Comment mettre les mirages en boite?
|
|
|
- Rachel Samson
- il y a 10 ans
- Total affichages :
Transcription
1 Comment mettre les mirages en boite? Une idée tordue BRASSEUR Paul DELAYE Cécile QUERTINMONT Joelle Lycée Hoche, Versailles
2 Résumé Nous nous sommes intéressés au phénomène des mirages. Tout d abord, nous avons essayé de comprendre comment se formaient les mirages. La découverte du rôle de l indice de réfraction dans ce phénomène, nous a conduit à mesurer les indices de différentes solutions. Ceci nous a amené à réaliser notre premier vrai mirage dans une cuve en créant un gradient d indice de réfraction grâce à l emploi d eau et d eau saturée en sel. Dans un second temps, nous avons voulu savoir comment expliquer la formation des mirages dans l air, ce qui nous a a amené à découvrir la différence entre mirage supérieur et mirage inférieur que nous avons décidé de modéliser expérimentalement en milieu liquide dans des cuves. Nous avons également cherché à comprendre et à reproduire avec notre expérience des 2 lasers le phénomène conduisant à une inversion de l image lors d un mirage. Pour finir, nous avons tenté de réaliser une déviation d un faisceau laser dans l air, ce que nous avons réussi après de multiples tentatives. 2
3 SOMMAIRE Résumé... 2 Introduction :... 4 I- Comment les mirages se forment-ils? Qu est-ce qu un mirage? Comment courber un faisceau de lumière?...5 a) Les lois de Snell- Descartes...5 b) Comment «tordre» un faisceau laser dans une cuve? Mesure d indice de réfraction de quelques liquides...7 a) Mesures d indice de réfraction à l aide d un dioptre optique...7 b) Mesures d indices de réfraction à l aide d un réfractomètre Notre premier vrai «mirage en boîte»...9 II- Comment expliquer la formation des mirages dans l air? L atmosphère, un milieu non homogène Notion de gradient de température et d indice Les mirages inférieurs...12 a) Conditions de formation d un mirage inférieur...12 b) Exemples de mirages inférieurs observables dans la vie courante...12 c) L utilisation de l effet mirage en laboratoire de recherche...13 d) Notre réalisation d un mirage inférieur dans une cuve au lycée ) Les mirages supérieurs...16 a) Conditions de formation d un mirage supérieur...16 b) Exemples dans la vie courante...17 c) Réalisation d un mirage supérieur au lycée ) Pourquoi l image observée est-elle parfois renversée?...19 a) Comment expliquer l'inversion de l'image?...19 b) Une modélisation expérimentale du phénomène d inversion de l image...21 III- Comment réaliser un mirage supérieur dans l air au lycée? Nos tentatives pour dévier un faisceau laser dans l air...23 a) 1 er essai : avec un gradient de température vers le haut...23 b) 2 e essai : avec un gradient de température latéral...23 c) Recherche des conditions optimales Pourquoi ne voit-on pas de déviation?...26 a) Estimation du gradient d indice pour l expérience dans l air...26 b) Détermination du gradient d indice dans l expérience du mirage supérieur en cuve : mélange eau-eau salée (voir p 19-photo 21)...28 c) Conclusion...31 d) Notre ultime tentative...31 Conclusion Annexe Détermination des incertitudes dans le calcul de la hauteur de la zone de fort gradient d indice dans la cuve...34 Annexe Peut-on vraiment considérer que les milieux utilisés sont non dispersifs?...35 Annexe Expérience en cours Peut-on prévoir la hauteur du point d impact du laser sur l écran?
4 Introduction : Nous sommes trois lycéens en terminale scientifique au lycée Hoche de Versailles. Nous nous sommes tout d abord intéressés au phénomène des mirages dans le cadre des TPE réalisés en classe de première. Durant la réalisation de ce projet, nous sommes allés tous les mercredis après-midi à l atelier de physique expérimentale du lycée Hoche (APELH) où nous avons pu réaliser des expériences afin de compléter notre dossier. A la fin des TPE, nous avons décidé de continuer à travailler sur ce projet qui nous intéressait beaucoup et nous avons eu la chance de présenter notre travail aux concours académiques Quintesciences Expérimentales et Faites de la Science en mai En début de Terminale, nous avons poursuivi notre projet afin de le présenter aux Olympiades de Physique France. Notre étude est construite autour de la problématique suivante : Comment mettre les mirages en boite? Pour répondre à cette question, nous avons tout d abord cherché à comprendre les conditions nécessaires à l observation du phénomène des mirages. Nous avons réalisé des «mirages en boite» en utilisant des cuves contenant des liquides présentant un gradient d indice. Ces expériences «simples» nous ont permis de comprendre la formation des mirages inférieurs et supérieurs, ainsi que l inversion et la déformation de l image souvent observée dans la nature. Mais malgré de nombreuses tentatives, nous ne parvenions pas à recréer les conditions expérimentales permettant d observer une courbure d un rayon lumineux... Cela nous a amené à rencontrer divers chercheurs qui travaillent ou ont travaillé dans le domaine de l optique et sur des applications liés à l effet mirage. Leur aide nous a été précieuse pour progresser dans nos recherches et pour tenter une étude plus quantitative des phénomènes des mirages. Au cours de ce mémoire, nous allons vous présenter comment nos recherches nous ont permis de réaliser notre premier «mirage en boite» au lycée. Puis, après avoir modélisé les phénomènes de mirages atmosphériques, nous allons décrire les expériences que nous avons mis en œuvre pour reproduire, en milieux liquides, des phénomènes de mirages observés dans des conditions parfois extrêmes (aux pôles ou dans le désert par exemple). Enfin, nous exposerons notre démarche expérimentale visant à réaliser un mirage l air dans une salle de classe au lycée. 4
5 I- Comment les mirages se forment-ils? 1- Qu est-ce qu un mirage? La première étape de notre travail a été de trouver une définition des mirages. D après le dictionnaire Larousse, un mirage est un phénomène d optique qui donne l illusion que des objets éloignés ont une ou plusieurs images. Ce phénomène, observable dans les régions où se trouvent superposées des couches d air de températures différentes (déserts, banquises), est du à la densité inégale de ses couches et, par la suite, à la courbure des rayons lumineux. 2- Comment courber un faisceau de lumière? a) Les lois de Snell- Descartes Dans un milieu homogène et transparent, la lumière se propage en ligne droite avec une célérité v telle que : n milieu = n milieu : indice de réfraction du milieu. c : célérité de la lumière dans le vide c = 3, m.s -1 v : célérité de la lumière, pour une fréquence f donnée, dans le milieu considéré. Plus l indice de réfraction est élevé, plus la lumière se propage lentement dans le milieu. Quand un rayon lumineux arrive dans un milieu possédant des propriétés optiques différentes de celles du 1 er, une partie de la lumière est réfléchie et l'autre passe dans le 2 nd milieu en changeant de direction de propagation. Ce phénomène, appelé réfraction, est une conséquence du principe de Fermat : la lumière prend toujours le chemin le plus rapide pour aller d un point à un autre. La célérité de la lumière n étant pas la même dans les deux milieux, la ligne droite n est pas le chemin de plus court pour aller d un point à un autre. Rayon réfléchi i 1 r i 2 i2 Lois de Snell-Descartes : Les rayons incident, réfléchi et réfracté ainsi que la normale au point d incidence sont dans le même plan. i 1 = r et n 1 sin(i 1 ) = n 2 sin(i 2 ) 5
6 Pour «tordre un rayon lumineux», il va falloir lui faire subir une succession de réfractions. Pour cela, le milieu de propagation utilisé doit avoir un indice de réfraction variable dans l espace. b) Comment «tordre» un faisceau laser dans une cuve? Pour réaliser un milieu d indice non uniforme, on peut utiliser deux liquides miscibles d indices de réfraction différents en déposant au fond d une cuve le liquide le plus dense puis en le recouvrant «délicatement» avec le liquide le moins dense. Par diffusion, le mélange aura progressivement un indice variable verticalement dans l espace. On peut également déposer au fond d une cuve un solide soluble dans le liquide utilisé. Par diffusion, on obtiendra de même une variation de l indice de réfraction verticalement. Expérience : Nous avons pris un laser et une cuve dont on avait tapissé le fond de sucre en morceaux, puis nous avons rajouté de l eau en évitant de trop mélanger. Nous avions donc une solution à peu près saturée en sucre dans la partie basse de la cuve et une solution d eau pure en haut de la cuve, et donc une solution d indice non homogène. Le laser étant installé, et le sucre se diffusant progressivement, nous avons observé la courbure du faisceau lumineux vers le bas. Expérience montrant la déviation des rayons (5) Cette expérience est une première approche des mirages. L œil humain a l habitude de voir des objets dans un milieu homogène où les rayons lumineux se propagent en ligne droite. L observateur ne perçoit pas la courbure du faisceau, le trajet apparent du faisceau est une droite. Les rayons paraissent alors provenir d un point situé au dessus du laser (rayon blanc sur le schéma) : l image observée n est plus confondue avec l objet. C est un mirage! Pour comprendre plus en détail ce phénomène et tenter de l étudier quantitativement, il est nécessaire de pouvoir mesurer les indices de réfraction des milieux inhomogènes utilisés. 6
7 3- Mesure d indice de réfraction de quelques liquides a) Mesures d indice de réfraction à l aide d un dioptre optique Nous avons pris un demi-cylindre creux rempli du liquide étudié qui est posé sur un disque gradué pouvant tourner autour de son axe. Un faisceau lumineux arrive au centre de la surface plane du dioptre air liquide. Il subit alors une réflexion peu visible et une réfraction dans le liquide. Les graduations angulaires du disque permettent de mesurer les angles d'incidence et de réfraction ( i 1 et i 2 sur le schéma ci-dessous). Principe du dispositif (doc-académie d'aix-marseille) Disque optique du lycée Nous avons pris les mesures d'angle de réfraction r en fonction de l'angle d'incidence i pour les différents milieux étudiés puis nous avons tracé les courbes sin(i)=f(sin(r)) pour chacun d eux. Nos résultats : sin(i) en fonction de sin(r) pour de l eau saturée en sel, en sucre et de l eau bleu: solution saturée en sel rose: solution saturée en sucre rouge: eau Exploitation des mesures : Le faisceau lumineux se propage de l air, d indice de réfraction n air = 1,00, au liquide étudié d indice de réfraction n liquide. D après les lois de la réfraction : sin (i) = n liquide sin(r). 7
8 Les courbes sin(i)=f(sin(r)) sont des droites passant par l'origine du repère, de coefficient directeur égal à l indice de réfraction du liquide. Les coefficients directeurs des droites moyennes tracées sont : n eau = 1,33 ± n eau sucrée = 1,35 ± n eau salée = 1,39 ± Dans un premier temps, on constate que n sel > n sucre > n eau Les valeurs expérimentales obtenues sont proches des valeurs tabulées : n théo-eau = 1,333 n théo-eau sucrée = 1,365 n théo-eau salée = 1,365 Néanmoins, lorsqu on tient compte des incertitudes de mesures, représentées sur le graphe par des ellipses d incertitudes, on s aperçoit que nos expériences ne permettent pas de conclure. En effet les trois droites moyennes sont très proches les unes des autres et les ellipses d incertitude se recoupent. Cette expérience n étant pas exploitable, nous avons cherché un moyen d effectuer des mesures plus précises. C'est ainsi que nous avons appris l'existence d'un réfractomètre au lycée. b) Mesures d indices de réfraction à l aide d un réfractomètre Le réfractomètre du Lycée Le réfractomètre est un instrument qui utilise certains principes optiques pour estimer la concentration d une solution. La technicienne du laboratoire nous a montré son utilisation. Il est très simple d'utilisation, les mesures sont vite prises et précises à près! De plus, il ne nécessite que quelques gouttes de liquide et va ainsi nous permettre de mesurer l indice de réfraction en différents points de l espace dans un liquide inhomogène Indice de réfraction n Tableau récapitulatif mesures au dioptre ± mesures au réfractomètre ± valeurs tabulées eau 1,33 1,333 1,333 solution saturée en sucre 1,35 1,365 1,365 solution saturée en sel 1,39 1,383 1,383 8
9 Conclusion : L utilisation du dioptre optique nous a permis d évaluer l indice de réfraction dans un milieu liquide mais les précisions des mesures étant insuffisantes, nous ne pouvions conclure que qualitativement. Le réfractomètre permet d accéder à des mesures d indice de réfraction en différents points de l espace en effectuant des prélèvements à l aide d une micropipette : ces mesures rapides et précises vont nous permettre d évaluer la variation de l indice dans un liquide inhomogène. Il sera utilisé pour toutes les mesures d indice de réfraction dans un liquide. 4- Notre premier vrai «mirage en boîte» Après avoir pris en main le réfractomètre et déterminé les indices de réfraction de solutions susceptibles de nous permettre de dévier des faisceaux lumineux, nous avons voulu réaliser et observer un mirage en cuve. Désormais plein d espoir de réaliser un vrai mirage, après avoir dévié le laser avec du sucre, nous avons tenté une nouvelle expérience! Nous avons essayé de reproduire ce qu on avait fait précédemment avec de l eau sucrée, mais dans l objectif de passer d un rayon orienté vers le haut à un rayon orienté vers le bas. Nous avons pris deux cuves identiques et nous avons disposé une carte (obstacle) au centre de chaque cuve. - La première cuve est remplie avec une solution saturée en sel sur laquelle nous avons ajouté de l eau sans trop mélanger, pour créer une solution inhomogène. - La seconde est en tout point identique à la première mais remplie uniquement avec de l eau : le milieu est homogène. On place une diode électroluminescente derrière chacune des deux cuves. En plaçant notre œil à une hauteur légèrement inférieure à la taille de l obstacle, au niveau de la cuve contenant de l'eau, nous ne pouvons apercevoir l objet lumineux, mais en se plaçant au même niveau devant la cuve contenant de l eau saturée en sel et de l eau, nous avons aperçu la DEL au dessus de l obstacle! Photo du montage (6) Observations lorsque la cuve est remplie d eau (7) du mélange eau-eau salée (8) 9
10 Nous avons ainsi réussi à apercevoir un objet caché derrière un obstacle, et de ce fait à mettre les mirages «dans la boîte» ou plutôt dans la cuve! Comme dans toute activité de recherche, tout résultat concluant ou non, entraine l émergence de nouvelles questions. Nous nous sommes en effet rendu compte que l image de la DEL obtenue était déformée. De plus, la déviation des rayons était possible ici, en milieu liquide, grâce à la présence de milieux d indices différents pouvant s apparenter à différents milieux stratifiés. Qu en est-il dans l air? Peut-on considérer l air comme une succession de milieux d indices de réfraction différents comme nous venons de le faire dans des liquides? 10
11 II- Comment expliquer la formation des mirages dans l air? 1- L atmosphère, un milieu non homogène L atmosphère n est un milieu homogène que localement. Les mirages atmosphériques ont lieu lorsque les conditions atmosphériques permettent de considérer l air comme une succession de couches horizontales de températures différentes. L air n est alors plus du tout un milieu homogène et peut être modélisé comme un milieu stratifié. Il y a d importantes variations de la température T de l air en fonction de l altitude z : T = T(z). Par exemple, lorsqu une route est chauffée par le soleil, le sol est très chaud et cette chaleur se diffuse : la température diminue quand on s'éloigne du sol. En assimilant l air à un gaz parfait, on peut écrire : Ainsi, plus la température augmente plus la masse volumique de l air est faible, et donc plus la densité de l air est faible. Or, lorsque la densité d un milieu gazeux diminue, on se rapproche des conditions du vide et donc l indice de réfraction (n milieu = c/v) diminue également. On retiendra que plus la température augmente, plus l indice de réfraction diminue. Pour rendre compte des variations de température et donc d indice de réfraction de l air, il est nécessaire d introduire la notion de gradient. 2- Notion de gradient de température et d indice En Physique, on appelle gradient le vecteur représentant la variation d une grandeur physique dans l espace. Pour simplifier, nous considérons que les variations de l indice de réfraction ou de la température n ont lieu que dans une seule direction de l espace (Oz) c est à dire que l indice et la température ne dépendent que de l altitude : n(z) et T(z). Alors : et par conséquent : Ainsi, dans notre cas, le gradient est un vecteur de direction verticale et dont le sens va de la zone de plus faible indice à la zone de plus fort indice. Si le milieu est homogène, le gradient correspond ainsi au vecteur nul, puisqu il n y a aucune variation d indice. Il en est de même si on considère un gradient de température. Les gradients de température et d indice sont de sens opposé, dans la mesure où l indice diminue quand la température augmente. 11
12 3- Les mirages inférieurs a) Conditions de formation d un mirage inférieur On modélise l atmosphère par un milieu stratifié en température et indice en considérant, que le milieu est composé d une multitude de strates homogènes. Les mirages atmosphériques inférieurs ont lieu lorsque la température est importante au sol et décroît avec l altitude : le gradient d indice de réfraction est alors vertical vers le haut. (9) Schéma modélisant les couches d air stratifié et les gradients de température et d indice En appliquant les lois de la réfraction au milieu stratifié ainsi défini, les rayons lumineux subissent des déviations successives au passage de chaque couche d indice différent. La propagation des rayons lumineux dans le cas d un mirage inférieur peut être schématisée comme suit : (10) Propagation des rayons lumineux dans l air dans le cas d un mirage inférieur L œil de l observateur, habitué à la propagation rectiligne de la lumière, voit l image de l objet sur le sol (rayon blanc). L image apparaît en dessous de l objet réel, d où son nom de mirage inférieur. b) Exemples de mirages inférieurs observables dans la vie courante Il est courant d observer des «flaques d eau» sur la route qui s éloignent quand on s en approche et disparaissent. Ces mirages sont provoqués par le réchauffement du sol par le soleil : la température diminue lorsqu on s éloigne du sol et donc l indice de réfraction augmente. Les rayons étant courbés vers les strates d indice plus élevé, ils sont courbés vers le haut. 12
13 Le phénomène de la «flaque d eau» s explique simplement à partir du schéma (10) : l œil voit l image comme «au bout d une ligne droite» donc sur le sol. (rayon blanc) L image observée au sol, qui semble souvent être en mouvement et déformée, est l image du ciel ou d une partie du paysage. Le cerveau interprète cette image comme une «flaque d eau». Photos de mirages inférieurs (12) et (13) Image prise au Kenya en 1982 c) L utilisation de l effet mirage en laboratoire de recherche Photo du laboratoire de Mme Fournier Nous avons pris contact avec Mme Fournier, chercheuse à l'espci. Lorsque nous l'avons rencontrée, nous avons appris que l'effet mirage, c'est à dire la réalisation d'un gradient de température, est utilisé pour des mesures thermiques. L'effet mirage est souvent utilisé pour étudier le rendement des cellules photovoltaïques. On éclaire un échantillon de silicium sous incidence normale et par intermittence. Plus l'absorption de la lumière par une plaque de silicium est importante, plus la chaleur émise par celle-ci est importante. L'effet mirage permet de mesurer des coefficients d'absorption très faibles : on projette un rayon laser rasant un échantillon. 13
14 L élévation de température de l'échantillon dévie le laser et cette déviation est mesurée par un capteur de position. L'absorbance étant reliée au gradient de température, on en déduit le coefficient d'absorption de l'échantillon. On peut appliquer cette méthode en prenant un échantillon de silicium pur de référence puis en prenant un échantillon de silicium à tester, on compare ainsi leurs coefficients d'absorption. Lorsque les cellules sont en silicium massif, elles ont un bon rendement, mais ce matériel étant très cher, des études sont réalisées pour trouver des alternatives d'aussi bon rendement au silicium massif. L'effet mirage a donc d'importantes applications dans la recherche et l'industrie. d) Notre réalisation d un mirage inférieur dans une cuve au lycée Essai de réalisation à l'aide d'un gradient de température dans l'eau Nous avons pensé ensuite à réaliser un gradient de température dans l air avec une plaque chauffante, mais pour éviter trop de mouvements de convection, nous avons essayé de le réaliser en cuve. Notre dispositif expérimental s'appuyait sur l'eau. Par analogie avec les mirages dans l air, nous avons supposé que l'indice de l'eau chaude pouvait être inférieur à celui de l'eau froide De plus, on sait que l'eau chaude a tendance à monter et l'eau froide à descendre. Pour notre expérience, on avait donc besoin que l'eau chaude soit en bas et l'eau froide en haut, pour obtenir une variation d indice par diffusion la plus importante possible. Après avoir réfléchi à ce problème nous avons trouvé les systèmes suivants : Première tentative : On introduit de l'eau bouillante à l'aide d'un entonnoir et d'un tuyau (en évitant les bulles d'air) au fond d'une cuve contenant de l'eau à température ambiante, tout en rajoutant des glaçons, flottants, pour accentuer la différence de température. Et 1 er échec : On a seulement réussi à observer les courants de l'eau chaude qui remontait et de l'eau froide qui descendait, mais à part ces courants qui faisaient osciller le laser : rien! On a pensé également que l'eau chaude se refroidissait trop vite et que de ce fait la différence de température n'était pas assez grande. Deuxième tentative : On a eu l'idée d'amener des accumulateurs thermiques : on les a fait tremper dans de l'eau bouillante pour qu'ils accumulent la chaleur. Pendant ce temps on a préparé un «aquarium» (plus gros que la cuve) d'eau (à température ambiante) et le laser, ensuite on a déposé les accumulateurs thermiques chauds au fond de l'aquarium en les faisant tenir avec des poids et on a encore une fois rajouté des glaçons à la surface, après quelques minutes d'attentes, toujours aucune déviation du rayon lumineux... 14
15 (14) Essai de réalisation de mirage inférieur Conclusion Nous avons pensé que l'échec de ces expériences était du au fait que tout d'abord, la différence d'indices de l'eau chaude et froide n'est pas assez grande : on avait mesuré au réfractomètre les indices de l'eau glacée et chaude mais leur température a pu changer lors de ces mesures qui étaient donc approximatives. Les recherches sur internet ont confirmé notre idée : l'indice de réfraction de l'eau chaude est en effet plus petit que celui de l'eau froide mais de très peu. Indice de réfraction de l eau en fonction de sa température Température T en C 10 C 30 C 100 C Indice de réfraction trouvé sur internet 1,330 1,329 1,318 Mesures au réfractomètre n eau chaude ( 100 C) = 1,33 ± 0,05 n eau froide ( 0 C) = 1,32 ± 0,04 Nos incertitudes sont bien trop grandes pour déterminer les indices de réfraction de l eau chaude et de l eau froide au réfractomètre : la température de l eau varie trop fortement le temps de faire nos mesures. De plus, l'eau chaude et l'eau froide montaient et descendaient trop vite, ce qui empêchait de former un gradient d'indice stable et conséquent. Enfin, nous n'avions pas d'aquarium en pyrex, résistant aux températures élevées, sinon nous aurions pu mettre l'aquarium sur une plaque chauffante pour chauffer continuellement l'eau en profondeur, ce qui aurait peut être permis de réaliser une petite déviation du rayon. Réalisation d un mirage inférieur à partir d un mélange eau-éthanol Un gradient de température stable étant très difficile à réaliser en cuve, nous avons tenté cette fois un gradient d indice, en versant en utilisant de l eau et de l éthanol. Mesures au réfractomètre des indices de réfraction de l eau et de l éthanol utilisés : n éthanol = 1,363 ± et n eau = 1,333 ± L indice de l eau est inférieur à celui de l éthanol. Protocole : 15
16 On verse de l eau au fond de la cuve et on la recouvre délicatement avec de l éthanol. Celuici, moins dense que l eau, reste en surface. La diffusion progressive des liquides l un dans l autre permet d obtenir un indice qui augmente lorsqu on s éloigne du fond de la cuve. On est donc bien dans le cas d un mirage inférieur. (15) réalisation d un mirage inférieur (eau éthanol) 4) Les mirages supérieurs a) Conditions de formation d un mirage supérieur On peut ici encore modéliser l atmosphère par un milieu stratifié en température et indice. Les mirages supérieurs sont dus aux mêmes raisons que les mirages inférieurs sauf qu ici la température augmente quand on s éloigne du sol, donc l indice de réfraction diminue. Direction apparente de «l objet» grad T grad n (16) Déviation des rayons lors d un mirage supérieur Les rayons lumineux sont courbés vers le bas. Toujours pour les mêmes raisons, l œil «regarde» dans la direction d arrivée des rayons pour «positionner» l objet. Ainsi on peut voir l image au-dessus de sa position réelle d où le nom de mirage supérieur. 16
17 b) Exemples dans la vie courante Les mirages supérieurs permettent d expliquer de nombreux phénomènes observés depuis la nuit des temps. Par exemple, on peut voir des «vaisseaux fantômes», c est-à-dire des bateaux qui «volent» au-dessus du niveau de la mer ou qui se dédoublent, etc Ces observations sont possibles en hiver ou au printemps, lorsqu un vent chaud balaie une surface enneigée ou glacée. (18) Photo de mirage supérieur au dessus de la ville de Salers (Cantal): extrait de "Qu est-ce que l optique géométrique" de L. Dettwiller Le mont Canigou Lorsqu on se place sur la côte la plus élevée de Marseille à certains moments de l année, il est possible de voir apparaître, se découpant sur le soleil, le mont Canigou qui se trouve dans les Pyrénées orientales. (19) photo du Mont Canigou se découpant devant le soleil depuis Marseille :Photo d Alain Origné 17
18 On peut maintenant comprendre ce mystérieux phénomène grâce à nos connaissances acquises sur les mirages supérieurs! La terre est ronde, donc on ne devrait pas pouvoir apercevoir le mont Canigou depuis Marseille, mais grâce à la déviation des rayons lors d un mirage supérieur, il nous est possible de l apercevoir. (20) Rayon 1 : Il représente un rayon rectiligne partant du Mont Canigou jusqu à Marseille. Dans des conditions normales, la courbure de la Terre nous empêche de voir le Mont Canigou depuis Marseille. Rayon 2 : Le trajet des rayons lumineux provenant du Mont Canigou lorsque des conditions atmosphériques bien spécifiques sont réunies ; il se produit alors un mirage supérieur, c est-à-dire que les rayons sont courbés. Grâce à cette courbure, les rayons ne sont pas «bloqués» par la courbure de la Terre et atteignent ainsi Marseille. Rayon 3 : Le cerveau ne perçoit pas la courbure du rayon, la direction apparente de l objet est donc la droite (3). Cette droite montre la situation de l image du haut du Canigou. Rayon 4 : Il permet de comprendre pourquoi on ne voit pas le Canigou dans sa totalité. En effet, une partie des rayons continue à être bloquée par la courbure de la Terre ; Le rayon 4 représente le rayon le plus bas qui est perçu de Marseille, donc il délimite la partie inférieure de l image du Mont Canigou observée depuis Marseille. c) Réalisation d un mirage supérieur au lycée Pour réaliser une réflexion totale, nous avons besoin d'une solution avec un indice de réfraction très différent de l'eau. Or d'après nos études précédentes au réfractomètre, une solution saturée en sel a un indice très différent de celui de l'eau : n eau salée = 1,38 et n eau = 1,33. Donc, pour réaliser notre mirage supérieur, nous avons utilisé une solution saturée en sel placée au fond de la cuve sur laquelle nous avons ajouté de l eau. 18
19 grad n (21) Réalisation d un mirage supérieur (photo prise au lycée) Explications : La solution saturée en sel étant plus dense que l'eau, elle reste au fond de la cuve. Elle se diffuse progressivement et crée ainsi des couches très fines d'eau plus ou moins salées, ayant des indices de réfraction différents en fonction de la profondeur, c est ce qu'on appelle un gradient d'indice. Ici, l indice de réfraction est plus important en profondeur et diminue avec la hauteur. La réflexion totale s explique par le fait qu à partir d un certain angle d incidence, le rayon ne peut plus être réfracté donc il est totalement réfléchi. 5) Pourquoi l image observée est-elle parfois renversée? a) Comment expliquer l'inversion de l'image? Un mirage produit une image déformée d un objet, comme dans notre premier mirage avec la diode électroluminescente qui apparaissait déformée. Cependant il arrive souvent que le mirage produise une image non seulement déformée de l objet mais également inversée, c'est-à-dire que l image de l objet dans la flaque d eau produite par le mirage est à l envers par rapport à l objet. 19
20 (22)Photo d un mirage avec inversion de l image Nous nous sommes alors demandé comment expliquer ce phénomène d inversion de l image. Le phénomène d inversion de l image ne se produit que dans des conditions particulières. Il faut en effet qu il y ait un gradient d indice non uniforme ( ). De plus, la formation de ce phénomène nécessite la présence d une zone où le gradient d indice est très fort. Pour mieux comprendre le phénomène, on peut étudier le cas dans l atmosphère d un gradient thermique non uniforme avec variation forte au niveau du sol. (23) Schéma de la situation avec inversion de l image 20
21 Le rayon R1 partant du haut de l arbre traverse une zone dans laquelle le gradient d indice de réfraction est très faible, il n est donc pas ou très peu dévié. Le rayon R2 part également du haut de l arbre mais avec un certain angle d incidence. Ainsi dans un premier temps, il traverse la zone de faible gradient où comme R1 il n est pas dévié. Puis, il arrive à la zone de fort gradient d indice où il va être fortement dévié et même subir une réflexion totale. Le rayon R3 qui part du bas de l arbre avec un angle d incidence similaire à celui de R2, arrive ainsi dans la zone de fort gradient à une distance de l arbre bien moindre que R2 (puisque R2 part du haut de l arbre). Par conséquent, il connait aussi une réflexion totale mais à une distance de l arbre moins importante que R2. Il passe au-dessus de R2, et donc arrive à l œil de l observateur également au-dessus de R2, ce qui va causer une inversion de l image. Si le gradient avait été important mais uniforme, alors les rayons auraient été déviés de la même manière en tout point du milieu. Par conséquent, les rayons n auraient pas pu se croiser ce qui rend impossible toute inversion de l image. (24) Schéma de la situation du mirage sans inversion de l image b) Une modélisation expérimentale du phénomène d inversion de l image En découvrant ce phénomène, nous avons eu l idée de le modéliser expérimentalement en milieu liquide dans une cuve et nous avons imaginé «l expérience des 2 lasers». Le protocole expérimental est assez simple : nous avons utilisé un montage similaire à celui de l expérience du mirage inférieur en remplissant une grande cuve avec de l'eau en bas et de l'éthanol au dessus. Puis, nous avons placé deux lasers d un côté de la cuve avec un certain angle d'incidence. 21
22 Schéma du résultat de l expérience (25) et(26) Photos du résultat de l expérience L'écran présente deux points correspondant chacun à un laser. Si on éteint le laser du haut : c'est le point du bas qui disparait sur l écran! De plus, vous pouvez observer que les deux rayons connaissent une réflexion totale dans une même zone du milieu qui correspond à la zone de fort gradient. Le rayon partant du bas subit cette réflexion totale à une distance bien moindre du bord de la cuve que le rayon partant du haut. Ainsi ce montage met bien en évidence le phénomène d'inversion de l'image. Nous avons donc réussi à mettre en boite de nombreux mirages dans des milieux liquides, mais est-il possible d en réaliser dans l air en conservant les méthodes que nous avons déjà expérimentées? 22
23 III- Comment réaliser un mirage supérieur dans l air au lycée? 1- Nos tentatives pour dévier un faisceau laser dans l air a) 1 er essai : avec un gradient de température vers le haut Tout d abord, nous avons tenté d obtenir une déviation verticale du faisceau laser en créant un gradient de température vertical orienté vers le haut. Afin d obtenir ce gradient, nous avons mis en place le montage ci-dessous constitué de deux becs électriques en hauteur avec à leur «pied» une cuve contenant de l eau et des glaçons. (27)Photo prise au lycée d un essai de déviation d un rayon dans l air Malheureusement, cette expérience n a donné aucun résultat significatif : nous n avons pas observé de déviation significative du faisceau laser. Nous avons alors pensé que peut-être le gradient n était pas assez fort et pas assez stable à cause notamment des importants mouvements de convection. b) 2 e essai : avec un gradient de température latéral Ainsi, nous avons décidé d agrandir la taille de la zone de fort gradient, en réalisant une expérience similaire mais cette fois-ci avec sept becs électriques. De plus, pour cette nouvelle expérience, nous avons choisi un gradient de température latéral, car il nous semblait plus stable que le gradient vertical à cause des mouvements de convection. 23
24 (28) 2 ème essai de déviation d un rayon dans l air Malgré cela, nous n avons obtenu aucune déviation significative du faisceau laser. Alors, nous avons pensé que le gradient de température n était peut être pas assez fort. c) Recherche des conditions optimales Toutes ces tentatives nous ont conduit à réaliser le montage ci-après reposant sur l emploi d une plaque chauffante beaucoup plus puissante pour créer un gradient de température, et donc un gradient d indice, plus important. De plus, la plaque chauffante est placée à l envers avec un bac de glaçons en-dessous et une planche de bois a été mise en arrière du montage pour limiter les mouvements de convection. (29) et (30) photos du montage dans l air avec la plaque chauffante retournée 24
25 Cependant, nous n avons toujours pas observé de déviation du faisceau laser! C est pourquoi, nous avons décidé de mesurer le gradient de température pour pouvoir diriger le faisceau laser précisément vers l endroit où le gradient est le plus fort. Pour mesurer la température en fonction de la distance à la plaque chauffante, nous avons fabriqué un «gradientmètre» artisanal qui est en fait un morceau de bois présentant des trous tous les deux centimètres et dans chacun desquels nous avons placé un thermomètre (voir photos (17) et (18)). Nous avons ainsi pu tracer sur Regressi la courbe représentant le gradient de température en fonction de la distance à la plaque. (31) Courbe du gradient d indice en fonction de la distance d à la plaque On remarque ainsi que la valeur absolue du gradient de température est d autant plus important que la distance à la plaque est faible et devient très faible à partir d environ 8 cm. Par conséquent, pour obtenir une déviation, il nous faut placer notre faisceau à une distance faible de la plaque dans cette zone où le gradient est le plus fort. Mais après de multiples essais, nous n avons toujours pas obtenu de déviation du faisceau laser! 25
26 2- Pourquoi ne voit-on pas de déviation? Progressivement, a germé l idée que l échelle caractéristique de notre expérience n était pas suffisante pour obtenir une déviation significative du faisceau. C est pourquoi, nous avons décidé de comparer le gradient d indice obtenu lors de notre expérience dans l air à celui obtenu dans l expérience du mirage supérieur en cuve (eau +eau salée). a) Estimation du gradient d indice pour l expérience dans l air D après la loi de Gladstone : n - 1 = k ρ avec k une constante, n l indice de réfraction de l air et ρ sa masse volumique. Détermination de k : D après l équation d état des gaz parfaits : pv = nrt = D où : p = = soit ρ = Par suite : n - 1 = k soit k = On calcule k à partir de valeurs tabulées : Pour une température T = 273,15 K, une pression p = Pa et une masse molaire de l'air M = 28,966 g.mol -1, l indice de réfraction de l'air vaut n =1, On prend : R = 8, SI Par le calcul, on obtient : k = 2, m 3.kg -1 kmp On exprime n en fonction des autres termes : n = + 1 RT On néglige les variations de pression : l'indice de réfraction est alors uniquement fonction de la température. Dans les conditions de l expérience, la valeur de la constante N = est N = 8, K Ainsi à partir des températures mesurées expérimentalement, nous avons ainsi pu déterminé l'indice de réfraction correspondant à chaque température. Puis nous avons tracé la courbe représentant le gradient d'indice en fonction de la distance d à la plaque chauffante (courbe ci-après). 26
27 (32) Evolution du gradient d indice en fonction de la distance à la plaque pour l'expérience dans l'air On remarque graphiquement une variation significative de l indice de réfraction sur une hauteur h 6cm à partir de la plaque. (33) Evolution de la température en fonction de la distance à la plaque Graphiquement on lit une variation de température ΔT 200K dans les 6 premiers centimètres sous la plaque. ( T 500K à une distance très faible de la plaque et T' 300K à une distance de 6 cm de la plaque) Détermination d un ordre de grandeur du gradient d indice sur la hauteur h : 27
28 gradn On obtient 1 1 N N T T' h g radn = TT' N ΔT h m 1 b) Détermination du gradient d indice dans l expérience du mirage supérieur en cuve : mélange eau-eau salée (voir p 19- photo 21) Méthode 1 : Nous avons fait des prélèvements avec des pipettes Pasteur en évitant de mélanger la solution, à des hauteurs précises jusqu au fond de la cuve. Grâce à un réfractomètre, nous avons mesuré l indice de réfraction de chaque échantillon. Cela nous a permis de réaliser un graphique pour trouver la hauteur de la zone de gradient d indice dans la cuve. (34) Variation de l indice de réfraction en fonction de la hauteur dans l expérience du mirage supérieur A partir de ce graphique, nous avons pu déterminer la hauteur h de notre gradient d indice. Pour cela, nous avons simplement noté à partir de quelle hauteur h on commence à avoir une variation d'indice significative et à quelle hauteur h cette variation devient négligeable. Graphiquement on obtient : h = 3,0 ± 0,3 cm et h = 6,0 ± 0,3 cm Donc la hauteur du gradient d indice est h = h -h = 3,0 ± 0,6 cm Calcul de la valeur absolue du gradient d indice sur cette hauteur h où la variation d indice de réfraction est la plus importante : Graphiquement : n(h ) = 1,379 ± 0,0004 et n(h ) = 1,340 ± 0,
29 D où 1,3 ± 0,5 m -1 Méthode 2 : utilisation d un bâtonnet de verre cylindrique Un «bâtonnet de verre» permet de réaliser un pinceau de lumière sur l écran. Après avoir traversé la cuve, le faisceau ainsi étendu est projeté sur un écran. La figure obtenue est différente de celle observée si le faisceau traverse un milieu homogène. (voir photos et schéma ci-après) Cela s explique par le fait que le rayon est dévié quand il passe dans une zone de la cuve où le gradient d indice est élevé. Seule la partie centrale du rayon est déviée. Cette technique expérimentale permet de déterminer la zone dans laquelle le gradient d'indice est non nul. Nous avons tracé la figure obtenue sur l écran et avec les mesures prises sur notre montage, on peut appliquer le théorème de Thalès pour déterminer la hauteur du gradient dans la cuve. Déterminons la hauteur dans la cuve pour laquelle le gradient d indice est élevé : (35)Photo du montage (36) Photo de l image du pinceau sur l écran (37) Schéma du montage 29
30 Mesures effectuées sur notre montage : AD = 23 ± 3cm AB = 69,8 ± 0,5cm à t = 13min : BC = 9,8 ± 0, 2cm et à t = 35min : BC = 10.2 ± 0, 2cm D après les figures que nous avons obtenues sur l'écran, nous avons mesuré BC à deux moments différents : au bout de 13 et de 35 minutes. D après le théorème de Thalès appliqué au triangle ABC rectangle en B, on trouve DE, la hauteur de la zone de fort gradient dans la cuve. Nous avons également estimé les incertitudes de nos résultats. t = 13 min : AB AD BC = DE DE = AD BC AB On obtient DE = 3.2 ± 0, 5cm t = 35 min : DE = 3,3 ± 0, 5cm On remarque grâce à ces deux mesures du gradient à deux instants différents qu il y a une faible variation du gradient d indice au cours du temps. Voir annexe 1 pour le calcul des incertitudes. Calcul de la valeur absolue du gradient d indice sur la hauteur DE sur laquelle celui-ci varie : Ici on considère que DE = 3.2 ± 0. 5cm Δn nsel neau Ainsi, on a : gradn = = Δh DE avec n sel =1,383 l indice de réfraction d une solution saturée en sel et n eau =1,333 l indice de réfraction de l eau Application numérique : 1,6 ± 0,4 m -1 Conclusion des deux méthodes : Les résultats de ces deux manipulations présentent des incertitudes importantes. Dans l'expérience 1, elles sont dues au fait que le mode de prélèvement n est pas précis au niveau de la hauteur et perturbe le milieu. Dans la deuxième expérience nous avons une imprécision due à l épaisseur de la cuve. Cependant les résultats présentent une bonne cohérence puis que les intervalles de confiances se recoupent. Ainsi, nous obtenons l encadrement suivant de la valeur du gradient d indice sur la hauteur de 3,2 cm sur laquelle celui-ci varie : 1,2 m -1 1,8 m -1 30
31 c) Conclusion Dans l expérience dans l air : m -1 Dans l expérience en cuve : 1 m -1 Dans l expérience dans l air, le gradient est environ 1000 fois moins important que celui de l expérience du mirage supérieur en cuve (eau +eau salée). Or, lors des expériences dans les cuves on observe une déviation du faisceau laser de l ordre de la dizaine de centimètres. Ainsi, selon notre étude, on peut estimer que la déviation du faisceau laser dans l expérience dans l air est inférieure au millimètre. Il est donc tout à fait cohérent que nous n ayons observé aucune déviation dans nos expériences dans l air. d) Notre ultime tentative Au moment où nous commencions à désespérer de pouvoir courber le faisceau laser dans l air, nous avons rencontré M Frédéric Chevy maître de conférence à l ENS Paris et chercheur au laboratoire Kastler-Brossel. Il nous a conseillé de tenter l expérience avec des bougies. En effet, il nous a expliqué que le gradient de température, et donc le gradient d indice, produit par une bougie était extrêmement important dans la mesure où la température de la flamme est d environ 800 C. C est pourquoi, nous avons réalisé une expérience analogue aux précédentes mais en créant cette fois-ci un gradient de température latéral à l aide de 25 bougies. Ce nombre important de bougies nous a permis d obtenir une zone de fort gradient de température assez grande, d environ 1m de long. De plus nous avons placé l écran à plus de 7m de cette zone de fort gradient pour que la déviation du faisceau laser soit plus facile à repérer. (38) ultime essai de mirage dans l air 31
32 (39) et (40) photos de l écran. avant que les bougies ne soient soufflées après que les bougies aient été soufflées Ces deux photos montrent un déplacement du point de plus de 8cm lorsque toutes les bougies sont soufflées! On peut ainsi déduire que le gradient de température créé par les bougies a permis de former un gradient d'indice suffisant pour obtenir une déviation du faisceau laser. Cependant, l'angle de déviation est faible dans la mesure où ce déplacement de 8 cm du point sur l'écran est à mettre en relation avec la distance entre la zone de déviation et la position de l'écran qui est placé à environ 10m. Cet angle de déviation reste faible, alors que la valeur de notre gradient d indice a été multipliée environ par 5 par rapport à nos premières expériences. Ainsi, l angle de déviation lors nos premières expériences dans l air devait être encore plus faible, et comme l écran était placé à une distance du laser bien moindre que dans cette expérience, il est tout à fait cohérent que nous n ayons rien pu observer. Lors de notre étude nous avons aussi eu la chance de rencontrer Mme Danièle Fournier, professeur a l université Paris IV et travaillant également a l ESPCI. Avec son aide, nous sommes en train d essayer de rattacher l angle de déviation du faisceau laser au gradient d indice, ce qui nous permettrait de remonter au gradient de température par l intermédiaire de la loi de Gladstone. Ceci constitue une application intéressante de l effet mirage. 32
33 Conclusion Durant toute notre étude, nous avons tenté de mettre les mirages en boîte, et cela s est révélé plus difficile que nous le pensions. Pour cela, il nous a fallu dans un premier temps comprendre les origines de ce phénomène qui est lié à la courbure prise par les rayons lors de la traversé d un milieu non homogène où il y a une variation d indice. Par conséquent, nous avons cherché à tordre un faisceau laser en créant un gradient d indice dans une boîte. Nos premières boites contenaient des liquides car c était le moyen le plus simple de créer un gradient d indice. On a ainsi mis en boîte assez facilement les mirages inférieurs et supérieurs, et même le phénomène d inversion de l image. Par contre, lorsque nous avons tenté de mettre les mirages dans des boites contenant de l air cela a été plus difficile. En effet, il ne faut pas oublier que les mirages sont des phénomènes qui se développent sur des grandes distances, de l ordre de la dizaine de kilomètres. Il nous a donc fallu utiliser une très grosse boîte : la salle de classe toute entière! Notre essai avec les bougies nous a alors permis de tordre notre faisceau dans l'air et nous rendre compte de l importance de la taille caractéristique de l'expérience. Nous avons été intéressés de voir que la mise en boite des mirages avait des applications pratiques dans le domaine des mesures thermiques. En ce moment, nous sommes en train de réaliser une nouvelle expérience dont le but est de pouvoir étudier quantitativement les caractéristiques de l'image observée dans un mirage en travaillant sur l'équation de propagation du rayon. Là encore nous avons commencé notre étude sur des milieux liquides pour lesquels il est plus facile de contrôler les paramètres expérimentaux (en particulier le gradient d'indice) et de confronter modèle théorique et résultats expérimentaux. (voir annexe 3) Nous tenons à remercier tout particulièrement les chercheurs Danièle Fournier et Fréderic Chevy qui nous ont aidés dans ces travaux, les techniciens des laboratoires du lycée, ainsi que Mme Larasse et M. Boisseleau, professeurs de physique au lycée Hoche pour leur accompagnement patient et enrichissant. 33
34 Annexe 1 Détermination des incertitudes dans le calcul de la hauteur de la zone de fort gradient d indice dans la cuve Afin d estimer nos incertitudes lorsque nous calculons DE, nous avons évalué les incertitudes sur les mesures effectuées. Lors de la mesure de la distance AD, nous avons considéré que DE se trouve au milieu de la cuve, ce qui revient à ne pas tenir compte des déviations dues à l'épaisseur de la cuve. Celle-ci mesurant 7 cm de large, l incertitude sur AD est : ΔAD = 3,5 cm. De plus, la lumière traverse les parois de la cuve qui sont en plexiglas donc les rayons sont certainement très légèrement déviés. Evaluation des incertitudes sur la mesure de BC : ΔBC = 0,2 cm. La mesure de AB se faisant sur une grande distance et sans support très rigide, nous avons évalué : ΔAB = 0,5 cm. (37) Schéma du montage Déterminons ΔDE pour t = 13 min : ΔDE = DE ΔDE = 3,06 ΔDE = 0,48 cm Déterminons ΔDE pour t = 35min : ΔDE = 3,38 ΔDE = 0,53 cm Nous avons donc considéré que l incertitude sur DE vaut ΔDE = 0,5 cm 34
35 Annexe 2 Peut-on vraiment considérer que les milieux utilisés sont non dispersifs? Pour le vérifier, nous avons réalisé une nouvelle expérience simple : Nous disposions de deux diodes laser de longueurs d ondes différentes : une diode laser verte (532 nm), et d une diode laser rouge (650 nm). Nous les avons placées devant notre cuve de manière à réaliser une déviation typique du mirage supérieur ; et de manière à ce qu ils aient un même angle d incidence, et soient placés à la même hauteur. A la sortie de la cuve, les deux faisceaux sortent à la même hauteur. On peut donc considérer pour nos expériences que le milieu utilisé n est pas dispersif. 35
36 Annexe 3 Expérience en cours Peut-on prévoir la hauteur du point d impact du laser sur l écran? L'idée est simple : connaissant la position et l'inclinaison du faisceau laser, est-il possible de prévoir l'endroit où le faisceau frappera l'écran? La mise en œuvre est cependant nettement plus complexe! Elle nécessite : - le contrôle en temps réel des paramètres expérimentaux ; - l élaboration d une modélisation mathématique donnant une équation du rayon lumineux qui dépend du type de mirage étudié (supérieur ou inférieur) ; - une modélisation du gradient d indice. Dans un premier temps, nous avons travaillé sur la mise en place de cette expérience en utilisant un gradient d indice réalisé à partir d eau et d éthanol (mirage inférieur) Puis, pour des questions de coûts, nous avons dû recommencer notre étude avec un mélange eau-eau salée (mirage supérieur)! Un laser et un écran sont placés de part et d autre de la cuve, et nous utilisons le montage avec le bâtonnet de verre pour mesurer la hauteur du gradient en temps réel. Nous avons opté pour une modélisation affine du gradient d indice en fonction de la hauteur dans la cuve : En ce moment, nous sommes en train de réaliser une série de mesures afin de vérifier la validité de notre modèle donnant l équation du rayon lumineux. 36
37 Photos des montages : lasers cuve contenant de l eau et de l éthanol Nous avons toute une série de mesures réalisées en faisant varier la hauteur d entrée H cuve du laser dans la cuve et son angle d incidence α. Il nous reste à exploiter ces résultats en espérant que l expérience validera notre modélisation théorique du rayon lumineux! Mesures de la hauteur h écran du point sur l écran en fonction de la hauteur H cuve d entrée du laser dans la cuve, l angle étant fixé à α = 0,178 radians : h écran (cm) 142 ± 0,2 109 ± 2,0 92,5 ± 2,5 73,5 ± 0,5 71,5 ± 0,5 H cuve (cm ± 0,1 cm) 127,6 128,3 129,2 130,4 130,6 Les hauteurs sont mesurées par rapport au sol. Mesures de la hauteur h ecran du point sur l écran en fonction de différents angles α et hauteurs H cuve d entrée du laser dans la cuve : H cuve (cm ±0,1) α (rad ± 0,003) h écran (cm) 128,5 129,2 129,2 129,6 130,2 130,3 130,8 131,5 132,2 133,0 133,2 133,5 0,229 0,242 0,251 0,238 0,250 0,251 0,265 0,285 0,284 0,289 0,299 0,303 67,7 ± 1,5 53,5 ± 0,3 51,0 ± 0,3 53,5 ± 0,3 49,8 ± 0,3 51,6 ±0,3 46,5 ± 0,3 44,0 ± 0,3 39,5 ± 0,3 35,5 ± 0,3 30,5 ± 0,5 21,5 ± 0,5 37
EXERCICE 2 : SUIVI CINETIQUE D UNE TRANSFORMATION PAR SPECTROPHOTOMETRIE (6 points)
BAC S 2011 LIBAN http://labolycee.org EXERCICE 2 : SUIVI CINETIQUE D UNE TRANSFORMATION PAR SPECTROPHOTOMETRIE (6 points) Les parties A et B sont indépendantes. A : Étude du fonctionnement d un spectrophotomètre
Mesure du volume d'un gaz, à pression atmosphérique, en fonction de la température. Détermination expérimentale du zéro absolu.
Mesure du volume d'un gaz, à pression atmosphérique, en fonction de la température. Détermination expérimentale du zéro absolu. Auteur : Dr. Wulfran FORTIN Professeur Agrégé de Sciences Physiques TZR -
Observer TP Ondes CELERITE DES ONDES SONORES
OBJECTIFS CELERITE DES ONDES SONORES Mesurer la célérité des ondes sonores dans l'air, à température ambiante. Utilisation d un oscilloscope en mode numérique Exploitation de l acquisition par régressif.
Comprendre l Univers grâce aux messages de la lumière
Seconde / P4 Comprendre l Univers grâce aux messages de la lumière 1/ EXPLORATION DE L UNIVERS Dans notre environnement quotidien, les dimensions, les distances sont à l échelle humaine : quelques mètres,
Chapitre 6 La lumière des étoiles Physique
Chapitre 6 La lumière des étoiles Physique Introduction : On ne peut ni aller sur les étoiles, ni envoyer directement des sondes pour les analyser, en revanche on les voit, ce qui signifie qu'on reçoit
Chapitre 7 Les solutions colorées
Chapitre 7 Les solutions colorées Manuel pages 114 à 127 Choix pédagogiques. Ce chapitre a pour objectif d illustrer les points suivants du programme : - dosage de solutions colorées par étalonnage ; -
G.P. DNS02 Septembre 2012. Réfraction...1 I.Préliminaires...1 II.Première partie...1 III.Deuxième partie...3. Réfraction
DNS Sujet Réfraction...1 I.Préliminaires...1 II.Première partie...1 III.Deuxième partie...3 Réfraction I. Préliminaires 1. Rappeler la valeur et l'unité de la perméabilité magnétique du vide µ 0. Donner
TD1 PROPAGATION DANS UN MILIEU PRESENTANT UN GRADIENT D'INDICE
TD1 PROPAGATION DANS UN MILIEU PRESENTANT UN GRADIENT D'INDICE Exercice en classe EXERCICE 1 : La fibre à gradient d indice On considère la propagation d une onde électromagnétique dans un milieu diélectrique
FICHE 1 Fiche à destination des enseignants
FICHE 1 Fiche à destination des enseignants 1S 8 (b) Un entretien d embauche autour de l eau de Dakin Type d'activité Activité expérimentale avec démarche d investigation Dans cette version, l élève est
DIFFRACTion des ondes
DIFFRACTion des ondes I DIFFRACTION DES ONDES PAR LA CUVE À ONDES Lorsqu'une onde plane traverse un trou, elle se transforme en onde circulaire. On dit que l'onde plane est diffractée par le trou. Ce phénomène
(aq) sont colorées et donnent à la solution cette teinte violette, assimilable au magenta.»
Chapitre 5 / TP 1 : Contrôle qualité de l'eau de Dakin par dosage par étalonnage à l'aide d'un spectrophotomètre Objectif : Vous devez vérifier la concentration massique d'un désinfectant, l'eau de Dakin.
SUIVI CINETIQUE PAR SPECTROPHOTOMETRIE (CORRECTION)
Terminale S CHIMIE TP n 2b (correction) 1 SUIVI CINETIQUE PAR SPECTROPHOTOMETRIE (CORRECTION) Objectifs : Déterminer l évolution de la vitesse de réaction par une méthode physique. Relier l absorbance
Chapitre 02. La lumière des étoiles. Exercices :
Chapitre 02 La lumière des étoiles. I- Lumière monochromatique et lumière polychromatique. )- Expérience de Newton (642 727). 2)- Expérience avec la lumière émise par un Laser. 3)- Radiation et longueur
Voyez la réponse à cette question dans ce chapitre. www.hometownroofingcontractors.com/blog/9-reasons-diy-rednecks-should-never-fix-their-own-roof
Une échelle est appuyée sur un mur. S il n y a que la friction statique avec le sol, quel est l angle minimum possible entre le sol et l échelle pour que l échelle ne glisse pas et tombe au sol? www.hometownroofingcontractors.com/blog/9-reasons-diy-rednecks-should-never-fix-their-own-roof
TP 7 : oscillateur de torsion
TP 7 : oscillateur de torsion Objectif : étude des oscillations libres et forcées d un pendule de torsion 1 Principe général 1.1 Définition Un pendule de torsion est constitué par un fil large (métallique)
Chauffer l eau avec le soleil Est-ce possible? Première étape :
Chauffer l eau avec le soleil Est-ce possible? Première étape : Peut-on chauffer de l eau avec le soleil? Les différents groupes ont posé un simple récipient au soleil dans la cour. Le constat de l élévation
Q6 : Comment calcule t-on l intensité sonore à partir du niveau d intensité?
EXERCICE 1 : QUESTION DE COURS Q1 : Qu est ce qu une onde progressive? Q2 : Qu est ce qu une onde mécanique? Q3 : Qu elle est la condition pour qu une onde soit diffractée? Q4 : Quelles sont les différentes
PRODUIRE DES SIGNAUX 1 : LES ONDES ELECTROMAGNETIQUES, SUPPORT DE CHOIX POUR TRANSMETTRE DES INFORMATIONS
PRODUIRE DES SIGNAUX 1 : LES ONDES ELECTROMAGNETIQUES, SUPPORT DE CHOIX POUR TRANSMETTRE DES INFORMATIONS Matériel : Un GBF Un haut-parleur Un microphone avec adaptateur fiche banane Une DEL Une résistance
Fonctions de plusieurs variables
Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme
TP Détection d intrusion Sommaire
TP Détection d intrusion Sommaire Détection d intrusion : fiche professeur... 2 Capteur à infra-rouge et chaîne de mesure... 4 Correction... 14 1 Détection d intrusion : fiche professeur L'activité proposée
Séquence 9. Étudiez le chapitre 11 de physique des «Notions fondamentales» : Physique : Dispersion de la lumière
Séquence 9 Consignes de travail Étudiez le chapitre 11 de physique des «Notions fondamentales» : Physique : Dispersion de la lumière Travaillez les cours d application de physique. Travaillez les exercices
MESURE ET PRECISION. Il est clair que si le voltmètre mesure bien la tension U aux bornes de R, l ampèremètre, lui, mesure. R mes. mes. .
MESURE ET PRECISIO La détermination de la valeur d une grandeur G à partir des mesures expérimentales de grandeurs a et b dont elle dépend n a vraiment de sens que si elle est accompagnée de la précision
1 Mise en application
Université Paris 7 - Denis Diderot 2013-2014 TD : Corrigé TD1 - partie 2 1 Mise en application Exercice 1 corrigé Exercice 2 corrigé - Vibration d une goutte La fréquence de vibration d une goutte d eau
NOTICE TECHNIQUE SSC : Système Solaire Combiné eau chaude sanitaire / appui chauffage maison / appui eau chaude piscine
NOTICE TECHNIQUE SSC : Système Solaire Combiné eau chaude sanitaire / appui chauffage maison / appui eau chaude piscine «Capteur autonome eau chaude» Choix de la gamme ECOAUTONOME a retenu un capteur solaire
Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée.
ANALYSE 5 points Exercice 1 : Léonie souhaite acheter un lecteur MP3. Le prix affiché (49 ) dépasse largement la somme dont elle dispose. Elle décide donc d économiser régulièrement. Elle a relevé qu elle
2 e partie de la composante majeure (8 points) Les questions prennent appui sur six documents A, B, C, D, E, F (voir pages suivantes).
SUJET DE CONCOURS Sujet Exploitation d une documentation scientifique sur le thème de l énergie 2 e partie de la composante majeure (8 points) Les questions prennent appui sur six documents A, B, C, D,
QUELQUES ACTIVITES RELATIVES A LA PARTIE A Propagation d une onde ; onde progressive. Comment installer le format de compression divx?
Lycée Bi h t QUELQUES ACTIVITES RELATIVES A LA PARTIE A Propagation d une onde ; onde progressive Il semble nécessaire d utiliser des fichiers images, de grande taille généralement, aussi, nous proposons
Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé.
Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. I- ACTIVITES NUMERIQUES (12 points) Exercice 1 (3 points) On considère
1 Définition. 2 Systèmes matériels et solides. 3 Les actions mécaniques. Le système matériel : Il peut être un ensemble.un sous-ensemble..
1 Définition GÉNÉRALITÉS Statique 1 2 Systèmes matériels et solides Le système matériel : Il peut être un ensemble.un sous-ensemble..une pièce mais aussi un liquide ou un gaz Le solide : Il est supposé
CHROMATOGRAPHIE SUR COUCHE MINCE
CHROMATOGRAPHIE SUR COUCHE MINCE I - PRINCIPE La chromatographie est une méthode physique de séparation de mélanges en leurs constituants; elle est basée sur les différences d affinité des substances à
Classe : 1 ère STL Enseignement : Mesure et Instrumentation. d une mesure. Titre : mesure de concentration par spectrophotométrie
Classe : 1 ère STL Enseignement : Mesure et Instrumentation THEME du programme : mesures et incertitudes de mesures Sous-thème : métrologie, incertitudes Extrait du BOEN NOTIONS ET CONTENUS Mesures et
pka D UN INDICATEUR COLORE
TP SPETROPHOTOMETRIE Lycée F.BUISSON PTSI pka D UN INDIATEUR OLORE ) Principes de la spectrophotométrie La spectrophotométrie est une technique d analyse qualitative et quantitative, de substances absorbant
Application à l astrophysique ACTIVITE
Application à l astrophysique Seconde ACTIVITE I ) But : Le but de l activité est de donner quelques exemples d'utilisations pratiques de l analyse spectrale permettant de connaître un peu mieux les étoiles.
Niveau 2 nde THEME : L UNIVERS. Programme : BO spécial n 4 du 29/04/10 L UNIVERS
Document du professeur 1/7 Niveau 2 nde THEME : L UNIVERS Physique Chimie SPECTRES D ÉMISSION ET D ABSORPTION Programme : BO spécial n 4 du 29/04/10 L UNIVERS Les étoiles : l analyse de la lumière provenant
MESURE DE LA TEMPERATURE
145 T2 MESURE DE LA TEMPERATURE I. INTRODUCTION Dans la majorité des phénomènes physiques, la température joue un rôle prépondérant. Pour la mesurer, les moyens les plus couramment utilisés sont : les
TSTI 2D CH X : Exemples de lois à densité 1
TSTI 2D CH X : Exemples de lois à densité I Loi uniforme sur ab ; ) Introduction Dans cette activité, on s intéresse à la modélisation du tirage au hasard d un nombre réel de l intervalle [0 ;], chacun
Thème 17: Optimisation
OPTIMISATION 45 Thème 17: Optimisation Introduction : Dans la plupart des applications, les grandeurs physiques ou géométriques sont exprimées à l aide d une formule contenant une fonction. Il peut s agir
Mesures et incertitudes
En physique et en chimie, toute grandeur, mesurée ou calculée, est entachée d erreur, ce qui ne l empêche pas d être exploitée pour prendre des décisions. Aujourd hui, la notion d erreur a son vocabulaire
Les Conditions aux limites
Chapitre 5 Les Conditions aux limites Lorsque nous désirons appliquer les équations de base de l EM à des problèmes d exploration géophysique, il est essentiel, pour pouvoir résoudre les équations différentielles,
Spectrophotométrie - Dilution 1 Dilution et facteur de dilution. 1.1 Mode opératoire :
Spectrophotométrie - Dilution 1 Dilution et facteur de dilution. 1.1 Mode opératoire : 1. Prélever ml de la solution mère à la pipette jaugée. Est-ce que je sais : Mettre une propipette sur une pipette
Bleu comme un Schtroumpf Démarche d investigation
TP Bleu comme un Schtroumpf Démarche d investigation Règles de sécurité Blouse, lunettes de protection, pas de lentilles de contact, cheveux longs attachés. Toutes les solutions aqueuses seront jetées
Meine Flüssigkeit ist gefärbt*, comme disaient August Beer (1825-1863) et Johann Heinrich Lambert (1728-1777)
1ère S Meine Flüssigkeit ist gefärbt*, comme disaient August Beer (1825-1863) et Johann Heinrich Lambert (1728-1777) Objectif : pratiquer une démarche expérimentale pour déterminer la concentration d une
Chapitre 2 Caractéristiques des ondes
Chapitre Caractéristiques des ondes Manuel pages 31 à 50 Choix pédagogiques Le cours de ce chapitre débute par l étude de la propagation des ondes progressives. La description de ce phénomène est illustrée
Des ondes ultrasonores pour explorer le corps humain : l échographie
Seconde Thème santé Activité n 3(expérimentale) Des ondes ultrasonores pour explorer le corps humain : l échographie Connaissances Compétences - Pratiquer une démarche expérimentale pour comprendre le
Chapitre 18 : Transmettre et stocker de l information
Chapitre 18 : Transmettre et stocker de l information Connaissances et compétences : - Identifier les éléments d une chaîne de transmission d informations. - Recueillir et exploiter des informations concernant
LES LOIS PHYSIQUES APPLIQUÉES AUX DEUX-ROUES : 1. LA FORCE DE GUIDAGE
LES LOIS PHYSIQUES APPLIQUÉES AUX DEUX-ROUES : 1. LA FORCE DE GUIDAGE 2. L EFFET GYROSCOPIQUE Les lois physiques qui régissent le mouvement des véhicules terrestres sont des lois universelles qui s appliquent
Exemples d utilisation de G2D à l oral de Centrale
Exemples d utilisation de G2D à l oral de Centrale 1 Table des matières Page 1 : Binaire liquide-vapeur isotherme et isobare Page 2 : Page 3 : Page 4 : Page 5 : Page 6 : intéressant facile facile sauf
Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire
CHAPITRE N5 FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION Code item D0 D2 N30[S] Items étudiés dans le CHAPITRE N5 Déterminer l'image
Initiation à la Mécanique des Fluides. Mr. Zoubir HAMIDI
Initiation à la Mécanique des Fluides Mr. Zoubir HAMIDI Chapitre I : Introduction à la mécanique des fluides 1 Introduction La mécanique des fluides(mdf) a pour objet l étude du comportement des fluides
La fonte des glaces fait-elle monter le niveau de la mer?
La fonte des glaces fait-elle monter le niveau de la mer? L effet de la fonte des glaces sur la variation du niveau de la mer est parfois source d erreur et de confusion. Certains prétendent qu elle est
document proposé sur le site «Sciences Physiques en BTS» : http://nicole.cortial.net BTS AVA 2015
BT V 2015 (envoyé par Frédéric COTTI - Professeur d Electrotechnique au Lycée Régional La Floride Marseille) Document 1 - Etiquette énergie Partie 1 : Voiture à faible consommation - Une étiquette pour
Activité 1 : Rayonnements et absorption par l'atmosphère - Correction
Activité 1 : Rayonnements et absorption par l'atmosphère - Correction Objectifs : Extraire et exploiter des informations sur l'absorption des rayonnements par l'atmosphère terrestre. Connaitre des sources
Sujet. calculatrice: autorisée durée: 4 heures
DS SCIENCES PHYSIQUES MATHSPÉ calculatrice: autorisée durée: 4 heures Sujet Spectrophotomètre à réseau...2 I.Loi de Beer et Lambert... 2 II.Diffraction par une, puis par deux fentes rectangulaires... 3
1S9 Balances des blancs
FICHE 1 Fiche à destination des enseignants 1S9 Balances des blancs Type d'activité Étude documentaire Notions et contenus Compétences attendues Couleurs des corps chauffés. Loi de Wien. Synthèse additive.
TEMPÉRATURE DE SURFACE D'UNE ÉTOILE
TEMPÉRATURE DE SURFACE D'UNE ÉTOILE Compétences mises en jeu durant l'activité : Compétences générales : Etre autonome S'impliquer Elaborer et réaliser un protocole expérimental en toute sécurité Compétence(s)
TP 3 diffusion à travers une membrane
TP 3 diffusion à travers une membrane CONSIGNES DE SÉCURITÉ Ce TP nécessite la manipulation de liquides pouvant tacher les vêtements. Le port de la blouse est fortement conseillé. Les essuie tout en papier
TP 2: LES SPECTRES, MESSAGES DE LA LUMIERE
TP 2: LES SPECTRES, MESSAGES DE LA LUMIERE OBJECTIFS : - Distinguer un spectre d émission d un spectre d absorption. - Reconnaître et interpréter un spectre d émission d origine thermique - Savoir qu un
Les mesures à l'inclinomètre
NOTES TECHNIQUES Les mesures à l'inclinomètre Gérard BIGOT Secrétaire de la commission de Normalisation sols : reconnaissance et essais (CNSRE) Laboratoire régional des Ponts et Chaussées de l'est parisien
A chaque couleur dans l'air correspond une longueur d'onde.
CC4 LA SPECTROPHOTOMÉTRIE I) POURQUOI UNE SUBSTANCE EST -ELLE COLORÉE? 1 ) La lumière blanche 2 ) Solutions colorées II)LE SPECTROPHOTOMÈTRE 1 ) Le spectrophotomètre 2 ) Facteurs dont dépend l'absorbance
Perrothon Sandrine UV Visible. Spectrophotométrie d'absorption moléculaire Étude et dosage de la vitamine B 6
Spectrophotométrie d'absorption moléculaire Étude et dosage de la vitamine B 6 1 1.But et théorie: Le but de cette expérience est de comprendre l'intérêt de la spectrophotométrie d'absorption moléculaire
Notions physiques Niveau 2
14 novembre 2011 Contenu 1. Les pressions Les différentes pressions 2. La loi de Mariotte (Autonomie en air) 2.1. Principes 2.2. Applications à la plongée 3. Le théorème d Archimède (Flottabilité) 3.1.
Caractéristiques des ondes
Caractéristiques des ondes Chapitre Activités 1 Ondes progressives à une dimension (p 38) A Analyse qualitative d une onde b Fin de la Début de la 1 L onde est progressive puisque la perturbation se déplace
Mario Geiger octobre 08 ÉVAPORATION SOUS VIDE
ÉVAPORATION SOUS VIDE 1 I SOMMAIRE I Sommaire... 2 II Évaporation sous vide... 3 III Description de l installation... 5 IV Travail pratique... 6 But du travail... 6 Principe... 6 Matériel... 6 Méthodes...
TPG 12 - Spectrophotométrie
TPG 12 - Spectrophotométrie Travail par binôme Objectif : découvrir les conditions de validité et les utilisations possibles de la loi de Beer-Lambert I- Tracé de la rosace des couleurs Choisir un des
TP 03 B : Mesure d une vitesse par effet Doppler
TP 03 B : Mesure d une vitesse par effet Doppler Compétences exigibles : - Mettre en œuvre une démarche expérimentale pour mesurer une vitesse en utilisant l effet Doppler. - Exploiter l expression du
I - Quelques propriétés des étoiles à neutrons
Formation Interuniversitaire de Physique Option de L3 Ecole Normale Supérieure de Paris Astrophysique Patrick Hennebelle François Levrier Sixième TD 14 avril 2015 Les étoiles dont la masse initiale est
Exercice 1. Exercice n 1 : Déséquilibre mécanique
Exercice 1 1. a) Un mobile peut-il avoir une accélération non nulle à un instant où sa vitesse est nulle? donner un exemple illustrant la réponse. b) Un mobile peut-il avoir une accélération de direction
Chapitre 22 : (Cours) Numérisation, transmission, et stockage de l information
Chapitre 22 : (Cours) Numérisation, transmission, et stockage de l information I. Nature du signal I.1. Définition Un signal est la représentation physique d une information (température, pression, absorbance,
Précision d un résultat et calculs d incertitudes
Précision d un résultat et calculs d incertitudes PSI* 2012-2013 Lycée Chaptal 3 Table des matières Table des matières 1. Présentation d un résultat numérique................................ 4 1.1 Notations.........................................................
COTTAZ Céline DESVIGNES Emilie ANTHONIOZ-BLANC Clément VUILLERMET DIT DAVIGNON Nicolas. Quelle est la trajectoire de la Lune autour de la Terre?
COTTAZ Céline DESVIGNES Emilie ANTHONIOZ-BLANC Clément VUILLERMET DIT DAVIGNON Nicolas Quelle est la trajectoire de la Lune autour de la Terre? Terminale S1 Lycée Elie Cartan Olympiades de Physiques 2003-2004
Acquisition et conditionnement de l information Les capteurs
Acquisition et conditionnement de l information Les capteurs COURS 1. Exemple d une chaîne d acquisition d une information L'acquisition de la grandeur physique est réalisée par un capteur qui traduit
L inégale répartition de l énergie solaire est à l origine des courants atmosphériques
L inégale répartition de l énergie solaire est à l origine des courants atmosphériques I/ Objectif : Dans la partie 2 du programme de seconde «enjeux planétaires contemporains : énergie et sol», sous partie
Chapitre 0 Introduction à la cinématique
Chapitre 0 Introduction à la cinématique Plan Vitesse, accélération Coordonnées polaires Exercices corrigés Vitesse, Accélération La cinématique est l étude du mouvement Elle suppose donc l existence à
Fiche de lecture du projet de fin d étude
GENIE CLIMATIQUE ET ENERGETIQUE Fiche de lecture du projet de fin d étude Analyse du phénomène de condensation sur l aluminium Par Marine SIRE Tuteurs : J.C. SICK Manager du Kawneer Innovation Center &
315 et 495 sont dans la table de 5. 5 est un diviseur commun. Leur PGCD n est pas 1. Il ne sont pas premiers entre eux
Exercice 1 : (3 points) Un sac contient 10 boules rouges, 6 boules noires et 4 boules jaunes. Chacune des boules a la même probabilité d'être tirée. On tire une boule au hasard. 1. Calculer la probabilité
RDP : Voir ou conduire
1S Thème : Observer RDP : Voir ou conduire DESCRIPTIF DE SUJET DESTINE AU PROFESSEUR Objectif Compétences exigibles du B.O. Initier les élèves de première S à la démarche de résolution de problème telle
Angles orientés et trigonométrie
Chapitre Angles orientés et trigonométrie Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Trigonométrie Cercle trigonométrique. Radian. Mesure d un angle orienté, mesure principale.
Principes généraux de la modélisation de la dispersion atmosphérique
Principes généraux de la modélisation de la dispersion atmosphérique Rémy BOUET- DRA/PHDS/EDIS [email protected] //--12-05-2009 1 La modélisation : Les principes Modélisation en trois étapes : Caractériser
Notions de base sur l énergie solaire photovoltaïque
I- Présentation Notions de base sur l énergie solaire photovoltaïque L énergie solaire photovoltaïque est une forme d énergie renouvelable. Elle permet de produire de l électricité par transformation d
Principe de fonctionnement de la façade active Lucido. K:\15.Lucido \Dossier d'envoi\annexe\2011_12_explicatif du principe de la façade Lucido.
Principe de fonctionnement de la façade active Lucido K:\15.Lucido \Dossier d'envoi\annexe\2011_12_explicatif du principe de la façade Lucido.doc 0. Préambule Le présent document est élaboré dans le but
Comment expliquer ce qu est la NANOTECHNOLOGIE
Comment expliquer ce qu est la NANOTECHNOLOGIE Vous vous souvenez que tout est constitué d atomes, non? Une pierre, un stylo, un jeu vidéo, une télévision, un chien et vous également; tout est fait d atomes.
Capacité Métal-Isolant-Semiconducteur (MIS)
apacité Métal-solant-Semiconducteur (MS) 1-onstitution Une structure Métal-solant-Semiconducteur (MS) est constituée d'un empilement de trois couches : un substrat semiconducteur sur lequel on a déposé
DURÉE DU JOUR EN FONCTION DE LA DATE ET DE LA LATITUDE
DURÉE DU JUR E FCTI DE LA DATE ET DE LA LATITUDE ous allons nous intéresser à la durée du jour, prise ici dans le sens de période d éclairement par le Soleil dans une journée de 4 h, en un lieu donné de
PASSAGE A NIVEAU HO/N
PASSAGE A NIVEAU HO/N Description Ce passage à niveau en laiton est composé de deux demi-barrières, ainsi que de deux feux lumineux rouges. Vous pouvez utiliser ce PN sur un nombre quelconque de voie y
Chapitre 1 Régime transitoire dans les systèmes physiques
Chapitre 1 Régime transitoire dans les systèmes physiques Savoir-faire théoriques (T) : Écrire l équation différentielle associée à un système physique ; Faire apparaître la constante de temps ; Tracer
Comment suivre l évolution d une transformation chimique? + S 2 O 8 = I 2 + 2 SO 4
Afin d optimiser leurs procédés, les industries chimiques doivent contrôler le bon déroulement de la réaction de synthèse menant aux espèces voulues. Comment suivre l évolution d une transformation chimique?
OPTIQUE GEOMETRIQUE POLYCOPIE DE COURS
OPTIQUE GEOMETRIQUE POLYCOPIE DE COURS PR. MUSTAPHA ABARKAN EDITION 014-015 Université Sidi Mohamed Ben Abdallah de Fès - Faculté Polydisciplinaire de Taza Département Mathématiques, Physique et Informatique
PHYSIQUE-CHIMIE. Partie I - Spectrophotomètre à réseau
PHYSIQUE-CHIMIE L absorption des radiations lumineuses par la matière dans le domaine s étendant du proche ultraviolet au très proche infrarouge a beaucoup d applications en analyse chimique quantitative
Premier principe : bilans d énergie
MPSI - Thermodynamique - Premier principe : bilans d énergie page 1/5 Premier principe : bilans d énergie Table des matières 1 De la mécanique à la thermodynamique : formes d énergie et échanges d énergie
Comment créer votre propre lampes LED
Comment créer votre propre lampes LED Intro Un tutorial pour faire fabriqué des ampoules LED comme à l usine. Après de nombreuses tentatives pour faire toutes sortes de conversions LED, j ai enfin trouvé
Chapitre 1 : Évolution COURS
Chapitre 1 : Évolution COURS OBJECTIFS DU CHAPITRE Savoir déterminer le taux d évolution, le coefficient multiplicateur et l indice en base d une évolution. Connaître les liens entre ces notions et savoir
ÉTUDE DE L EFFICACITÉ DE GÉOGRILLES POUR PRÉVENIR L EFFONDREMENT LOCAL D UNE CHAUSSÉE
ÉTUDE DE L EFFICACITÉ DE GÉOGRILLES POUR PRÉVENIR L EFFONDREMENT LOCAL D UNE CHAUSSÉE ANALYSIS OF THE EFFICIENCY OF GEOGRIDS TO PREVENT A LOCAL COLLAPSE OF A ROAD Céline BOURDEAU et Daniel BILLAUX Itasca
Sujet proposé par Yves M. LEROY. Cet examen se compose d un exercice et de deux problèmes. Ces trois parties sont indépendantes.
Promotion X 004 COURS D ANALYSE DES STRUCTURES MÉCANIQUES PAR LA MÉTHODE DES ELEMENTS FINIS (MEC 568) contrôle non classant (7 mars 007, heures) Documents autorisés : polycopié ; documents et notes de
Lecture graphique. Table des matières
Lecture graphique Table des matières 1 Lecture d une courbe 2 1.1 Définition d une fonction.......................... 2 1.2 Exemple d une courbe........................... 2 1.3 Coût, recette et bénéfice...........................
Mesures calorimétriques
TP N 11 Mesures calorimétriques - page 51 - - T.P. N 11 - Ce document rassemble plusieurs mesures qui vont faire l'objet de quatre séances de travaux pratiques. La quasi totalité de ces manipulations utilisent
Le bac à graisses PRETRAITEMENT. Schéma de principe. Volume du bac à graisses. Pose
Le bac à graisses Schéma de principe Lorsqu on a une longueur de canalisation importante entre la sortie des eaux de cuisine et la fosse septique toutes eaux, il est fortement conseillé d intercaler un
Chapitre 11 Bilans thermiques
DERNIÈRE IMPRESSION LE 30 août 2013 à 15:40 Chapitre 11 Bilans thermiques Table des matières 1 L état macroscopique et microcospique de la matière 2 2 Énergie interne d un système 2 2.1 Définition.................................
Manuel d'utilisation de la maquette
Manuel d'utilisation de la maquette PANNEAU SOLAIRE AUTO-PILOTE Enseignement au lycée Article Code Panneau solaire auto-piloté 14740 Document non contractuel L'énergie solaire L'énergie solaire est l'énergie
