à un ou plusieurs facteurs Régressions Analyse de Covariance Modèles Linéaires Généralisés Professeur Patrice Francour [email protected] Une grande partie des illustrations viennent
Probabilités stationnaires d une chaîne de Markov sur TI-nspire Louis Parent, ing., MBA École de technologie supérieure, Montréal, Québec 1
Introduction Probabilités stationnaires d une chaîne de Markov sur TI-nspire Louis Parent, ing., MBA École de technologie supérieure, Montréal, Québec 1 L auteur remercie Mme Sylvie Gervais, Ph.D., maître
TABLE DES MATIÈRES. PRINCIPES D EXPÉRIMENTATION Planification des expériences et analyse de leurs résultats. Pierre Dagnelie
PRINCIPES D EXPÉRIMENTATION Planification des expériences et analyse de leurs résultats Pierre Dagnelie TABLE DES MATIÈRES 2012 Presses agronomiques de Gembloux [email protected] www.pressesagro.be
Principe de symétrisation pour la construction d un test adaptatif
Principe de symétrisation pour la construction d un test adaptatif Cécile Durot 1 & Yves Rozenholc 2 1 UFR SEGMI, Université Paris Ouest Nanterre La Défense, France, [email protected] 2 Université
Value at Risk. CNAM GFN 206 Gestion d actifs et des risques. Grégory Taillard. 27 février & 13 mars 20061
Value at Risk 27 février & 13 mars 20061 CNAM Gréory Taillard CNAM Master Finance de marché et estion de capitaux 2 Value at Risk Biblioraphie Jorion, Philippe, «Value at Risk: The New Benchmark for Manain
Probabilités III Introduction à l évaluation d options
Probabilités III Introduction à l évaluation d options Jacques Printems Promotion 2012 2013 1 Modèle à temps discret 2 Introduction aux modèles en temps continu Limite du modèle binomial lorsque N + Un
MAP 553 Apprentissage statistique
MAP 553 Apprentissage statistique Université Paris Sud et Ecole Polytechnique http://www.cmap.polytechnique.fr/~giraud/map553/map553.html PC1 1/39 Apprentissage? 2/39 Apprentissage? L apprentissage au
Chapitre 3. Les distributions à deux variables
Chapitre 3. Les distributions à deux variables Jean-François Coeurjolly http://www-ljk.imag.fr/membres/jean-francois.coeurjolly/ Laboratoire Jean Kuntzmann (LJK), Grenoble University 1 Distributions conditionnelles
En 2014, comment mener à bien une enquête aléatoire en population générale par téléphone?
En 2014, comment mener à bien une enquête aléatoire en population générale par téléphone? Prémila Choolun 1, François Beck 2, Christophe David 1, Valérie Blineau 1, Romain Guignard 3, Arnaud Gautier 3,
Vanina Bousquet 24 mars 2015
Traitement des données manquantes par une méthode d imputation multiple : Application à des données d enquête et de surveillance des maladies infectieuses Vanina Bousquet 24 mars 2015 Plan 1. Contexte
PROBABILITES ET STATISTIQUE I&II
PROBABILITES ET STATISTIQUE I&II TABLE DES MATIERES CHAPITRE I - COMBINATOIRE ELEMENTAIRE I.1. Rappel des notations de la théorie des ensemble I.1.a. Ensembles et sous-ensembles I.1.b. Diagrammes (dits
La survie nette actuelle à long terme Qualités de sept méthodes d estimation
La survie nette actuelle à long terme Qualités de sept méthodes d estimation PAR Alireza MOGHADDAM TUTEUR : Guy HÉDELIN Laboratoire d Épidémiologie et de Santé publique, EA 80 Faculté de Médecine de Strasbourg
Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques.
14-3- 214 J.F.C. p. 1 I Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques. Exercice 1 Densité de probabilité. F { ln x si x ], 1] UN OVNI... On pose x R,
Que faire lorsqu on considère plusieurs variables en même temps?
Chapitre 3 Que faire lorsqu on considère plusieurs variables en même temps? On va la plupart du temps se limiter à l étude de couple de variables aléatoires, on peut bien sûr étendre les notions introduites
FIMA, 7 juillet 2005
F. Corset 1 S. 2 1 LabSAD Université Pierre Mendes France 2 Département de Mathématiques Université de Franche-Comté FIMA, 7 juillet 2005 Plan de l exposé plus court chemin Origine du problème Modélisation
Chapitre 3 : Le budget des ventes. Marie Gies - Contrôle de gestion et gestion prévisionnelle - Chapitre 3
Chapitre 3 : Le budget des ventes Introduction 2 Rappel des différents budgets opérationnels - budget des ventes (chapitre 3) - budget de production (chapitre 4) - budget des approvisionnements et des
MODELE A CORRECTION D ERREUR ET APPLICATIONS
MODELE A CORRECTION D ERREUR ET APPLICATIONS Hélène HAMISULTANE Bibliographie : Bourbonnais R. (2000), Econométrie, DUNOD. Lardic S. et Mignon V. (2002), Econométrie des Séries Temporelles Macroéconomiques
Introduction à l approche bootstrap
Introduction à l approche bootstrap Irène Buvat U494 INSERM buvat@imedjussieufr 25 septembre 2000 Introduction à l approche bootstrap - Irène Buvat - 21/9/00-1 Plan du cours Qu est-ce que le bootstrap?
La problématique des tests. Cours V. 7 mars 2008. Comment quantifier la performance d un test? Hypothèses simples et composites
La problématique des tests Cours V 7 mars 8 Test d hypothèses [Section 6.1] Soit un modèle statistique P θ ; θ Θ} et des hypothèses H : θ Θ H 1 : θ Θ 1 = Θ \ Θ Un test (pur) est une statistique à valeur
STA108 Enquêtes et sondages. Sondages àplusieurs degrés et par grappes
STA108 Enquêtes et sondages Sondages àplusieurs degrés et par grappes Philippe Périé, novembre 2011 Sondages àplusieurs degrés et par grappes Introduction Sondages à plusieurs degrés Tirage des unités
Exploitation et analyse des données appliquées aux techniques d enquête par sondage. Introduction.
Exploitation et analyse des données appliquées aux techniques d enquête par sondage. Introduction. Etudes et traitements statistiques des données : le cas illustratif de la démarche par sondage INTRODUCTION
Chapitre 11 METHODOLOGIE D ENQUÊTES
Chapitre 11 METHODOLOGIE D ENQUÊTES PLAN DU CHAPITRE 11 11.1 LE QUESTIONNAIRE 11.1.1 Qu est-ce qu un questionnaire? 11.1.2 Etapes de la construction d un questionnaire 11.1.3 Règles de base pour l élaboration
Introduction à la statistique non paramétrique
Introduction à la statistique non paramétrique Catherine MATIAS CNRS, Laboratoire Statistique & Génome, Évry http://stat.genopole.cnrs.fr/ cmatias Atelier SFDS 27/28 septembre 2012 Partie 2 : Tests non
Les modèles de choix binaire
Chapitre 4 Les modèles de choix binaire Les modèles de régression linéaire développés ci-dessus concernent une variable dépendante continue (comme par exemple le salaire ou le taux de chômage). Ce chapitre
La nouvelle planification de l échantillonnage
La nouvelle planification de l échantillonnage Pierre-Arnaud Pendoli Division Sondages Plan de la présentation Rappel sur le Recensement de la population (RP) en continu Description de la base de sondage
Chapitre 3 : INFERENCE
Chapitre 3 : INFERENCE 3.1 L ÉCHANTILLONNAGE 3.1.1 Introduction 3.1.2 L échantillonnage aléatoire 3.1.3 Estimation ponctuelle 3.1.4 Distributions d échantillonnage 3.1.5 Intervalles de probabilité L échantillonnage
VI. Tests non paramétriques sur un échantillon
VI. Tests non paramétriques sur un échantillon Le modèle n est pas un modèle paramétrique «TESTS du CHI-DEUX» : VI.1. Test d ajustement à une loi donnée VI.. Test d indépendance de deux facteurs 96 Différentes
L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ
L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ INTRODUCTION Données : n individus observés sur p variables quantitatives. L A.C.P. permet d eplorer les liaisons entre variables et
Programmes des classes préparatoires aux Grandes Ecoles
Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voie : Biologie, chimie, physique et sciences de la Terre (BCPST) Discipline : Mathématiques Seconde année Préambule Programme
Equation LIDAR : exp 2 Equation RADAR :
Contexte scientifique Systèmes LIDAR/RADAR Equation LIDAR : exp Equation RADAR : p (r) : puissance rétrodiffusée r : altitude ou profondeur. C : constante instrumentale. β : coefficient de rétrodiffusion
Modèles Estimés sur Données de Panel
Modèles Estimés sur Données de Panel Introduction Il est fréquent en économétrie qu on ait à composer avec des données à deux dimensions : - une dimension chronologique - une dimension spatiale Par exemple,
Fiche qualité relative à l enquête Santé et Itinéraire Professionnel 2010 (SIP) Carte d identité de l enquête
Fiche qualité relative à Santé et Itinéraire Professionnel 2010 (SIP) Nom Années de Périodicité Panel (suivi d échantillon) Services concepteurs Service réalisant Sujets principaux traités dans Carte d
Contents. 1 Introduction Objectifs des systèmes bonus-malus Système bonus-malus à classes Système bonus-malus : Principes
Université Claude Bernard Lyon 1 Institut de Science Financière et d Assurances Système Bonus-Malus Introduction & Applications SCILAB Julien Tomas Institut de Science Financière et d Assurances Laboratoire
Une introduction. Lionel RIOU FRANÇA. Septembre 2008
Une introduction INSERM U669 Septembre 2008 Sommaire 1 Effets Fixes Effets Aléatoires 2 Analyse Classique Effets aléatoires Efficacité homogène Efficacité hétérogène 3 Estimation du modèle Inférence 4
Le modèle de régression linéaire
Chapitre 2 Le modèle de régression linéaire 2.1 Introduction L économétrie traite de la construction de modèles. Le premier point de l analyse consiste à se poser la question : «Quel est le modèle?». Le
Soutenance de stage Laboratoire des Signaux et Systèmes
Soutenance de stage Laboratoire des Signaux et Systèmes Bornes inférieures bayésiennes de l'erreur quadratique moyenne. Application à la localisation de points de rupture. M2R ATSI Université Paris-Sud
Interception des signaux issus de communications MIMO
Interception des signaux issus de communications MIMO par Vincent Choqueuse Laboratoire E 3 I 2, EA 3876, ENSIETA Laboratoire LabSTICC, UMR CNRS 3192, UBO 26 novembre 2008 Interception des signaux issus
Notes de cours Statistique avec le logiciel R
Notes de cours Statistique avec le logiciel R Shuyan LIU [email protected] http ://samm.univ-paris1.fr/shuyan-liu-enseignement Année 2013-2014 Chapitre 1 Introduction L objectif de ce cours est
1 Définition de la non stationnarité
Chapitre 2: La non stationnarité -Testsdedétection Quelques notes de cours (non exhaustives) 1 Définition de la non stationnarité La plupart des séries économiques sont non stationnaires, c est-à-direqueleprocessusquiles
NON-LINEARITE ET RESEAUX NEURONAUX
NON-LINEARITE ET RESEAUX NEURONAUX Vêlayoudom MARIMOUTOU Laboratoire d Analyse et de Recherche Economiques Université de Bordeaux IV Avenue. Leon Duguit, 33608 PESSAC, France tel. 05 56 84 85 77 e-mail
Travaux dirigés d introduction aux Probabilités
Travaux dirigés d introduction aux Probabilités - Dénombrement - - Probabilités Élémentaires - - Variables Aléatoires Discrètes - - Variables Aléatoires Continues - 1 - Dénombrement - Exercice 1 Combien
IFT3245. Simulation et modèles
IFT 3245 Simulation et modèles DIRO Université de Montréal Automne 2012 Tests statistiques L étude des propriétés théoriques d un générateur ne suffit; il estindispensable de recourir à des tests statistiques
L Econométrie des Données de Panel
Ecole Doctorale Edocif Séminaire Méthodologique L Econométrie des Données de Panel Modèles Linéaires Simples Christophe HURLIN L Econométrie des Données de Panel 2 Figure.: Présentation Le but de ce séminaire
Mémoire d actuariat - promotion 2010. complexité et limites du modèle actuariel, le rôle majeur des comportements humains.
Mémoire d actuariat - promotion 2010 La modélisation des avantages au personnel: complexité et limites du modèle actuariel, le rôle majeur des comportements humains. 14 décembre 2010 Stéphane MARQUETTY
La représentativité d un échantillon et son test par le Khi-deux Testing the representativeness of a sample
Tutorials in Quantitative Methods for Psychology 212, Vol. 8(3), p. 173-181. La représentativité d un échantillon et son test par le Khi-deux Testing the representativeness of a sample Louis Laurencelle
Analyse stochastique de la CRM à ordre partiel dans le cadre des essais cliniques de phase I
Analyse stochastique de la CRM à ordre partiel dans le cadre des essais cliniques de phase I Roxane Duroux 1 Cadre de l étude Cette étude s inscrit dans le cadre de recherche de doses pour des essais cliniques
TESTS PORTMANTEAU D ADÉQUATION DE MODÈLES ARMA FAIBLES : UNE APPROCHE BASÉE SUR L AUTO-NORMALISATION
TESTS PORTMANTEAU D ADÉQUATION DE MODÈLES ARMA FAIBLES : UNE APPROCHE BASÉE SUR L AUTO-NORMALISATION Bruno Saussereau Laboratoire de Mathématiques de Besançon Université de Franche-Comté Travail en commun
Etude des propriétés empiriques du lasso par simulations
Etude des propriétés empiriques du lasso par simulations L objectif de ce TP est d étudier les propriétés empiriques du LASSO et de ses variantes à partir de données simulées. Un deuxième objectif est
Christophe SANNIER [email protected]
Systèmes d Information à Référence Spatiale Utilisation d un Estimateur de Régression avec des Données Landsat pour l Estimation de l Etendu et des Changements du Couvert Forestier du Gabon de 1990 à 2010
Baccalauréat ES/L Amérique du Sud 21 novembre 2013
Baccalauréat ES/L Amérique du Sud 21 novembre 2013 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats 5 points Une entreprise informatique produit et vend des clés USB. La vente de ces clés est réalisée
Enjeux mathématiques et Statistiques du Big Data
Enjeux mathématiques et Statistiques du Big Data Mathilde Mougeot LPMA/Université Paris Diderot, [email protected] Mathématique en Mouvements, Paris, IHP, 6 Juin 2015 M. Mougeot (Paris
Chapitre 7. Statistique des échantillons gaussiens. 7.1 Projection de vecteurs gaussiens
Chapitre 7 Statistique des échantillons gaussiens Le théorème central limite met en évidence le rôle majeur tenu par la loi gaussienne en modélisation stochastique. De ce fait, les modèles statistiques
Gestion obligataire passive
Finance 1 Université d Evry Séance 7 Gestion obligataire passive Philippe Priaulet L efficience des marchés Stratégies passives Qu est-ce qu un bon benchmark? Réplication simple Réplication par échantillonnage
Relation entre deux variables : estimation de la corrélation linéaire
CHAPITRE 3 Relation entre deux variables : estimation de la corrélation linéaire Parmi les analyses statistiques descriptives, l une d entre elles est particulièrement utilisée pour mettre en évidence
IBM SPSS Regression 21
IBM SPSS Regression 21 Remarque : Avant d utiliser ces informations et le produit qu elles concernent, lisez les informations générales sous Remarques sur p. 46. Cette version s applique à IBM SPSS Statistics
TESTS D HYPOTHÈSE FONDÉS SUR LE χ². http://fr.wikipedia.org/wiki/eugénisme
TESTS D HYPOTHÈSE FONDÉS SUR LE χ² http://fr.wikipedia.org/wiki/eugénisme Logo du Second International Congress of Eugenics 1921. «Comme un arbre, l eugénisme tire ses constituants de nombreuses sources
ELEMENTS DE COMPTABILITE NATIONALE
ELEMENTS DE COMPTABILITE NATIONALE Cours de M. Di Roberto Université Victor Segalen Bordeaux 2 Bibliographie Ce cours s inspire largement des ouvrages essentiels suivants. Merci à leurs auteurs. BOSSERELLE
Modélisation géostatistique des débits le long des cours d eau.
Modélisation géostatistique des débits le long des cours d eau. C. Bernard-Michel (actuellement à ) & C. de Fouquet MISTIS, INRIA Rhône-Alpes. 655 avenue de l Europe, 38334 SAINT ISMIER Cedex. Ecole des
Tests du χ 2. on accepte H 0 bonne décision erreur de seconde espèce on rejette H 0 erreur de première espèce bonne décision
Page n 1. Tests du χ 2 une des fonctions des statistiques est de proposer, à partir d observations d un phénomène aléatoire (ou modélisé comme tel) une estimation de la loi de ce phénomène. C est que nous
Licence MASS 2000-2001. (Re-)Mise à niveau en Probabilités. Feuilles de 1 à 7
Feuilles de 1 à 7 Ces feuilles avec 25 exercices et quelques rappels historiques furent distribuées à des étudiants de troisième année, dans le cadre d un cours intensif sur deux semaines, en début d année,
Terminale STMG Lycée Jean Vilar 2014/2015. Terminale STMG. O. Lader
Terminale STMG O. Lader Table des matières Interrogation 1 : Indice et taux d évolution........................... 2 Devoir maison 1 : Taux d évolution................................ 4 Devoir maison 1
Introduction à l économétrie : Spécifications, formes fonctionnelles, hétéroscédasticité et variables instrumentales
Introduction à l économétrie : Spécifications, formes fonctionnelles, hétéroscédasticité et variables instrumentales Pierre Thomas Léger IEA, HEC Montréal 2013 Table des matières 1 Introduction 2 2 Spécifications
L approche de régression par discontinuité. Thomas Lemieux, UBC Atelier de formation du Congrès de l ASDEQ Le 18 mai 2011
L approche de régression par discontinuité Thomas Lemieux, UBC Atelier de formation du Congrès de l ASDEQ Le 18 mai 2011 Plan de la présentation L approche de régression par discontinuité (RD) Historique
BASE CONCEPTUELLE POUR L ANALYSE DES INCERTITUDES
A PPENDICE 1 BASE CONCEPTUELLE POUR L ANALYSE DES INCERTITUDES Recommendations du GIEC en matière de bonnes pratiques et de gestion des incertitudes pour les inventaires nationaux A1.1 Appendice 1 COPRESIDENTS,
MÉTHODE DE MONTE CARLO.
MÉTHODE DE MONTE CARLO. Alexandre Popier Université du Maine, Le Mans A. Popier (Le Mans) Méthode de Monte Carlo. 1 / 95 PLAN DU COURS 1 MÉTHODE DE MONTE CARLO 2 PROBLÈME DE SIMULATION Théorème fondamental
AVANT-PROPOS Thierry Rocher
AVANT-PROPOS Thierry Rocher Le thème de l évaluation est un sujet récurrent de débat dans le domaine de l éducation. Encore est-il important de bien préciser ce dont il s agit, tant les formes d évaluations
Méthodologie du calcul de la VaR de marché : revue de l approche basée sur des simulations historiques
Méthodologie du calcul de la VaR de marché : revue de l approche basée sur des simulations historiques Asshvin Gajadharsingh Mesure et analyse quantitative du risque Caisse de dépôt et placement du Québec
FOAD COURS D ECONOMETRIE 1 CHAPITRE 2 : Hétéroscédasicité des erreurs. 23 mars 2012.
FOAD COURS D ECONOMETRIE CHAPITRE 2 : Hétéroscédasicité des erreurs. 23 mars 202. Christine Maurel Maître de conférences en Sciences Economiques Université de Toulouse - Capitole Toulouse School of Economics-ARQADE
Exercice : la frontière des portefeuilles optimaux sans actif certain
Exercice : la frontière des portefeuilles optimaux sans actif certain Philippe Bernard Ingénierie Economique & Financière Université Paris-Dauphine Février 0 On considère un univers de titres constitué
Tests semi-paramétriques d indépendance
Tests semi-paramétriques d indépendance Bernard Colin et Ernest Monga Département de Mathématiques Université de Sherbrooke Sherbrooke J1K-2R1 (Québec) Canada Rapport de recherche N o 139 Abstract Let
Etude d un cas industriel : Optimisation de la modélisation de paramètre de production
Revue des Sciences et de la Technologie RST- Volume 4 N 1 /janvier 2013 Etude d un cas industriel : Optimisation de la modélisation de paramètre de production A.F. Bernate Lara 1, F. Entzmann 2, F. Yalaoui
Modèles et Méthodes de Réservation
Modèles et Méthodes de Réservation Petit Cours donné à l Université de Strasbourg en Mai 2003 par Klaus D Schmidt Lehrstuhl für Versicherungsmathematik Technische Universität Dresden D 01062 Dresden E
Estimation: intervalle de fluctuation et de confiance. Mars 2012. IREM: groupe Proba-Stat. Fluctuation. Confiance. dans les programmes comparaison
Estimation: intervalle de fluctuation et de confiance Mars 2012 IREM: groupe Proba-Stat Estimation Term.1 Intervalle de fluctuation connu : probabilité p, taille de l échantillon n but : estimer une fréquence
NOTE SUR LA MODELISATION DU RISQUE D INFLATION
NOTE SUR LA MODELISATION DU RISQUE D INFLATION 1/ RESUME DE L ANALYSE Cette étude a pour objectif de modéliser l écart entre deux indices d inflation afin d appréhender le risque à très long terme qui
Correction de l examen de la première session
de l examen de la première session Julian Tugaut, Franck Licini, Didier Vincent Si vous trouvez des erreurs de Français ou de mathématiques ou bien si vous avez des questions et/ou des suggestions, envoyez-moi
Crédit à la consommation, un bon outil pour la rentrée?
Crédit à la consommation, un bon outil pour la rentrée? Contexte Empruntis intervient sur le crédit depuis 15 ans 370 000 ménages nous sollicitent chaque année pour leur besoin en crédit à la consommation
$SSOLFDWLRQGXNULJHDJHSRXUOD FDOLEUDWLRQPRWHXU
$SSOLFDWLRQGXNULJHDJHSRXUOD FDOLEUDWLRQPRWHXU Fabien FIGUERES [email protected] 0RWVFOpV : Krigeage, plans d expériences space-filling, points de validations, calibration moteur. 5pVXPp Dans le
