Commande Prédictive. J. P. Corriou. LSGC-ENSIC-CNRS, Nancy.

Dimension: px
Commencer à balayer dès la page:

Download "Commande Prédictive. J. P. Corriou. LSGC-ENSIC-CNRS, Nancy. e-mail : corriou@ensic.inpl-nancy.fr"

Transcription

1 Commande Prédictive J P Corriou LSGC-ENSIC-CNRS, Nancy

2 Ý Consigne Trajectoire de référence Ý Ö Réponse Ý Horizon de prédiction À Ô ¹ Ù ¹ Temps Entrée Ù Horizon de commande À ¹ ¹ Passé Instant actuel Futur Temps d échantillonnage FIG 1 Principe de la Commande Prédictive basée sur le Modèle avec ses horizons de prédiction et de commande Objectif : maintenir les variables de commande proches de leurs consignes tout en respectant les contraintes opératoires du procédé

3 Premières publications 1978 : J Richalet, A Rault, JL Testud, J Papon, "Model Predictive Heuristic Control : Applications to Industrial processes", Automatica, 14, (1978) 1979 : C R Cutler, B L Ramaker, "Dynamic matrix control - a computer control algorithm", AIChE Annual Meeting, Houston, Texas (1979) Remarque importante : - développement par des sociétés industrielles : Adersa, Shell - ces articles concernent des applications industrielles complexes : distillation, FCC en pétrochimie

4 Nombreuses variantes et dénominations - IDCOM : IDentification-COMmand (Richalet et al) en tant que MAC (Model Algorithmic Control) - DMC : Dynamic Matrix Control (Cutler, Ramaker, 1979) - GPC : Generalized Predictive Control (Clarke, 1987) - EPSAC : Extended Prediction Self-Adaptive Control (Keyer, Cauwenberghe 1985) - EHAC : Extended Horizon Adaptive Control (Ydstie, 1984)

5 Intérêt selon Richalet d un algorithme de commande par optimisation Différents niveaux distingués : Niveau 0 : commande des systèmes esclaves (vannes) par des PID Niveau 1 : commande dynamique du procédé sous forme multivariable Niveau 2 : optimisation des consignes par minimisation de fonctions de coût Niveau 3 : ordonnancement spatial et temporel de la production Conclusion : Bénéfices économiques des niveaux 0 et 1 faibles µ porter l effort sur le niveau 2 (optimisation dynamique)

6 Objectifs généraux selon (Qin et Badgwell, 1996) de la Commande Prédictive Basée sur le Modèle 1 éviter la violation des contraintes d entrée et de sortie 2 amener les variables manipulées vers leurs valeurs stationnaires optimales (optimisation dynamique par rapport aux entrées), 3 amener les variables commandées vers leurs valeurs stationnaires optimales en prenant en compte les degrés de liberté restants (optimisation dynamique par rapport aux sorties), 4 éviter des variations excessives des variables manipulées, 5 lorsque les signaux et les actionneurs sont en défaut, commander une aussi grande partie du procédé que possible Les codes commerciaux de MPC respectent plus ou moins ces points de différentes manières

7 Démarche possible (Qin et Badgwell, 1996) - entrées Ù, perturbations, sorties Ý connues à l instant - mise à jour des sorties Calcul d un biais entre la sortie mesurée et la sortie prédite : Ý Ñ Ý ajout du biais à la sortie du modèle pour les prédictions suivantes : Ý Ü µ - détermination des entrées à manipuler et des sorties à commander (optimisation basée sur les degrés de liberté) - conditionnement mesuré par Ì ( est la matrice de gain du procédé) Améliorer ce conditionnement - optimisation stationnaire locale (éventuellement modèle non linéaire avec contraintes)

8 - optimisation dynamique : ÑÒ Ù Ù ½ Ù À ½ Â avec : Â ÈÀ Ô ½ Ý ÈÀ ½ É ¼ Ù ÈÀ ½ Ë ¼ Ù Ê soumise aux contraintes non linéaires du modèle : Ü Ü ½ Ù ½ µ ½ À Ô Ý Ü µ ½ À Ô et aux contraintes d inégalité des variables manipulées et commandées : Ù ÑÒ Ù Ù ÑÜ ½ À ½ Ù ÑÒ Ù Ù ÑÜ ½ À ½ Ý ÑÒ Ý Ý ÑÜ ½ À Ô ½ - hiérarchisation des contraintes : contraintes dures et contraintes douces - spécification des trajectoires de sortie et d entrée (consigne, zone, trajectoire de référence) - spécification des horizons de prédiction et de commande - identification (méthodes à erreur d équation ou erreur de sortie) Réponses impulsionnelles (IDCOM, HIECON) ou indicielles (DMC) souvent utilisées (intérêt : simplicité d où popularité dans l industrie) - réglage du régulateur Simulation hors-ligne Tests de régulation, poursuite, respect des contraintes, robustesse

9 Commande prédictive linéaire basée sur le modèle Description de DMC pour un système SISO Utilisation de la réponse indicielle : Ý ½µ Ý Å ½ Ù ½ µ Å ½ Ù Å µ Ù µ Å horizon du modèle "ss" : état stationnaire Décomposition de la prédiction de sortie basée sur les entrées passées et futures selon : Å Ý Ðµ Ý Ù Ð µ Ð ½ ßÞ Ð effet des entrées passées е ßÞ Ð effet des perturbations prédites Ð Ù Ð µ ½ ßÞ Ð effet des entrées futures Au-delà de l horizon de commande À, ie après l instant À, l entrée manipulée est supposée constante : Ù µ ¼ À

10 Définition de la prédiction de sortie correspondant à l influence des variations des entrées passées : Ý Ðµ Ý Å Ð ½ Calcul du vecteur des prédictions de sortie Ù Ð µ Ý ½µ ½ Ù µ Ý Ù ½µ Å Ù Å ½µ ½µ ½ Ù µ Ý ½µ ½µ Ý À µ ½ Ù À ½µ À Ù µ Ý À µ À µ Ý À ½µ Ù À ½µ À ½ Ù µ Ý À ½µ À ½µ Ý À Ô µ Å Ù À ½µ Å Ù µ d où : Ý ½µ Ý À Ô µ Ý À Ô µ À Ô µ si À Ô À Å ½ Ý ½µ Ý À Ô µ ½µ À Ô µ Ù µ Ù À ½µ

11 est la Matrice Dynamique de Commande du système de dimension À Ô À : ½ ¼ ¼ ½ À À ½ ½ Å Å ½ Å À ½ Å Å Å Å Å Å À lignes Å ½µ lignes ÀÔ À Å ½µ lignes La matrice dynamique est la même que la matrice de la commande prédictive généralisée Calcul du vecteur des prédictions de sortie Ý Ðµ correspondant à l influence des variations des entrées passées (en supposant À Ô Å) : Ý ½µ Ý Å ½µ Ý Åµ Ý À Ô µ Ý Ý Å Å ½ ¼ Å ¼ ¼ Å ¼ ¼ ¼ ¼ ¼ ¼ Ù Å ½µ Ù ½µ

12 Influence des effets non modélisés : µ Ý µ Ý µ et estimation des perturbations µ е µ Ý Ñ µ Ý µ Ý Ñ µ Ý È Å½ Ù µ Ð ½ À Ô Définition d un critère quadratique :  À Ô ½ Ý µ Ý ref µµ Minimisation par rapport au vecteur des entrées futures : Ù µ Ù µ Ù À ½µ Ì Système linéaire résultant : Ý ref ½µ Ý ½µ µ ½µ Ý ref À Ô µ Ý À Ô µ µ À Ô µ ½µ Ù µ Solution au sens des moindres carrés : Ù µ Ì µ ½ Ì ½µ Seule la première composante du vecteur Ù µ est implantée Choix : À petit et À Ô assez grand

13 Description de DMC pour un système MIMO Système multivariable (Ò Ù entrées, Ò Ý sorties) représenté par : Ý ½µ Ý ¼ Å ½ Ù ½µ ½µ Matrice dynamique multivariable composée de matrices élémentaires : ½½ ½ÒÙ ÒÝ ½ ÒÝ Ò Ù Modération des entrées en introduisant une matrice de poids diagonale : diag ½ ßÞ ½Ð ÒÙ ÒÙ µ À valeurs et pondération sélective des sorties par diagonale, : diag ½ ßÞ ½Ð ÒÝ ÒÝ µ À Ô valeurs Nouveau critère quadratique :  ½ ½ ½ Ý µ Ý Ö µ Ì ÙÌ µ Ì Ù µ ½ Ù µ ½µ Ì Ì ½ ÙÌ µ Ì Ù µ Solution en absence de contraintes : Ù µ Ì Ý µ Ì Ì Ì ½ Ì Ì Ý Ö µ Ù µ ½µ ½µ

14 Description de QDMC (Quadratic Dynamic Matrix Control) Prise en compte des contraintes : - contraintes affectant les entrées (ex : saturations de vannes), Ù min Ù Ù max (1) - contraintes affectant les sorties (ex : éviter les dépassements), - contraintes affectant d autres variables qui doivent être maintenues à l intérieur de limites - contraintes ajoutées au procédé afin d éviter des réponses inverses provoquant un comportement à non-minimum de phase - contraintes terminales sur l état Résumé sous forme d un système d inégalités linéaires : Ù µ ½µ (2) Formulation comme un problème de programmation quadratique : ÑÒ Ù µ ½ Ù µì À Ù µ ½µ Ì Ù µ soumis aux contraintes (1) et (2) (3)

15 Formulation dans l espace d état : OBMPC (Observer Based Model Predictive Control) Idée originale (Li, 1989) : représenter la trajectoire complète pour un système monovariable comme une suite d états : Ü ½ µ Ü ½µ ½ Ù ½µ Ü µ Ü ½ ½µ Ù ½µ ½ Å Utilisation de ces équations par rapport à la sortie prédite correspondant à l influence des variations passées : Ý ½µ Ý ½ ½µ Ù ½µ Pour un système MIMO (Ò Ù Ò Ý ), représentation du système à chaque instant par la matrice Ë des coefficients des réponses indicielles : ½½ ½ ½ÒÙ Ë ½ ÒÙ (4) ÒÝ ½ ÒÝ ÒÝ Ò Ù ( Ð coefficient indiciel à l instant de la sortie correspondant à l entrée échelon Ð) En absence de perturbations, modèle correspondant dans l espace d état : µ ½µ Ë Ù ½µ Ý µ µ

16 Introduction de perturbations comme dans la commande LQG, modèle correspondant dans l espace d état : avec : µ ½µ Ë Ù ½µ Ì Û ½µ Ý µ µ Ý µ Ý µ Ú µ µ Ý µ Ì Ý ½µ Ì Ý Å ½µ Ì Ü Ù µ Ì Ü Û µ Ì Ì Ý µ Ý ½ µ Ý Ò Ý µ Ì Ù µ Ù ½ µ Ù ÒÙ µ Ì la matrice de dimension ÅÒ Ý dim Ü Ù dim Ü Û µ : ¼ Á ÒÝ ¼ ¼ ¼ ¼ ¼ ¼ Á ÒÝ ¼ ¼ ¼ Á ÒÝ ¼ ¼ ¼ ¼ Á ÒÝ Ù Û ¼ ¼ ¼ Ù ¼ ¼ ¼ ¼ ¼ Û la matrice Ë : la matrice : Ë ¼ Á ÒÝ Ë ½ Ë Å Ù ¼ ¼

17 Dynamiques résiduelles du procédé et de perturbation incorporées : Ü Ù ½µ Ù Ü Ù µ Ù Ù µ Ü Û ½µ Û Ü µ Û Û µ Prédiction des sorties futures en utilisant un observateur d état (ex : filtre linéaire optimal de Kalman) de matrice de gain à Etape de prédiction du modèle : ½µ µ Ë Ù µ Etape de correction basée sur les mesures : avec : µ ½µ Ã Ý µ Ý ½µ ½µ Ý ½µ Ì Ý ½ ½µ Ì Ý Å ½µ Ì Ü Ù Ü Û Ì Ý ½µ µ

18 Optimisation : avec : Â ½µ Ê ½µ Í µ Í µ Ù µ Ì Ù ½µ Ì Ù À ½µ Ì Ì ½µ ÀÔ µ Ë ÀÔ Í µ Ý ½µ Ì Ý À Ô µ Ì Ì Ê ½µ Ö ½µ Ì Ö À Ô µ Ì Ì Ê trajectoire de référence La matrice Ë ÀÔ est : Ë ½ ¼ ¼ ¼ Ë Ë ½ ¼ ¼ Ë ÀÔ Ë À Ë À ½ Ë ½ Ë ÀÔ Ë ÀÔ ½ Ë ÀÔ À ½ ÀÔ ¼ Á ÒÝ À Ô Solution au sens des moindres carrés de OBMPC : Í µ Ë Ì À Ô Ì Ë ÀÔ Ì ½ Ë Ì À Ô Ì Ê ½µ ÀÔ µ

19 Commande Prédictive Non Linéaire Plusieurs approches (ex : linéarisation) Ici, seule approche franchement non linéaire décrite Deux obstacles principaux concernant l extension de la commande prédictive des systèmes linéaires aux systèmes non linéaires : la question de la stabilité pour les systèmes contraints à horizon fini Possibilité d introduire différents types de contraintes pour garantir la stabilité la lourdeur du calcul numérique : un problème d optimisation non linéaire doit être résolu en ligne et il n existe en général pas de garantie de trouver un optimum global Modèle non linéaire : Ü Øµ Ü Øµ ٠صµ Ü ¼µ Ü ¼ soumis aux contraintes d entrée et d état : Ü Øµ avec : Ü Ò Ü ÑÒ Ü Ü ÑÜ Ù Øµ Í avec : Í Ù Ò Ù Ù ÑÒ Ù Ù ÑÜ Formulation du problème de commande prédictive non linéaire comme un problème de commande optimale en boucle ouverte à horizon fini : ÑÒ Ù Â Ü Ù Ì Ôµ soumis à : Ø ÌÔ Ø Ü Ü Øµ ص É Ù µ Ê Ü Øµ Ü Ùµ Ü Ø Ü Øµ Ü Øµ et : Ü Ü Øµ ص Ù µ Í

20 Approches utilisées : (Mayne et Michalska, 1990) introduisent une contrainte d égalité terminale : Ü Ø Ì Ô µ ¼ qui force l état vers zéro à la fin de l horizon de prédiction (Michalska et Mayne, 1993) relaxent cette condition en la transformant en une contrainte d inégalité terminale : Ü Ø Ì Ô µ Å Å région terminale constituant un domaine d attraction pour le système non linéaire commandé localement par une loi de retour d état linéaire : Ù Ã Ü Ainsi proposition d un régulateur double comme régulateur à horizon glissant : - en dehors de la région terminale, un régulateur à horizon glissant est appliqué, - dans la région terminale, loi de retour d état linéaire La bascule entre les deux régulateurs doit être réalisée Pour être possible, l état à la fin de l horizon fini doit se trouver sur la frontière de la région terminale Le problème d optimisation suivant doit alors être résolu : ÑÒ ÙÌ Ô Â Ü Ù Ì Ô µ avec Ì Ô Ì, horizon de commande

21 Approche de Chen et Allgöwer (1998) : Introduction d un terme de pénalité terminale : ÑÒÙ Â Ü Ù Ì Ôµ Ü Ø Ì Ô Ü Øµ ص È Ø ÌÔ Ü Ü Øµ ص É Ù µ Ê Algorithme : Ø Etape 1 : Calculer la linéarisation jacobienne µ, puis déterminer le retour d état linéaire localement stabilisant : Ù Ã Ü Etape 2 : choisir une constante positive «ÑÜ Ã µ et résoudre l équation de Lyapunov : à «Áµ Ì È È Ã «Áµ É Ã Ì Ê Ãµ afin d obtenir la matrice définie positive È,avec à à Etape 3 : Trouver le plus grand ½ définissant la région Å ½ telle que les contraintes d état et d entrée soient satisfaites lorsque Ü Å ½ : Å ½ Ü Ò Ü Ì È Ü ½ et Å ½ et ÃÜ Í Ü Å ½ Etape 4 : Trouver le plus grand ¼ ½ spécifiant une région terminale Å : ÑÜ Ü Å Ü Ò Ü Ì È Ü telle que l état optimal solution du problème d optimisation suivant soit non positive : Ü Ì È Üµ «Ü Ì È Ü Ü Ì È Ü avec : ܵ Ü Ãܵ à Ü

22 Etape 5 : Choisir l horizon de prédiction Ì Ô satisfaisant : Ì Ô Ì Ì Ì temps maximum nécessaire pour que le système non commandé atteigne Å en partant de Ü ¼

23 Commande prédictive linéaire d un FCC Flue gas Gaseous Products REGENERATOR Stripping Steam PARTICLE SEPARATOR Dilute phase STRIPPER Dense phase Spent Catalyst RISER Air Regenerated Catalyst Feed Oil FIG 2 Schéma d une unité de cracking catalytique Entrées : Ù ½ débit de catalyseur régénéré, Ù débit d air Sorties : température à la sortie du riser Ì Ö ½µ, température dans le régénérateur Ì Ö

24 Modèle simplifié du FCC Riser Température d alimentation : Ì Ö ¼µ Ø ÔØ Ì Ö ÔÓÐ Ì ÓÐ Ì µ À ÚÔ ÔÓ Ì ÓÐ µ Ø ÔØ ÔÓ Fractions massiques d huile et d essence le long du riser : Ý Ó Température le long du riser : Þ ½ Ý Ó ÓÛÖ Ø Ý Þ «½ Ý Ó Ý µ ÓÛÖ Ø Ì Ö À Þ ÖÖ Ý Ó Ø ÔØ ÔÓÐ Ô ØÑ Þ Séparateur Coke sur le catalyseur : Ó Ô Ø Ø ÓÖ ½µ Ó Ô µ Ñ Ø Ô Température : Ì Ô Ø Ø ÔØ Ì Ö ½µ Ì Ô µ Ñ Ø Ô ÔØ

25 Régénérateur Coke sur le catalyseur : ÓÖ Ø Ø Ó Ô ÓÖ µ Ö Ñ ØÖ Fraction molaire de O dans le lit dense : Ü Ç Ø ½ Ñ ÖÖ Température : Ö Å ÛÖ Ü Ç Ò Ü Ç µ ½ µ Ò À ½ µ Ö Å ÛÓ Ì Ö Ø ½ Ñ ØÖ ÔØ Ø ÔØ Ì Ô Ö ÔÖ Ì Ö Ø ÔØ Ö ÔÖ µ Ì Ö À Ö Å ÛÓ

26 Réponses en boucle ouverte Riser Temperature (K) Regenerator Temperature (K) Temperature (K) Temperature (K) Time Time FIG 3 Variations de température à la sortie du riser Ì Ö ½µ et de temperature dans le régénérateur Ì Ö pour des échelons sur le débit d air de 5% 788 Riser Temperature (K) 982 Regenerator Temperature (K) Temperature (K) Temperature (K) Time Time FIG 4 Variations de température à la sortie du riser Ì Ö ½µ et de temperature dans le régénérateur Ì Ö pour des échelons sur le débit de catalyseur de 5%

27 Commande prédictive QDMC du FCC 308 FCC Flowrate of regenerated catalyst 264 FCC Flowrate of air Flowrate (kg/s) Flowrate (kg/s) Time (s) Time (s) FIG 5 Variations des entrées manipulées du FCC (QDMC) FCC Riser Temperature at outlet of riser Setpoint FCC Regenerator Temperature in regenerator Setpoint Temperature (K) Temperature (K) Time (s) Time (s) FIG 6 Variations des sorties commandées du FCC (QDMC) Choix : horizon du modèle À Ñ ¼, horizon de prédiction À Ô ¼, horizon de commande À Poids sur les entrées égaux à 1 et sur les sorties égaux à 10

28 Commande prédictive avec observateur OBMPC du FCC Flowrate (kg/s) FCC Flowrate of regenerated catalyst Flowrate (kg/s) FCC Flowrate of air Time (s) Time (s) FIG 7 Variations des entrées manipulées du FCC (OBMPC) FCC Riser Temperature at outlet of riser Setpoint FCC Regenerator Temperature in regenerator Setpoint Temperature (K) Temperature (K) Time (s) Time (s) FIG 8 Variations des sorties commandées du FCC (OBMPC) Choix : horizon du modèle À Ñ ¼, horizon de prédiction À Ô ¼, horizon de commande À Filtre de Kalman Ecart-type des mesures ¼ Poids sur les entrées et les sorties égaux à 1

Contrôle par commande prédictive d un procédé de cuisson sous infrarouge de peintures en poudre.

Contrôle par commande prédictive d un procédé de cuisson sous infrarouge de peintures en poudre. Contrôle par commande prédictive d un procédé de cuisson sous infrarouge de peintures en poudre. Isabelle Bombard, Bruno da Silva, Pascal Dufour *, Pierre Laurent, Joseph Lieto. Laboratoire d Automatique

Plus en détail

ENSPS 3A ISAV Master ISTI AR. J. Gangloff

ENSPS 3A ISAV Master ISTI AR. J. Gangloff Commande prédictive ENSPS 3A ISAV Master ISTI AR J. Gangloff Plan 1.Introduction / Historique 2.Modélisation du système 3.Fonction de coût 4.Équations de prédiction 5.Commande optimale 6.Exemples 7.Réglage

Plus en détail

Analyse de la Commande Prédictive Floue : Algorithmes et Méthodologies de Solution

Analyse de la Commande Prédictive Floue : Algorithmes et Méthodologies de Solution République Algérienne Démocratique et Populaire MINISÈTRE DE L ENSEIGNEMENT SUPÉRIEUR ET DE LA RECHERCHE SCIENTIFIQUE MÉMOIRE DE MAGISTÈRE Présenté à L UNIVERSITÉ MENTOURI CONSTANTINE FACULTÉ DES SCIENCES

Plus en détail

I Stabilité, Commandabilité et Observabilité 11. 1 Introduction 13 1.1 Un exemple emprunté à la robotique... 13 1.2 Le plan... 18 1.3 Problème...

I Stabilité, Commandabilité et Observabilité 11. 1 Introduction 13 1.1 Un exemple emprunté à la robotique... 13 1.2 Le plan... 18 1.3 Problème... TABLE DES MATIÈRES 5 Table des matières I Stabilité, Commandabilité et Observabilité 11 1 Introduction 13 1.1 Un exemple emprunté à la robotique................... 13 1.2 Le plan...................................

Plus en détail

Nicolas Petit. Commande prédictive. Notes de cours Option Procédé Environnement. http ://cas.ensmp.fr/~petit/

Nicolas Petit. Commande prédictive. Notes de cours Option Procédé Environnement. http ://cas.ensmp.fr/~petit/ Nicolas Petit Commande prédictive Notes de cours Option Procédé Environnement http ://cas.ensmp.fr/~petit/ École Centrale Paris Année scolaire 2005-2006 Table des matières 1 Théorie générale de la commande

Plus en détail

الجمهىريت الجسائريت الديمقراطيت الشعبيت وزارة التعليم العالي و البحث العلمي

الجمهىريت الجسائريت الديمقراطيت الشعبيت وزارة التعليم العالي و البحث العلمي الجمهىريت الجسائريت الديمقراطيت الشعبيت وزارة التعليم العالي و البحث العلمي République Algérienne Démocratique et Populaire Ministère de l Enseignement Supérieur et de la Recherche Scientifique Ecole Nationale

Plus en détail

Utilisation d informations visuelles dynamiques en asservissement visuel Armel Crétual IRISA, projet TEMIS puis VISTA L asservissement visuel géométrique Principe : Réalisation d une tâche robotique par

Plus en détail

Mémoire de Juin 2010. PID versus PFC

Mémoire de Juin 2010. PID versus PFC Mémoire de Juin 21 PID versus PFC Joëlle.Mallet. IRA Jacques.Richalet. Guy Lavielle. Consultants Philippe.D.Perrichon - Sylvain.Girault. Sanofi-Aventis. Vitry sur Seine Introduction : L automatique industrielle

Plus en détail

Automatique Linéaire 1 Travaux Dirigés 1A ISMIN

Automatique Linéaire 1 Travaux Dirigés 1A ISMIN Automatique Linéaire 1 Travaux Dirigés Travaux dirigés, Automatique linéaire 1 J.M. Dutertre 2014 TD 1 Introduction, modélisation, outils. Exercice 1.1 : Calcul de la réponse d un 2 nd ordre à une rampe

Plus en détail

Mathématique et Automatique : de la boucle ouverte à la boucle fermée. Maïtine bergounioux Laboratoire MAPMO - UMR 6628 Université d'orléans

Mathématique et Automatique : de la boucle ouverte à la boucle fermée. Maïtine bergounioux Laboratoire MAPMO - UMR 6628 Université d'orléans Mathématique et Automatique : de la boucle ouverte à la boucle fermée Maïtine bergounioux Laboratoire MAPMO - UMR 6628 Université d'orléans Maitine.Bergounioux@labomath.univ-orleans.fr Plan 1. Un peu de

Plus en détail

Ê ÙÐ Ø ÓÒ Ö Ò Ð Ý Ø Ñ ØÖ Ù Ö Ø ØÙÖ Ø Ð ÓÖ Ø Ñ Ö Ö Ï ÙØ Ð Ø ÙÐØ ÆÓØÖ ¹ Ñ Ä È Ü Æ ÑÙÖ Ð ÕÙ Û ÙØ Ð Ò Óº ÙÒ Ôº º Ê ÙÑ º ij ÑÔÓÖØ Ò Ð ÓÖ Ø Ñ Ö Ô ÖØ Ø ÓÒ Ö Ò Ð Ý Ø Ñ ØÖ Ù Ò³ Ø ÔÐÙ ÑÓÒØÖ Öº Ò Ø Ð Ó Ü ³ÙÒ ØÝÔ

Plus en détail

Formations EViews FORMATIONS GENERALES INTRODUCTIVES INTRO : INTRODUCTION A LA PRATIQUE DE L ECONOMETRIE AVEC EVIEWS

Formations EViews FORMATIONS GENERALES INTRODUCTIVES INTRO : INTRODUCTION A LA PRATIQUE DE L ECONOMETRIE AVEC EVIEWS Formations EViews FORMATIONS GENERALES INTRODUCTIVES DEB : DECOUVERTE DU LOGICIEL EVIEWS INTRO : INTRODUCTION A LA PRATIQUE DE L ECONOMETRIE AVEC EVIEWS FORMATIONS METHODES ECONOMETRIQUES VAR : MODELES

Plus en détail

Exercice : la frontière des portefeuilles optimaux sans actif certain

Exercice : la frontière des portefeuilles optimaux sans actif certain Exercice : la frontière des portefeuilles optimaux sans actif certain Philippe Bernard Ingénierie Economique & Financière Université Paris-Dauphine Février 0 On considère un univers de titres constitué

Plus en détail

Filtrage stochastique non linéaire par la théorie de représentation des martingales

Filtrage stochastique non linéaire par la théorie de représentation des martingales Filtrage stochastique non linéaire par la théorie de représentation des martingales Adriana Climescu-Haulica Laboratoire de Modélisation et Calcul Institut d Informatique et Mathématiques Appliquées de

Plus en détail

$SSOLFDWLRQGXNULJHDJHSRXUOD FDOLEUDWLRQPRWHXU

$SSOLFDWLRQGXNULJHDJHSRXUOD FDOLEUDWLRQPRWHXU $SSOLFDWLRQGXNULJHDJHSRXUOD FDOLEUDWLRQPRWHXU Fabien FIGUERES fabien.figueres@mpsa.com 0RWVFOpV : Krigeage, plans d expériences space-filling, points de validations, calibration moteur. 5pVXPp Dans le

Plus en détail

Programmation linéaire

Programmation linéaire Programmation linéaire DIDIER MAQUIN Ecole Nationale Supérieure d Electricité et de Mécanique Institut National Polytechnique de Lorraine Mathématiques discrètes cours de 2ème année Programmation linéaire

Plus en détail

Programmation linéaire

Programmation linéaire 1 Programmation linéaire 1. Le problème, un exemple. 2. Le cas b = 0 3. Théorème de dualité 4. L algorithme du simplexe 5. Problèmes équivalents 6. Complexité de l Algorithme 2 Position du problème Soit

Plus en détail

Ordonnancement robuste et décision dans l'incertain

Ordonnancement robuste et décision dans l'incertain Ordonnancement robuste et décision dans l'incertain 4 ème Conférence Annuelle d Ingénierie Système «Efficacité des entreprises et satisfaction des clients» Centre de Congrès Pierre Baudis,TOULOUSE, 2-4

Plus en détail

Sujet proposé par Yves M. LEROY. Cet examen se compose d un exercice et de deux problèmes. Ces trois parties sont indépendantes.

Sujet proposé par Yves M. LEROY. Cet examen se compose d un exercice et de deux problèmes. Ces trois parties sont indépendantes. Promotion X 004 COURS D ANALYSE DES STRUCTURES MÉCANIQUES PAR LA MÉTHODE DES ELEMENTS FINIS (MEC 568) contrôle non classant (7 mars 007, heures) Documents autorisés : polycopié ; documents et notes de

Plus en détail

Twincat PLC Temperature Controller. Régulation de Température à l aide de TwinCAT PLC.

Twincat PLC Temperature Controller. Régulation de Température à l aide de TwinCAT PLC. Twincat PLC Temperature Controller Régulation de Température à l aide de TwinCAT PLC. VERSION : 1.0 / JYL DATE : 28 Novembre 2005 1 Installation...4 2 Présentation :...4 3 Schéma fonctionnel :...5 4 Générateur

Plus en détail

Modèles à Événements Discrets. Réseaux de Petri Stochastiques

Modèles à Événements Discrets. Réseaux de Petri Stochastiques Modèles à Événements Discrets Réseaux de Petri Stochastiques Table des matières 1 Chaînes de Markov Définition formelle Idée générale Discrete Time Markov Chains Continuous Time Markov Chains Propriétés

Plus en détail

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications A. Optimisation sans contrainte.... Généralités.... Condition nécessaire et condition suffisante

Plus en détail

Monitoring continu et gestion optimale des performances énergétiques des bâtiments

Monitoring continu et gestion optimale des performances énergétiques des bâtiments Monitoring continu et gestion optimale des performances énergétiques des bâtiments Alexandre Nassiopoulos et al. Journée d inauguration de Sense-City, 23/03/2015 Croissance de la demande énergétique et

Plus en détail

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Recherche opérationnelle Les démonstrations et les exemples seront traités en cours Souad EL Bernoussi Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Table des matières 1 Programmation

Plus en détail

Manuel de validation Fascicule v4.25 : Thermique transitoire des structures volumiques

Manuel de validation Fascicule v4.25 : Thermique transitoire des structures volumiques Titre : TTLV100 - Choc thermique dans un tuyau avec condit[...] Date : 02/03/2010 Page : 1/10 Manuel de Validation Fascicule V4.25 : Thermique transitoire des structures volumiques Document : V4.25.100

Plus en détail

La régulation. Principe de régulation p. 2. La régulation PID p. 5. La régulation à modèle p. 12. Autres types de régulation p. 15

La régulation. Principe de régulation p. 2. La régulation PID p. 5. La régulation à modèle p. 12. Autres types de régulation p. 15 Le magazine Schneider Electric de l'enseignement technologique et professionnel Juin 2004 La régulation Principe de régulation p. 2 La régulation PID p. 5 La régulation est au cœur de toutes nos actions

Plus en détail

Programmation Linéaire - Cours 1

Programmation Linéaire - Cours 1 Programmation Linéaire - Cours 1 P. Pesneau pierre.pesneau@math.u-bordeaux1.fr Université Bordeaux 1 Bât A33 - Bur 265 Ouvrages de référence V. Chvátal - Linear Programming, W.H.Freeman, New York, 1983.

Plus en détail

Annexe 6. Notions d ordonnancement.

Annexe 6. Notions d ordonnancement. Annexe 6. Notions d ordonnancement. APP3 Optimisation Combinatoire: problèmes sur-contraints et ordonnancement. Mines-Nantes, option GIPAD, 2011-2012. Sophie.Demassey@mines-nantes.fr Résumé Ce document

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

Î ÐÙ Ø Ê Ñ ÙÖ Ô Ø Ð ÓÒÓÑ ÕÙ µ Ð Ê ÓÙÐ Ø ² Ì ÖÖÝ ÊÓÒ ÐÐ ÖÓÙÔ Ê Ö ÇÔ Ö Ø ÓÒÒ ÐÐ Ö Ø ÄÝÓÒÒ Ñ Ð ÐºÖ ÓÙÐ ØÖ ØÐÝÓÒÒ º Ö Ø ÖÖݺÖÓÒ ÐÐ Ö ØÐÝÓÒÒ º Ö ÈÐ Ò Ð³ ÒØ ÖÚ ÒØ ÓÒ ½º ÁÒØÖÓ ÙØ ÓÒ ÓÒ ÔÖÓÔÖ Ø Î ÐÙ ¹ Ø¹Ê Ä Ü

Plus en détail

Résolution de systèmes linéaires par des méthodes directes

Résolution de systèmes linéaires par des méthodes directes Résolution de systèmes linéaires par des méthodes directes J. Erhel Janvier 2014 1 Inverse d une matrice carrée et systèmes linéaires Ce paragraphe a pour objet les matrices carrées et les systèmes linéaires.

Plus en détail

Apports de la commande prédictive pour la régulation thermique des bâtiments

Apports de la commande prédictive pour la régulation thermique des bâtiments Apports de la commande prédictive pour la régulation thermique des bâtiments Petru-Daniel Moroşan, Romain Bourdais et Hervé Guéguen SUPELEC - IETR Avenue de la Boulaie - B.P. 81127 F-35511 Cesson-Sévigné

Plus en détail

UN PROCEDE DE SUPERVISION ET TELESURVEILLANCE A DISTANCE : UN OUTIL PEDAGOGIQUE FAVORISANT L INITIATION AU TRAVAIL DE GROUPE

UN PROCEDE DE SUPERVISION ET TELESURVEILLANCE A DISTANCE : UN OUTIL PEDAGOGIQUE FAVORISANT L INITIATION AU TRAVAIL DE GROUPE UN PROCEDE DE SUPERVISION ET TELESURVEILLANCE A DISTANCE : UN OUTIL PEDAGOGIQUE FAVORISANT L INITIATION AU TRAVAIL DE GROUPE Cyril Noirel (1), Didier Theilliol (2), Christophe Aubrun (3), Jean Christophe

Plus en détail

I. Programmation I. 1 Ecrire un programme en Scilab traduisant l organigramme montré ci-après (on pourra utiliser les annexes):

I. Programmation I. 1 Ecrire un programme en Scilab traduisant l organigramme montré ci-après (on pourra utiliser les annexes): Master Chimie Fondamentale et Appliquée : spécialité «Ingénierie Chimique» Examen «Programmation, Simulation des procédés» avril 2008a Nom : Prénom : groupe TD : I. Programmation I. 1 Ecrire un programme

Plus en détail

Modélisation intégrée des écoulements pour la gestion en temps réel d'un bassin versant anthropisé

Modélisation intégrée des écoulements pour la gestion en temps réel d'un bassin versant anthropisé 1 TGR Modélisation intégrée des écoulements pour la gestion en temps réel d'un bassin versant anthropisé Simon Munier Institut des Sciences et Industries du Vivant et de l'environnement (AgroParisTech)

Plus en détail

Contents. 1 Introduction Objectifs des systèmes bonus-malus Système bonus-malus à classes Système bonus-malus : Principes

Contents. 1 Introduction Objectifs des systèmes bonus-malus Système bonus-malus à classes Système bonus-malus : Principes Université Claude Bernard Lyon 1 Institut de Science Financière et d Assurances Système Bonus-Malus Introduction & Applications SCILAB Julien Tomas Institut de Science Financière et d Assurances Laboratoire

Plus en détail

CHAPITRE 1 : ETAT DE L ART.

CHAPITRE 1 : ETAT DE L ART. CHAPITRE 1 : ETAT DE L ART. 1. INTRODUCTION De nos jours, les machines tournantes sont de plus en plus performantes notamment en terme de rapport masse/puissance. Cela implique qu elles deviennent de plus

Plus en détail

Condition inf-sup pour l Elément Fini de Taylor-Hood È ¾ -iso-è ½

Condition inf-sup pour l Elément Fini de Taylor-Hood È ¾ -iso-è ½ Condition inf-sup pour l Elément Fini de Taylor-Hood È ¾ -iso-è ½ Patrick Ciarlet et Vivette Girault ciarlet@ensta.fr & girault@ann.jussieu.fr ENSTA & Laboratoire Jacques-Louis Lions, Paris 6 Condition

Plus en détail

Projet de Traitement du Signal Segmentation d images SAR

Projet de Traitement du Signal Segmentation d images SAR Projet de Traitement du Signal Segmentation d images SAR Introduction En analyse d images, la segmentation est une étape essentielle, préliminaire à des traitements de haut niveau tels que la classification,

Plus en détail

CAPTEURS - CHAINES DE MESURES

CAPTEURS - CHAINES DE MESURES CAPTEURS - CHAINES DE MESURES Pierre BONNET Pierre Bonnet Master GSI - Capteurs Chaînes de Mesures 1 Plan du Cours Propriétés générales des capteurs Notion de mesure Notion de capteur: principes, classes,

Plus en détail

INF6304 Interfaces Intelligentes

INF6304 Interfaces Intelligentes INF6304 Interfaces Intelligentes filtres collaboratifs 1/42 INF6304 Interfaces Intelligentes Systèmes de recommandations, Approches filtres collaboratifs Michel C. Desmarais Génie informatique et génie

Plus en détail

Intérêt du découpage en sous-bandes pour l analyse spectrale

Intérêt du découpage en sous-bandes pour l analyse spectrale Intérêt du découpage en sous-bandes pour l analyse spectrale David BONACCI Institut National Polytechnique de Toulouse (INP) École Nationale Supérieure d Électrotechnique, d Électronique, d Informatique,

Plus en détail

Intelligence précoce

Intelligence précoce Les données de procédé constituent une mine d informations très utiles pour l entreprise Geoff Artley Le secteur du raffinage est aujourd hui soumis à forte pression financière : amputation des marges,

Plus en détail

Évaluation de la régression bornée

Évaluation de la régression bornée Thierry Foucart UMR 6086, Université de Poitiers, S P 2 M I, bd 3 téléport 2 BP 179, 86960 Futuroscope, Cedex FRANCE Résumé. le modèle linéaire est très fréquemment utilisé en statistique et particulièrement

Plus en détail

Logique binaire. Aujourd'hui, l'algèbre de Boole trouve de nombreuses applications en informatique et dans la conception des circuits électroniques.

Logique binaire. Aujourd'hui, l'algèbre de Boole trouve de nombreuses applications en informatique et dans la conception des circuits électroniques. Logique binaire I. L'algèbre de Boole L'algèbre de Boole est la partie des mathématiques, de la logique et de l'électronique qui s'intéresse aux opérations et aux fonctions sur les variables logiques.

Plus en détail

Mortalité observée et mortalité attendue au cours de la vague de chaleur de juillet 2006 en France métropolitaine

Mortalité observée et mortalité attendue au cours de la vague de chaleur de juillet 2006 en France métropolitaine Mortalité observée et mortalité attendue au cours de la vague de chaleur de uillet en France métropolitaine FOUILLET A 1, REY G 1, JOUGLA E, HÉMON D 1 1 Inserm, U75, Villeuif, France. Inserm CépiDc, IFR9,

Plus en détail

Automatique Linéaire 1 1A ISMIN

Automatique Linéaire 1 1A ISMIN Automatique linéaire 1 J.M. Dutertre 2014 Sommaire. I. Introduction, définitions, position du problème. p. 3 I.1. Introduction. p. 3 I.2. Définitions. p. 5 I.3. Position du problème. p. 6 II. Modélisation

Plus en détail

La programmation linéaire : une introduction. Qu est-ce qu un programme linéaire? Terminologie. Écriture mathématique

La programmation linéaire : une introduction. Qu est-ce qu un programme linéaire? Terminologie. Écriture mathématique La programmation linéaire : une introduction Qu est-ce qu un programme linéaire? Qu est-ce qu un programme linéaire? Exemples : allocation de ressources problème de recouvrement Hypothèses de la programmation

Plus en détail

Introduction à l informatique temps réel Pierre-Yves Duval (cppm)

Introduction à l informatique temps réel Pierre-Yves Duval (cppm) Introduction à l informatique temps réel Pierre-Yves Duval (cppm) Ecole d informatique temps réel - La Londes les Maures 7-11 Octobre 2002 -Définition et problématique - Illustration par des exemples -Automatisme:

Plus en détail

UQAC. UNTVUiSITf DU QUÊMC ACHICOUTUVB THÈSE PRÉSENTÉE À L'UNIVERSITÉ DU QUÉBEC À CHICOUTIMI COMME EXIGENCE PARTIELLE DU DOCTORAT EN INGENIERIE PAR

UQAC. UNTVUiSITf DU QUÊMC ACHICOUTUVB THÈSE PRÉSENTÉE À L'UNIVERSITÉ DU QUÉBEC À CHICOUTIMI COMME EXIGENCE PARTIELLE DU DOCTORAT EN INGENIERIE PAR UQAC UNTVUiSITf DU QUÊMC ACHICOUTUVB THÈSE PRÉSENTÉE À L'UNIVERSITÉ DU QUÉBEC À CHICOUTIMI COMME EXIGENCE PARTIELLE DU DOCTORAT EN INGENIERIE PAR RACHID ERROUISSI Contribution à la commande prédictive

Plus en détail

Économie d énergie dans les centrales frigorifiques : La haute pression flottante

Économie d énergie dans les centrales frigorifiques : La haute pression flottante Économie d énergie dans les centrales frigorifiques : La haute pression flottante Juillet 2011/White paper par Christophe Borlein membre de l AFF et de l IIF-IIR Make the most of your energy Sommaire Avant-propos

Plus en détail

PRECISION - REJET DE PERTURBATIONS T.D. G.E.I.I.

PRECISION - REJET DE PERTURBATIONS T.D. G.E.I.I. PRECISION - REJET DE PERTURBATIONS T.D. G.E.I.I.. Donner les erreurs en position, en vitesse et en accélération d un système de transfert F BO = N(p) D(p) (transfert en boucle ouverte) bouclé par retour

Plus en détail

Introduction à l approche bootstrap

Introduction à l approche bootstrap Introduction à l approche bootstrap Irène Buvat U494 INSERM buvat@imedjussieufr 25 septembre 2000 Introduction à l approche bootstrap - Irène Buvat - 21/9/00-1 Plan du cours Qu est-ce que le bootstrap?

Plus en détail

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La licence Mathématiques et Economie-MASS de l Université des Sciences Sociales de Toulouse propose sur les trois

Plus en détail

Data Mining. Vincent Augusto 2012-2013. École Nationale Supérieure des Mines de Saint-Étienne. Data Mining. V. Augusto.

Data Mining. Vincent Augusto 2012-2013. École Nationale Supérieure des Mines de Saint-Étienne. Data Mining. V. Augusto. des des Data Mining Vincent Augusto École Nationale Supérieure des Mines de Saint-Étienne 2012-2013 1/65 des des 1 2 des des 3 4 Post-traitement 5 représentation : 6 2/65 des des Définition générale Le

Plus en détail

Quantification Scalaire et Prédictive

Quantification Scalaire et Prédictive Quantification Scalaire et Prédictive Marco Cagnazzo Département Traitement du Signal et des Images TELECOM ParisTech 7 Décembre 2012 M. Cagnazzo Quantification Scalaire et Prédictive 1/64 Plan Introduction

Plus en détail

Direction des Études et Synthèses Économiques Département des Comptes Nationaux Division des Comptes Trimestriels

Direction des Études et Synthèses Économiques Département des Comptes Nationaux Division des Comptes Trimestriels Etab=MK3, Timbre=G430, TimbreDansAdresse=Vrai, Version=W2000/Charte7, VersionTravail=W2000/Charte7 Direction des Études et Synthèses Économiques Département des Comptes Nationaux Division des Comptes Trimestriels

Plus en détail

Ê ÔÔÓÖØ Ø Ù ÐÐ ÙÑ Î Ð ÓÒ ¾ Ù Ò ¾¼¼¼ Ì Ð Ñ Ø Ö Á ÓÖ Ð ÓÑÑÙÒ Ø ÓÒ ½ ÈÖ ÒØ Ø ÓÒ Ð Ó Ø ¾ Ä ÓÑ Ò ³ Ø Ú Ø ¾º½ Ñ Ò ØÖ Ø ÓÒ Ý Ø Ñ Ð³ Ò ÓÖÑ Ø ÓÒ º º º º º º º º º º º ¾º¾ Ö Ø ØÙÖ Ö ÙÜ ÓÑÑÙÒ Ø ÓÒ º º º º º º º º

Plus en détail

L efficience énergétique...

L efficience énergétique... ......Une technique intelligente de régulation au service Edgar Mayer Product Manager CentraLine c/o Honeywell GmbH 02 I 2009 Grâce aux techniques de régulation intelligentes d aujourd hui, il est possible

Plus en détail

LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING»

LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING» LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING» Gilbert Saporta Professeur de Statistique Appliquée Conservatoire National des Arts et Métiers Dans leur quasi totalité, les banques et organismes financiers

Plus en détail

T.P. FLUENT. Cours Mécanique des Fluides. 24 février 2006 NAZIH MARZOUQY

T.P. FLUENT. Cours Mécanique des Fluides. 24 février 2006 NAZIH MARZOUQY T.P. FLUENT Cours Mécanique des Fluides 24 février 2006 NAZIH MARZOUQY 2 Table des matières 1 Choc stationnaire dans un tube à choc 7 1.1 Introduction....................................... 7 1.2 Description.......................................

Plus en détail

Modélisation et Simulation

Modélisation et Simulation Cours de modélisation et simulation p. 1/64 Modélisation et Simulation G. Bontempi Département d Informatique Boulevard de Triomphe - CP 212 http://www.ulb.ac.be/di Cours de modélisation et simulation

Plus en détail

Calculer avec Sage. Revision : 417 du 1 er juillet 2010

Calculer avec Sage. Revision : 417 du 1 er juillet 2010 Calculer avec Sage Alexandre Casamayou Guillaume Connan Thierry Dumont Laurent Fousse François Maltey Matthias Meulien Marc Mezzarobba Clément Pernet Nicolas Thiéry Paul Zimmermann Revision : 417 du 1

Plus en détail

Algorithmes pour la planification de mouvements en robotique non-holonome

Algorithmes pour la planification de mouvements en robotique non-holonome Algorithmes pour la planification de mouvements en robotique non-holonome Frédéric Jean Unité de Mathématiques Appliquées ENSTA Le 02 février 2006 Outline 1 2 3 Modélisation Géométrique d un Robot Robot

Plus en détail

Ï Í Å Ò Ò ÁÒØ Ö¹Ë Ø Ò ÐÝ Ù ÓÑÔÓÖØ Ñ ÒØ ÍØ Ð Ø ÙÖ ÁÑÔ Ø ÁÑÑ Ø ÁÒØ Ö Ø Ï Í Å Ò Ò Í Ö Ú ÓÙÖ Ò ÐÝ Û Ø ÁÑÑ Ø ÁÑÔ Ø º Å Ð ½ ¾µ ź Ì Ö ½µ Ⱥ ÈÓÒ Ð Ø ½µ ½µ ÄÁÊÅÅ ÍÅÊ ÆÊË ¼ ½ ½ ÊÙ ¾ ÅÓÒØÔ ÐÐ Ö Ü Ö Ò ¾µ Ä ÓÖ ØÓ

Plus en détail

Optimisation multi-critère pour l allocation de ressources sur Clouds distribués avec prise en compte de l énergie

Optimisation multi-critère pour l allocation de ressources sur Clouds distribués avec prise en compte de l énergie Optimisation multi-critère pour l allocation de ressources sur Clouds distribués avec prise en compte de l énergie 1 Présenté par: Yacine KESSACI Encadrement : N. MELAB E-G. TALBI 31/05/2011 Plan 2 Motivation

Plus en détail

Solutions de mesure pour le raffinage

Solutions de mesure pour le raffinage Solutions de mesure pour le raffinage Débitmétrie et densimétrie de précision Les meilleures des mesures en ligne «Il est difficile de répondre à la demande de façon efficace, économique et responsable.»

Plus en détail

De la mesure à l analyse des risques

De la mesure à l analyse des risques De la mesure à l analyse des risques Séminaire FFA Jean-Paul LAURENT Professeur à l'isfa jean-paul.laurent@univ-lyon1.fr http://laurent.jeanpaul.free.fr/ 0 De la la mesure à l analyse des risques! Intégrer

Plus en détail

Optimisation, traitement d image et éclipse de Soleil

Optimisation, traitement d image et éclipse de Soleil Kléber, PCSI1&3 014-015 I. Introduction 1/8 Optimisation, traitement d image et éclipse de Soleil Partie I Introduction Le 0 mars 015 a eu lieu en France une éclipse partielle de Soleil qu il était particulièrement

Plus en détail

jeudi 19 septembre 2013, Bournezeau Services et Solutions en Carrière

jeudi 19 septembre 2013, Bournezeau Services et Solutions en Carrière jeudi 19 septembre 2013, Bournezeau Services et Solutions en Carrière 1 Schneider Electric - le spécialiste mondial de la gestion de l énergie Des géographies équilibrées CA 2012 Milliards d euros de CA

Plus en détail

Une application de méthodes inverses en astrophysique : l'analyse de l'histoire de la formation d'étoiles dans les galaxies

Une application de méthodes inverses en astrophysique : l'analyse de l'histoire de la formation d'étoiles dans les galaxies Une application de méthodes inverses en astrophysique : l'analyse de l'histoire de la formation d'étoiles dans les galaxies Ariane Lançon (Observatoire de Strasbourg) en collaboration avec: Jean-Luc Vergely,

Plus en détail

Electron S.R.L. - MERLINO - MILAN ITALIE Tel (++ 39 02) 90659200 Fax 90659180 Web www.electron.it, e-mail electron@electron.it

Electron S.R.L. - MERLINO - MILAN ITALIE Tel (++ 39 02) 90659200 Fax 90659180 Web www.electron.it, e-mail electron@electron.it Electron S.R.L. Design Production & Trading of Educational Equipment B3510--II APPLIICATIIONS DE TRANSDUCTEURS A ULTRASONS MANUEL D IINSTRUCTIIONS POUR L ETUDIIANT Electron S.R.L. - MERLINO - MILAN ITALIE

Plus en détail

de calibration Master 2: Calibration de modèles: présentation et simulation d

de calibration Master 2: Calibration de modèles: présentation et simulation d Master 2: Calibration de modèles: présentation et simulation de quelques problèmes de calibration Plan de la présentation 1. Présentation de quelques modèles à calibrer 1a. Reconstruction d une courbe

Plus en détail

Indicateur. IDé 500. Descriptif indicateur. Schéma/Encombrement

Indicateur. IDé 500. Descriptif indicateur. Schéma/Encombrement Indicateur ML IDé 500 Descriptif indicateur Terminal de pesage compatible avec tous les capteurs de pesage analogiques à jauge de contrainte, optimisé pour les capteurs numériques ARPEGE MASTER K. Cet

Plus en détail

Notions d asservissements et de Régulations

Notions d asservissements et de Régulations I. Introduction I. Notions d asservissements et de Régulations Le professeur de Génie Electrique doit faire passer des notions de régulation à travers ses enseignements. Les notions principales qu'il a

Plus en détail

Manipulateurs Pleinement Parallèles

Manipulateurs Pleinement Parallèles Séparation des Solutions aux Modèles Géométriques Direct et Inverse pour les Manipulateurs Pleinement Parallèles Chablat Damien, Wenger Philippe Institut de Recherche en Communications et Cybernétique

Plus en détail

Catalogue - Formation en «électropneumatique et systèmes automatisés process control system»

Catalogue - Formation en «électropneumatique et systèmes automatisés process control system» entre echnologies Avancées Catalogue - en «électropneumatique et systèmes automatisés process control system» 2012-2013 Boulevard du Château 12, 7800 ATH Tél : 068/26.88.80 Fax : 068/26.88.81 E-Mail :

Plus en détail

Systèmes Multivariables - Partie II

Systèmes Multivariables - Partie II Systèmes Multivariables - Partie II Olivier BACHELIER E-mail : Olivier.Bachelier@univ-poitiers.fr Tel : 05-49-45-36-79 ; Fax : 05-49-45-40-34 Dernière version : 17 novembre 2006 Résumé Ces notes de cours

Plus en détail

La classification automatique de données quantitatives

La classification automatique de données quantitatives La classification automatique de données quantitatives 1 Introduction Parmi les méthodes de statistique exploratoire multidimensionnelle, dont l objectif est d extraire d une masse de données des informations

Plus en détail

ProSimPlus HNO3 Résumé des nouvelles fonctionnalités, décembre 2008

ProSimPlus HNO3 Résumé des nouvelles fonctionnalités, décembre 2008 ProSimPlus HNO3 Résumé des nouvelles fonctionnalités, décembre 2008 Cette page présente un résumé des derniers développements effectués dans le logiciel ProSimPlus HNO3. Ceux-ci correspondent à de nouvelles

Plus en détail

Commande non linéaire prédictive d un centreur magnétique

Commande non linéaire prédictive d un centreur magnétique Commande non linéaire prédictive d un centreur magnétique Stéphane Bonnet, Jérôme De Miras, Borislav Vidolov Laboratoire HeuDiaSyC UMR C.N.R.S. 6599 Université de Technologie de Compiègne, BP 2529, 625

Plus en détail

Commande prédictive, pilote automatique de l usine écoperformante

Commande prédictive, pilote automatique de l usine écoperformante Commande prédictive, pilote automatique de l usine écoperformante Konrad S. Stadler, Eduardo Gallestey, Jan Poland, Greg Cairns Optimiser la production tout en se pliant aux obligations contractuelles

Plus en détail

TD1 Signaux, énergie et puissance, signaux aléatoires

TD1 Signaux, énergie et puissance, signaux aléatoires TD1 Signaux, énergie et puissance, signaux aléatoires I ) Ecrire l'expression analytique des signaux représentés sur les figures suivantes à l'aide de signaux particuliers. Dans le cas du signal y(t) trouver

Plus en détail

ÉdIteur officiel et fournisseur de ServIceS professionnels du LogIcIeL open Source ScILab

ÉdIteur officiel et fournisseur de ServIceS professionnels du LogIcIeL open Source ScILab ÉdIteur officiel et fournisseur de ServIceS professionnels du LogIcIeL open Source ScILab notre compétence d'éditeur à votre service créée en juin 2010, Scilab enterprises propose services et support autour

Plus en détail

STATISTIQUES. UE Modélisation pour la biologie

STATISTIQUES. UE Modélisation pour la biologie STATISTIQUES UE Modélisation pour la biologie 2011 Cadre Général n individus: 1, 2,..., n Y variable à expliquer : Y = (y 1, y 2,..., y n ), y i R Modèle: Y = Xθ + ε X matrice du plan d expériences θ paramètres

Plus en détail

Population responses to environmental forcing : approaches to model and monitor habitat characteristics

Population responses to environmental forcing : approaches to model and monitor habitat characteristics Approche systémique des pêches Boulogne-sur sur-mer 2008 Population responses to environmental forcing : approaches to model and monitor habitat characteristics Pierre Petitgas (1), M. Huret (1), B. Planque

Plus en détail

4. Résultats et discussion

4. Résultats et discussion 17 4. Résultats et discussion La signification statistique des gains et des pertes bruts annualisés pondérés de superficie forestière et du changement net de superficie forestière a été testée pour les

Plus en détail

ÉCOLE DE TECHNOLOGIE SUPÉRIEURE UNIVERSITÉ DU QUÉBEC THÈSE PAR ARTICLES PRÉSENTÉE À L ÉCOLE DE TECHNOLOGIE SUPÉRIEURE

ÉCOLE DE TECHNOLOGIE SUPÉRIEURE UNIVERSITÉ DU QUÉBEC THÈSE PAR ARTICLES PRÉSENTÉE À L ÉCOLE DE TECHNOLOGIE SUPÉRIEURE ÉCOLE DE TECHNOLOGIE SUPÉRIEURE UNIVERSITÉ DU QUÉBEC THÈSE PAR ARTICLES PRÉSENTÉE À L ÉCOLE DE TECHNOLOGIE SUPÉRIEURE COMME EXIGENCE PARTIELLE À L OBTENTION D UN DOCTORAT EN GÉNIE Ph. D. PAR Raouf FAREH

Plus en détail

NPIH800 GENERATION & RESEAUX. PROTECTION de COURANT TERRE

NPIH800 GENERATION & RESEAUX. PROTECTION de COURANT TERRE GENERATION & RESEAUX PROTECTION de COURANT TERRE NPIH800 assure la protection à maximum de courant terre des réseaux électriques de moyenne et haute tension. Ce relais multifonction surveille les défauts

Plus en détail

MESURE DE LA TEMPERATURE

MESURE DE LA TEMPERATURE 145 T2 MESURE DE LA TEMPERATURE I. INTRODUCTION Dans la majorité des phénomènes physiques, la température joue un rôle prépondérant. Pour la mesurer, les moyens les plus couramment utilisés sont : les

Plus en détail

Premier principe de la thermodynamique - conservation de l énergie

Premier principe de la thermodynamique - conservation de l énergie Chapitre 5 Premier principe de la thermodynamique - conservation de l énergie 5.1 Bilan d énergie 5.1.1 Énergie totale d un système fermé L énergie totale E T d un système thermodynamique fermé de masse

Plus en détail

uc : Cas d utilisation Top-Chair [Utilisation normale] Fauteuil Top-Chair Déplacer le fauteuil sur tous chemins «include» «include» «extend»

uc : Cas d utilisation Top-Chair [Utilisation normale] Fauteuil Top-Chair Déplacer le fauteuil sur tous chemins «include» «include» «extend» TopChair S c Première partie Présentation du système Plus d autonomie pour plus de liberté! TopChair S c offre aux personnes à mobilité réduite une nouvelle possibilité de se déplacer sans assistance à

Plus en détail

Correction de l examen de la première session

Correction de l examen de la première session de l examen de la première session Julian Tugaut, Franck Licini, Didier Vincent Si vous trouvez des erreurs de Français ou de mathématiques ou bien si vous avez des questions et/ou des suggestions, envoyez-moi

Plus en détail

Magister en : Automatique. Commande Prédictive Non Linéaire en Utilisant Les Systèmes Neuro-Flous et les Algorithmes Génétiques.

Magister en : Automatique. Commande Prédictive Non Linéaire en Utilisant Les Systèmes Neuro-Flous et les Algorithmes Génétiques. الجوهىريت الجسائريت الديوقراطيت الشعبيت République Algérienne Démocratique et Populaire وزارة التعلين العالي و البحث العلوي Ministère de l Enseignement Supérieur et de la Recherche Scientifique Université

Plus en détail

Stockage de chaleur solaire par sorption : Analyse et contrôle du système à partir de sa simulation dynamique

Stockage de chaleur solaire par sorption : Analyse et contrôle du système à partir de sa simulation dynamique Stockage de chaleur solaire par sorption : Analyse et contrôle du système à partir de sa simulation dynamique Kokouvi Edem N TSOUKPOE 1, Nolwenn LE PIERRÈS 1*, Lingai LUO 1 1 LOCIE, CNRS FRE3220-Université

Plus en détail

Gestion optimale des unités de production dans un réseau compte tenu de la dynamique de la température des lignes

Gestion optimale des unités de production dans un réseau compte tenu de la dynamique de la température des lignes Gestion optimale des unités de production dans un réseau compte tenu de la dynamique de la température des lignes M. Nick, R. Cherkaoui, M. Paolone «Le réseau électrique de demain» - EPFL, 21.05.2015 Table

Plus en détail

CONFERENCE PALISADE. Optimisation robuste d un plan d expériences par simulation Monte-Carlo Concepts de «Design Space» et de «Quality by Design»

CONFERENCE PALISADE. Optimisation robuste d un plan d expériences par simulation Monte-Carlo Concepts de «Design Space» et de «Quality by Design» CONFERENCE PALISADE Optimisation robuste d un plan d expériences par simulation Monte-Carlo Concepts de «Design Space» et de «Quality by Design» 1 SIGMA PLUS Logiciels, Formations et Etudes Statistiques

Plus en détail

Arbres binaires de décision

Arbres binaires de décision 1 Arbres binaires de décision Résumé Arbres binaires de décision Méthodes de construction d arbres binaires de décision, modélisant une discrimination (classification trees) ou une régression (regression

Plus en détail

Thermorégulateurs Series 5 et Series 4. Exciting technology!

Thermorégulateurs Series 5 et Series 4. Exciting technology! Thermorégulateurs Series 5 et Series 4 Exciting technology! surveillance entièrement automatique du process menu interactif multilingue circuit fermé à l'abri du contact avec l'oxygène de l'air refroidissement

Plus en détail

Le calculateur numérique pour la commande des processus

Le calculateur numérique pour la commande des processus Le calculateur numérique pour la commande des processus par Daniel JAUME Maître de Conférences au Laboratoire d Automatique du Conservatoire National des Arts et Métiers et Michel VERGÉ Professeur des

Plus en détail