1 Force brute. 2 Analyse. 3 Conception préliminaire. 4 Conception détaillée. 5 Développement. 6 Conclusion. Architecture des Systèmes d Information
|
|
|
- Benjamin Ricard
- il y a 10 ans
- Total affichages :
Transcription
1 Plan Puissance 4 intelligent I3 Algorithmique Nicol Delestre 1 Force brute 2 Analyse 3 Conception préliminaire 4 Conception détaillée 5 Développement 6 Conclusion Puissance 4. v2.0 1 / 29 Puissance 4. v2.0 2 / 29 Force brute La recherche de solution en force brute (ou recherche exhaustive) est l une des méthodes utilisée en informatique pour faire jouer des ordinateurs Elle utilise trois algorithmes Un générateur de coup qui pour une position et un joueur donnés est capable de lister l ensemble des coups possibles Une fonction d évaluation qui pour une position et un joueur donnés est capable de calculer qui a l avantage Une algorithme de sélection de coup qui pour une position et un joueur donnés est capable de calculer le meilleur coup pour ce joueur. L algorithme le plus connu est celui du MinMax. L algorithme min-max 1 / 6 Principe La fonction d évaluation retourne un entier (ou un réel) tel que : le signe indique qui a l avantage (positif pour celui pour qui on calcule le meilleur coup, négatif pour l autre) la valeur absolue indique l importance de cet avantage Pour avoir l avantage, il faut maximiser son score On considère que l adversaire joue au mieux, c est-à-dire qu il essaye de maximiser son score, c est-à-dire minimiser celui pour qui on cherche à calculer le meilleur coup Puissance 4. v2.0 3 / 29 Puissance 4. v2.0 4 / 29
2 L algorithme min-max 2 / 6 L algorithme min-max 3 / 6 Principe : générateur de coups et fonction d évaluation Remonter des scores (min, max)!"# $ $ $ Puissance 4. v2.0 5 / 29 Puissance 4. v2.0 6 / 29 L algorithme min-max 4 / 6 L algorithme min-max 5 / 6 Choix du coup!" $# $# # $# # Synthèse Le sous-programme de choix d un coup a besoin : d un générateur de coups d un calcul de score d un coup Le sous-programme de calcul de score a besoin : d une fonction d évaluation de l algorithme min-max Le sous-programme min-max a besoin : d une générateur de coups d un calcul de score d un coup Puissance 4. v2.0 7 / 29 Puissance 4. v2.0 8 / 29
3 L algorithme min-max 6 / 6 Force brute pour le puissance 4 Analyse descendante Générateur de coups Il suffit de répertorier toutes les colonnes du plateau qui ne sont p totalement remplies Fonction d évaluation (version très simple) Faire la somme du nombre de pions alignés multipliée par un coefficient pour chaque joueur : 1 pour un alignement d un pion 5 pour un alignement de deux pions 50 pour un alignements de trois pions 1000 pour un alignements de quatre pions Faire la différence des scores des deux joueurs Puissance 4. v2.0 9 / 29 Puissance 4. v / 29 Les types de données et leurs opérations 1 / 2 Les types de données et leurs opérations 2 / 2 Nous avions les types : Pion qui est jaune ou rouge Contenu d une ce d un plateau qui est soit vide soit remplie par un pion Plateau qui est un ensemble de ce organisé en colonnes et lignes EtatPartie l état ale de la partie (partie gagnée ou partie nulle) Auxquels on ajoute Coups qui un ensemble de coups, avec un coup qui est le numéro d une colonne du plateau Opérations de Coups obtenir un ensemble de coups vide (coups) Sortie : Coups obtenir le nb de coups (nb) Entrée : Coups Sortie : Naturel ajouter un coups (ajouter) Entrée : Coups, Colonne Sortie : Coups obtenir le ième coups (ieme) Entrée : Coups, Naturel Sortie : Colonne Puissance 4. v / 29 Puissance 4. v / 29
4 Analyse descendante (rappel) 1 / 3 Analyse descendante (rappel) 2 / 3 faire une partie coup gagnant!" Puissance 4. v / 29 Puissance 4. v / 29 Analyse descendante (rappel) 3 / 3 Nouvelle analyse descendante pour l IA obtenircoup totalementrempli %!! "##$ Puissance 4. v / 29 Puissance 4. v / 29
5 Conception préliminaire, nouvelles fonctions / procédures 1 / 2 Conception préliminaire, nouvelles fonctions / procédures 2 / 2 Opérations de Coups fonction coups () : Coups fonction nb (cps : Coups) : Naturel procédure ajouter (E/S cps : Coups,E col : Colonne) fonction ieme (cps : Coups, ieme : Naturel) : Colonne précondition(s) 0 < ieme et ieme nb(cps) Opérations pour faire jouer l ordinateur au puissance 4 (IA) fonction obtenircoup (unplateau : plateau, joueur : Pion, profondeur : Naturel) : Colonne précondition(s) non plateautotalementrempli(unplateau) fonction obtenircoupspossibles (unplateau : plateau) : Coups fonction scoreduncoup (unplateau : plateau, joueurref,joueurcourant : Pion, uncoup : Colonne, profondeur : Naturel) : Entier fonction minmax (unplateau : plateau, joueurref,joueurcourant : Pion, profondeur : Naturel) : Entier fonction evaluer (unplateau : plateau, joueurref : Pion) : Entier fonction score (unplateau : plateau, joueur : Pion) : Entier Puissance 4. v / 29 Puissance 4. v / 29 Conception détaillée - Coups 1 / 2 Conception détaillée - Coups 2 / 2 Type Coups Type Coups = Structure lescoups : Tableau[1..NB COLONNES] de Colonne nbcoups : Naturel structure Opérations du type Coups fonction coups () : Coups Déclaration resultat : Coups resultat.nbcoups 0 fonction nb (cps : Coups) : Naturel retourner cps.nbcoups Opérations du type Coups (suite) procédure ajoutercoup (E/S cps : Coups,E cp : Colonne) cps.nbcoups cps.nbcoups+1 cps.lescoups[cps.nbcoups] cp fonction ieme (cps : Coups, i : Naturel) : Colonne précondition(s) 0 < ieme et ieme nb(cps) retourner cps.lescoups[i] Puissance 4. v / 29 Puissance 4. v / 29
6 Conception détaillée - IA 1 / 6 Conception détaillée - IA 2 / 6 obtenircoup fonction obtenircoup (unplateau : Plateau, joueur : Pion, profondeur : Naturel) : Colonne Déclaration resultat : Colonne, cps : Coups, score,meilleurscore : Entier, i : Naturel cps obtenircoupspossibles(unplateau) resultat ieme(cps,1) meilleurscore scoreduncoup(unplateau,resultat,joueur,joueur,profondeur) pour i 2 à nb(cps) faire score scoreduncoup(unplateau,ieme(cps,i),joueur,joueur,profondeur) si score>meilleurscore alors resultat ieme(cps,i) meilleurscore score si pour obtenircoupspossibles fonction obtenircoupspossibles (unplateau : Plateau) : Coups précondition(s) non plateautotalementrempli(unplateau) Déclaration i : Naturel resultat : Coups resultat coups() pour i 1 à NB COLONNES faire si hauteurcolonne(unplateau,i)<nb LIGNES alors ajouter(resultat,i) si pour Puissance 4. v / 29 Puissance 4. v / 29 Conception détaillée - IA 3 / 6 Conception détaillée - IA 4 / 6 scoreduncoup fonction scoreduncoup (unplateau : Plateau, uncoup : Colonne, joueurref,joueurcourant : Pion, profondeur : Naturel) : Entier jouer(unplateau,uncoup,joueurcourant) si plateautotalementrempli(unplateau) ou coupgagnant(unplateau,uncoup) ou profondeur=0 alors retourner evaluer(unplateau,joueurref) sinon retourner minmax(unplateau,joueurref,autrejoueur(joueurcourant),profondeur-1) si minmax fonction minmax (unplateau : Plateau, joueurref,joueurcourant : Pion, profondeur : Naturel) : Entier Déclaration resultat : Entier, cps : Coups, score : Entier, i : Naturel cps obtenircoupspossibles(unplateau) resultat scoreduncoup(unplateau,ieme(cps,1),joueurref,joueurcourant,profondeur) pour i 2 à nb(cps) faire score scoreduncoup(unplateau,ieme(cps,i),joueurref,joueurcourant,profondeur) si joueurcourant=joueurref alors resultat max(resultat,score) sinon resultat min(resultat,score) si pour Puissance 4. v / 29 Puissance 4. v / 29
7 Conception détaillée - IA 5 / 6 evaluer fonction evaluer (unplateau : Plateau, joueurref : Pion) : Entier retourner score(unplateau,joueurref)-score(unplateau,autrejoueur(joueurref)) score fonction scorealignement (nbpionsalignes : 1..4) : Entier Déclaration resultat : Entier c où nbpionsalignes vaut 1: resultat 1 2: resultat 5 3: resultat 50 4: resultat 1000 c Puissance 4. v / 29 Développement en Pcal 1 / 2 Conception détaillée - IA 6 / 6 score fonction score (unplateau : Plateau, joueur : Pion) : Entier Déclaration resultat : Entier, i : Colonne, j : Ligne resultat 0 pour i 1 à NB COLONNES faire pour j 1 à NB LIGNES faire si contenuce(unplateau,i,j)=joueurref alors resultat resultat+ scorealignement(nbpionsalignesverticalement(unplateau,i,j)) resultat resultat+ scorealignement(nbpionsaligneshorizontalement(unplateau,i,j)) resultat resultat+ scorealignement(nbpionsalignesdiagonalementgaucheadroite(unplateau,i,j)) resultat resultat+ scorealignement(nbpionsalignesdiagonalementdroiteagauche(unplateau,i,j)) si pour pour Puissance 4. v / 29 Développement en Pcal 2 / 2 Ancien diagramme d unités - Texte et graphique Nouveau diagramme d unités - Texte et graphique Puissance 4. v / 29 Puissance 4. v / 29
8 Conclusion Conclusion Sans la méthodologie du cycle en V : Il aurait été difficile d atteindre le résultat Il aurait été impossible de séparer le travail Ce qu il reste à faire pour avoir un bon programme Compléter la documentation du code Finir les tests unitaires Améliorer : la fonction d évaluation (prendre en compte qu une suite de pions non entourés compte plus qu une suite de pions entourés) les performances : élagage de l arbre de récursion (algorithme α β) Puissance 4. v / 29
Tableau et enregistrement en Pascal et Première version du jeu du puissance 4 I3 - Algorithmique et programmation
Plan Tableau et enregistrement en Pcal et Première version du jeu du puissance 4 I3 - Algorithmique et programmation Nicol Delestre 1 Tableau Tableau à une dimension Tableau à n dimensions 2 Enregistrement
Architecture des Systèmes d Information Architecture des Systèmes d Information
Plan... Tableaux et tris I3 - Algorithmique et programmation 1 Rappels Nicol Delestre 2 Tableaux à n dimensions 3 Initiation aux tris Tableaux - v2.0.1 1 / 27 Tableaux - v2.0.1 2 / 27 Rappels : tableau
1 de 46. Algorithmique. Trouver et Trier. Florent Hivert. Mél : [email protected] Page personnelle : http://www.lri.fr/ hivert
1 de 46 Algorithmique Trouver et Trier Florent Hivert Mél : [email protected] Page personnelle : http://www.lri.fr/ hivert 2 de 46 Algorithmes et structures de données La plupart des bons algorithmes
Poker. A rendre pour le 25 avril
Poker A rendre pour le 25 avril 0 Avant propos 0.1 Notation Les parties sans * sont obligatoires (ne rendez pas un projet qui ne contient pas toutes les fonctions sans *). Celles avec (*) sont moins faciles
Resolution limit in community detection
Introduction Plan 2006 Introduction Plan Introduction Introduction Plan Introduction Point de départ : un graphe et des sous-graphes. But : quantifier le fait que les sous-graphes choisis sont des modules.
Les Cartes et leur Valeur
RÈGLES CANASTA Règle du Jeu de la Canasta Canasta est le nom d une combinaison de 7 cartes qui donne son nom à cette variante de Rami. Le but du Jeu: Le gagnant est le joueur qui est le premier à atteindre
Excel Avancé. Plan. Outils de résolution. Interactivité dans les feuilles. Outils de simulation. La valeur cible Le solveur
Excel Avancé Plan Outils de résolution La valeur cible Le solveur Interactivité dans les feuilles Fonctions de recherche (ex: RechercheV) Utilisation de la barre d outils «Formulaires» Outils de simulation
Décision Markovienne appliquée à un jeu de stop ou encore : Pickomino (Heckmeck Am Bratwurmeck)
Décision Markovienne appliquée à un jeu de stop ou encore : Pickomino (Heckmeck Am Bratwurmeck) Stéphane Cardon Nathalie Chetcuti-Sperandio Fabien Delorme Sylvain agrue CRI - Université d Artois {cardon,chetcuti,delorme,lagrue}@cril.univ-artois.fr
Statistiques Descriptives à une dimension
I. Introduction et Définitions 1. Introduction La statistique est une science qui a pour objectif de recueillir et de traiter les informations, souvent en très grand nombre. Elle regroupe l ensemble des
Plus courts chemins, programmation dynamique
1 Plus courts chemins, programmation dynamique 1. Plus courts chemins à partir d un sommet 2. Plus courts chemins entre tous les sommets 3. Semi-anneau 4. Programmation dynamique 5. Applications à la bio-informatique
Jade. Projet Intelligence Artificielle «Devine à quoi je pense»
Jade Projet Intelligence Artificielle «Devine à quoi je pense» Réalisé par Djénéba Djikiné, Alexandre Bernard et Julien Lafont EPSI CSII2-2011 TABLE DES MATIÈRES 1. Analyse du besoin a. Cahier des charges
Projet L1, S2, 2015: Simulation de fourmis, Soutenance la semaine du 4 mai.
Projet L1, S2, 2015: Simulation de fourmis, Soutenance la semaine du 4 mai. 1 Introduction On considère une grille de 20 lignes 20 colonnes. Une case de la grille peut être vide, ou contenir une et une
Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/
Recherche opérationnelle Les démonstrations et les exemples seront traités en cours Souad EL Bernoussi Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Table des matières 1 Programmation
Feuille TD n 1 Exercices d algorithmique éléments de correction
Master Sciences, Technologies, Santé Mention Mathématiques, spécialité Enseignement des mathématiques Algorithmique et graphes, thèmes du second degré Feuille TD n 1 Exercices d algorithmique éléments
Ce rêve est devenu réalité.
Vous venez de trouver une règle mise en ligne par un collectionneur qui, depuis 1998, partage sa collection de jeux de société et sa passion sur Internet. Imaginez que vous puissiez accéder, jour et nuit,
Leçon N 4 : Statistiques à deux variables
Leçon N 4 : Statistiques à deux variables En premier lieu, il te faut relire les cours de première sur les statistiques à une variable, il y a tout un langage à se remémorer : étude d un échantillon d
Les nombres entiers. Durée suggérée: 3 semaines
Les nombres entiers Durée suggérée: 3 semaines Aperçu du module Orientation et contexte Pourquoi est-ce important? Dans le présent module, les élèves multiplieront et diviseront des nombres entiers concrètement,
ARBRES BINAIRES DE RECHERCHE
ARBRES BINAIRES DE RECHERCHE Table de symboles Recherche : opération fondamentale données : éléments avec clés Type abstrait d une table de symboles (symbol table) ou dictionnaire Objets : ensembles d
B B A C U C C U C G 2 E 0 B 0
Test psychotechnique ISI : Mastermind Test psychotechnique ISI : Mastermind Le Mastermind est un jeu de société, créé danss les années 70, opposant deux adversaires et dans lequel l un des joueurs doit
Cours de Master Recherche
Cours de Master Recherche Spécialité CODE : Résolution de problèmes combinatoires Christine Solnon LIRIS, UMR 5205 CNRS / Université Lyon 1 2007 Rappel du plan du cours 16 heures de cours 1 - Introduction
Calculabilité Cours 3 : Problèmes non-calculables. http://www.irisa.fr/lande/pichardie/l3/log/
Calculabilité Cours 3 : Problèmes non-calculables http://www.irisa.fr/lande/pichardie/l3/log/ Problèmes et classes de décidabilité Problèmes et classes de décidabilité Nous nous intéressons aux problèmes
1 planche Cour du Roi, pour poser les cartes Audience. 5 pions Château, pour indiquer votre emplacement autour de la Cour
Honneurs de la Cour Un jeu créé par Damien NICOLAS De 2 à 5 joueurs - A partir de 10 ans 10min/joueurs But du jeu Vous incarnez une des plus prestigieuses familles de la Cour du Roi de France et rêvez
La classification automatique de données quantitatives
La classification automatique de données quantitatives 1 Introduction Parmi les méthodes de statistique exploratoire multidimensionnelle, dont l objectif est d extraire d une masse de données des informations
Exercices du Cours de la programmation linéaire donné par le Dr. Ali DERBALA
75. Un plombier connaît la disposition de trois tuyaux sous des dalles ( voir figure ci dessous ) et il lui suffit de découvrir une partie de chacun d eux pour pouvoir y poser les robinets. Il cherche
Cours d initiation à la programmation en C++ Johann Cuenin
Cours d initiation à la programmation en C++ Johann Cuenin 11 octobre 2014 2 Table des matières 1 Introduction 5 2 Bases de la programmation en C++ 7 3 Les types composés 9 3.1 Les tableaux.............................
t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :
Terminale STSS 2 012 2 013 Pourcentages Synthèse 1) Définition : Calculer t % d'un nombre, c'est multiplier ce nombre par t 100. 2) Exemples de calcul : a) Calcul d un pourcentage : Un article coûtant
La programmation linéaire : une introduction. Qu est-ce qu un programme linéaire? Terminologie. Écriture mathématique
La programmation linéaire : une introduction Qu est-ce qu un programme linéaire? Qu est-ce qu un programme linéaire? Exemples : allocation de ressources problème de recouvrement Hypothèses de la programmation
Matériel. . 9 cartes Personnage
Avec cette extension, les règles de base peuvent être modifiées de cinq façons différentes et combinables comme bon vous semble Les dames de Troyes font leur apparition sous la forme de trois nouvelles
Arbres binaires de décision
1 Arbres binaires de décision Résumé Arbres binaires de décision Méthodes de construction d arbres binaires de décision, modélisant une discrimination (classification trees) ou une régression (regression
introduction Chapitre 5 Récursivité Exemples mathématiques Fonction factorielle ø est un arbre (vide) Images récursives
introduction Chapitre 5 Images récursives http ://univ-tln.fr/~papini/sources/flocon.htm Récursivité http://www.poulain.org/fractales/index.html Image qui se contient elle-même 1 Exemples mathématiques
Arbres binaires de recherche
1 arbre des comparaisons 2 recherche dichotomique l'arbre est recalculé à chaque recherche 2 5 3 4 7 9 1 6 1 2 3 4 5 6 7 9 10 conserver la structure d'arbre au lieu de la reconstruire arbre binaire de
Conception et Développement d un moteur d intelligence artificielle pour un jeu d échecs multiplateformes
MEMOIRE DE FIN D ETUDES MASTER D INFORMATIQUE Conception et Développement d un moteur d intelligence artificielle pour un jeu d échecs multiplateformes Étudiant Superviseurs : HOANG Duc Viet : HO Tuong
Savoir-faire. Décompte Champs Pâturages. -1 point 1 point 2. 2 points. 3 points. 4 points 5+ 4+ 8+ 4+ 8+ 7+ 6+ Céréales * Légumes *
Décompte Champs Pâturages Céréales * Légumes * Moutons Sangliers Bœufs * dans les champs et dans la réserve -1 point 0-1 0 0 0 0 0 0 1 point 2 1 1-3 1 1-3 1-2 1 2 points 3 2 4-5 2 4-5 3-4 2-3 -1 point
Définition 0,752 = 0,7 + 0,05 + 0,002 SYSTÈMES DE NUMÉRATION POSITIONNELS = 7 10 1 + 5 10 2 + 2 10 3
8 Systèmes de numération INTRODUCTION SYSTÈMES DE NUMÉRATION POSITIONNELS Dans un système positionnel, le nombre de symboles est fixe On représente par un symbole chaque chiffre inférieur à la base, incluant
Vous incarnez un surdoué en informatique qui utilise son ordinateur afin de pirater des comptes bancaires un peu partout dans le monde et s en mettre
Vous incarnez un surdoué en informatique qui utilise son ordinateur afin de pirater des comptes bancaires un peu partout dans le monde et s en mettre plein les poches. Problème : vous n êtes pas seul!
Les clients puissance cube
LETTRE CONVERGENCE Les clients puissance cube L intelligence artificielle au service du marketing des services N 28 To get there. Together. A PROPOS DE BEARINGPOINT BearingPoint est un cabinet de conseil
Dimensionnement d une roue autonome pour une implantation sur un fauteuil roulant
Dimensionnement d une roue autonome pour une implantation sur un fauteuil roulant I Présentation I.1 La roue autonome Ez-Wheel SAS est une entreprise française de technologie innovante fondée en 2009.
Architecture des ordinateurs TD1 - Portes logiques et premiers circuits
Architecture des ordinateurs TD1 - Portes logiques et premiers circuits 1 Rappel : un peu de logique Exercice 1.1 Remplir la table de vérité suivante : a b a + b ab a + b ab a b 0 0 0 1 1 0 1 1 Exercice
Jeux mathématiques en maternelle. Activités clés. Jeu des maisons et des jardins (Yvette Denny PEMF)
Activités clés NIVEAU : PS/MS Jeu des maisons et des jardins (Yvette Denny PEMF) Compétences Construire les premiers nombres dans leur aspect cardinal Construire des collections équipotentes Situation
Joueur B Pierre Feuille Ciseaux Pierre (0,0) (-1,1) (1,-1) Feuille (1,-1) (0,0) (-1,1) Ciseaux (-1,1) (1,-1) (0.0)
CORRECTION D EXAMEN CONTROLE CONTINU n 1 Question de cours Question 1 : Les équilibres de Cournot et de Stackelberg sont des équilibres de situation de duopole sur un marché non coopératif d un bien homogène.
3. SPÉCIFICATIONS DU LOGICIEL. de l'expression des besoins à la conception. Spécifications fonctionnelles Analyse fonctionnelle et méthodes
PLAN CYCLE DE VIE D'UN LOGICIEL EXPRESSION DES BESOINS SPÉCIFICATIONS DU LOGICIEL CONCEPTION DU LOGICIEL LA PROGRAMMATION TESTS ET MISE AU POINT DOCUMENTATION CONCLUSION C.Crochepeyre Génie Logiciel Diapason
Complexité. Licence Informatique - Semestre 2 - Algorithmique et Programmation
Complexité Objectifs des calculs de complexité : - pouvoir prévoir le temps d'exécution d'un algorithme - pouvoir comparer deux algorithmes réalisant le même traitement Exemples : - si on lance le calcul
INITIATION AU LANGAGE C SUR PIC DE MICROSHIP
COURS PROGRAMMATION INITIATION AU LANGAGE C SUR MICROCONTROLEUR PIC page 1 / 7 INITIATION AU LANGAGE C SUR PIC DE MICROSHIP I. Historique du langage C 1972 : naissance du C dans les laboratoires BELL par
TP3 : Manipulation et implantation de systèmes de fichiers 1
École Normale Supérieure Systèmes et réseaux Année 2012-2013 TP3 : Manipulation et implantation de systèmes de fichiers 1 1 Répertoire de travail courant Le but de l exercice est d écrire une commande
Probabilités. Rappel : trois exemples. Exemple 2 : On dispose d un dé truqué. On sait que : p(1) = p(2) =1/6 ; p(3) = 1/3 p(4) = p(5) =1/12
Probabilités. I - Rappel : trois exemples. Exemple 1 : Dans une classe de 25 élèves, il y a 16 filles. Tous les élèves sont blonds ou bruns. Parmi les filles, 6 sont blondes. Parmi les garçons, 3 sont
SOMMAIRE. 1. Préambule...2. 2. Le calendrier...2. 3. Trajectoire d un objet lancé...6. 4. Régression linéaire...9
SOMMAIRE 1. Préambule...2 2. Le calendrier...2 3. Trajectoire d un objet lancé...6 4. Régression linéaire...9 5. Calcul de commissions par tranches...12 6. Base de données...16 7. Valeur cible...19 ATTENTION
TP : Gestion d une image au format PGM
TP : Gestion d une image au format PGM Objectif : L objectif du sujet est de créer une classe de manipulation d images au format PGM (Portable GreyMap), et de programmer des opérations relativement simples
Indicateur i 20. Manuel d utilisation
Indicateur i 20 WWW.PRECIAMOLEN.COM Manuel d utilisation 04-50-00-0 MU A / 12/2012 Sommaire 1. Avant-propos... 5 Conventions documentaires... 5 Pictogrammes... 5 Terminologie et abréviations... 5 Documentation
Les structures de données. Rajae El Ouazzani
Les structures de données Rajae El Ouazzani Les arbres 2 1- Définition de l arborescence Une arborescence est une collection de nœuds reliés entre eux par des arcs. La collection peut être vide, cad l
Université du Québec à Chicoutimi. Département d informatique et de mathématique. Plan de cours. Titre : Élément de programmation.
Université du Québec à Chicoutimi Département d informatique et de mathématique Plan de cours Titre : Élément de programmation Sigle : 8inf 119 Session : Automne 2001 Professeur : Patrice Guérin Local
Calculs conditionnels... 5. Calculs conditionnels imbriqués... 11. Somme conditionnelle Nombre conditionnel... 27. Fonctions Recherche...
Exercices Excel Fonctions avancées MERCI DE LAISSER CE LIVRET DANS LA SALLE. Exercices Excel Septembre 2001 Calculs conditionnels... 5 Salaire des représentants...6 Facture Au Bois Dormant (1)...7 Achat
Les arbres binaires de recherche
Institut Galilée Année 2010-2011 Algorithmique et arbres L2 TD 6 Les arbres binaires de recherche Type en C des arbres binaires (également utilisé pour les ABR) : typedef struct noeud_s { struct noeud_s
Règlement du TGE. (Edité et validé le 13 Février 2015 par le Président, Hervé DACHARY)
Règlement du TGE (Edité et validé le 13 Février 2015 par le Président, Hervé DACHARY) Article I. Esprit du TGE Le Trophée de Golf des Diplômés des Grandes Ecoles (TGE) réunit chaque année, les anciens
Algorithmique et structures de données I
Algorithmique et structures de données I Riadh Ben Messaoud Université 7 novembre à Carthage Faculté des Sciences Économiques et de Gestion de Nabeul 1ère année Licence Fondamentale IAG 1ère année Licence
MATÉRIEL. 30 tuiles Édifice à la couleur des joueurs (6 par couleur) 1 plateau de jeu Bruxelles
B ruxelles, 89 : Victor Horta signe la Maison utrique et l hôtel Tassel, reconnus comme les premiers édifices «rt nouveau», où la fluidité des espaces fait écho aux courbes végétales qui investissent ferronneries,
Correction du baccalauréat STMG Polynésie 17 juin 2014
Correction du baccalauréat STMG Polynésie 17 juin 2014 EXERCICE 1 Cet exercice est un Q.C.M. 4 points 1. La valeur d une action cotée en Bourse a baissé de 37,5 %. Le coefficient multiplicateur associé
MATHÉMATIQUES FINANCIÈRES
MATHÉMATIQUES FINANCIÈRES Table des matières Version 2012 Lang Fred 1 Intérêts et taux 2 1.1 Définitions et notations................................ 2 1.2 Intérêt simple......................................
Burkina Faso Profil pays EPT 2014
Burkina Faso Profil pays EPT 14 Contexte général Situé au cœur de l Afrique occidentale, dans la boucle du Niger, le Burkina Faso est l un pays des pays les plus peuplés de la sous-région Ouest-africaine
Chapitre 3. Les distributions à deux variables
Chapitre 3. Les distributions à deux variables Jean-François Coeurjolly http://www-ljk.imag.fr/membres/jean-francois.coeurjolly/ Laboratoire Jean Kuntzmann (LJK), Grenoble University 1 Distributions conditionnelles
U102 Devoir sur les suites (TST2S)
LES SUITES - DEVOIR 1 EXERCICE 1 L'objectif de cet exercice est de comparer l'évolution des économies de deux personnes au cours d'une année. Pierre possède 500 euros d'économies le 1 er janvier. Il décide
Site Web de paris sportifs
HENAUD Benoît Numéro d auditeur 05-39166 Version V1.2 Date de mise à jour 31/03/2008 1/21 Table des matières 1. Objectif du document... 3 2. Présentation... 3 2.1. Présentation du projet... 3 2.2. Situation
UML et les Bases de Données
CNAM UML et les Bases de Données UML et les Bases de Données. Diagramme de classes / diagramme d objets (UML)...2.. Premier niveau de modélisation des données d une application...2.2. Les éléments de modélisation...2.2..
Capacité d un canal Second Théorème de Shannon. Théorie de l information 1/34
Capacité d un canal Second Théorème de Shannon Théorie de l information 1/34 Plan du cours 1. Canaux discrets sans mémoire, exemples ; 2. Capacité ; 3. Canaux symétriques ; 4. Codage de canal ; 5. Second
Intelligence Artificielle Distribuée. Dossier technique. IAD TeamZ
Intelligence Artificielle Distribuée Dossier technique IAD TeamZ 29 mai 2004 Table des matières 1 Introduction 4 1.1 Historique d Othello........................ 4 1.2 Othello...............................
a)390 + 520 + 150 b)702 + 159 +100
Ex 1 : Calcule un ordre de grandeur du résultat et indique s il sera supérieur à 1 000 L addition est une opération qui permet de calculer la somme de plusieurs nombres. On peut changer l ordre de ses
INF601 : Algorithme et Structure de données
Cours 2 : TDA Arbre Binaire B. Jacob IC2/LIUM 27 février 2010 Plan 1 Introuction 2 Primitives u TDA Arbin 3 Réalisations u TDA Arbin par cellules chaînées par cellules contiguës par curseurs (faux pointeurs)
Optimisation Discrète
Prof F Eisenbrand EPFL - DISOPT Optimisation Discrète Adrian Bock Semestre de printemps 2011 Série 7 7 avril 2011 Exercice 1 i Considérer le programme linéaire max{c T x : Ax b} avec c R n, A R m n et
Master Exploration Informatique des données Data Mining & Business Intelligence. Evelyne CHARIFOU Priscillia CASSANDRA
Master Exploration Informatique des données Data Mining & Business Intelligence Groupe 5 Piotr BENSALEM Ahmed BENSI Evelyne CHARIFOU Priscillia CASSANDRA Enseignant Françoise FOGELMAN Nicolas DULIAN SOMMAIRE
Assistant d e tablissement de Tableaux
Assistant d e tablissement de Tableaux Cet outil est autonome et doit être installé sur votre ordinateur sous Windows. Cet outil n est pas parfait, il peut proposer des solutions non correctes, le tableau
Ce rêve est devenu réalité.
Vous venez de trouver une règle mise en ligne par un collectionneur qui, depuis 1998, partage sa collection de jeux de société et sa passion sur Internet. Imaginez que vous puissiez accéder, jour et nuit,
Cours de Recherche Opérationnelle IUT d Orsay. Nicolas M. THIÉRY. E-mail address: [email protected] URL: http://nicolas.thiery.
Cours de Recherche Opérationnelle IUT d Orsay Nicolas M. THIÉRY E-mail address: [email protected] URL: http://nicolas.thiery.name/ CHAPTER 1 Introduction à l optimisation 1.1. TD: Ordonnancement
Objectifs du cours d aujourd hui. Informatique II : Cours d introduction à l informatique et à la programmation objet. Complexité d un problème (2)
Objectifs du cours d aujourd hui Informatique II : Cours d introduction à l informatique et à la programmation objet Complexité des problèmes Introduire la notion de complexité d un problème Présenter
Programmation linéaire
1 Programmation linéaire 1. Le problème, un exemple. 2. Le cas b = 0 3. Théorème de dualité 4. L algorithme du simplexe 5. Problèmes équivalents 6. Complexité de l Algorithme 2 Position du problème Soit
Correction TD algorithmique
Affectation Correction TD algorithmique Exercice 1 algo affect1b b 5 a b+1 b 2 Il vaut faire passer la notion de variable et la notion de stockage mémoire. Une variable n a donc pas d historique et à un
LA FICHE TECHNIQUE Comment établir une fiche technique à la fois concise et précise. Document à l'usage des régisseurs.
LA FICHE TECHNIQUE Comment établir une fiche technique à la fois concise et précise. Document à l'usage des régisseurs. La fiche technique est souvent le premier contact que vous aurez avec les organisateurs,
SOFI Gestion+ Version 5.4. Echanges de données informatiques Spicers Sofi gestion+ Groupements. SOFI Informatique. Actualisé le 10.09.
SOFI Gestion+ SOFI Informatique Version 5.4 Echanges de données informatiques Spicers Sofi gestion+ Groupements Actualisé le 10.09.2004 Table des matières 1. Catalogue et tarifs... 4 1.1 Définition EDI...
Probabilité. Table des matières. 1 Loi de probabilité 2 1.1 Conditions préalables... 2 1.2 Définitions... 2 1.3 Loi équirépartie...
1 Probabilité Table des matières 1 Loi de probabilité 2 1.1 Conditions préalables........................... 2 1.2 Définitions................................. 2 1.3 Loi équirépartie..............................
Actuariat I ACT2121. septième séance. Arthur Charpentier. Automne 2012. [email protected]. http ://freakonometrics.blog.free.
Actuariat I ACT2121 septième séance Arthur Charpentier [email protected] http ://freakonometrics.blog.free.fr/ Automne 2012 1 Exercice 1 En analysant le temps d attente X avant un certain événement
Les devoirs en Première STMG
Les devoirs en Première STMG O. Lader Table des matières Devoir sur table 1 : Proportions et inclusions....................... 2 Devoir sur table 1 : Proportions et inclusions (corrigé)..................
BACCALAURÉAT GÉNÉRAL SESSION 2012 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE
BACCALAURÉAT GÉNÉRAL SESSION 2012 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE Les calculatrices électroniques de poche sont autorisées, conformément à la
Initiation à LabView : Les exemples d applications :
Initiation à LabView : Les exemples d applications : c) Type de variables : Créer un programme : Exemple 1 : Calcul de c= 2(a+b)(a-3b) ou a, b et c seront des réels. «Exemple1» nom du programme : «Exemple
TP3 Intégration de pratiques agiles. 1. User Stories (1) Scénario d intégration agile. En direct-live du château
Rappel TP3 Intégration de pratiques agiles En direct-live du château 40 41 Scénario d intégration agile 1. User Stories (1) 1. Rédiger les User Stories (exigences) 2. Planifier les Itérations (quoi / quand)
Représentation d un entier en base b
Représentation d un entier en base b 13 octobre 2012 1 Prérequis Les bases de la programmation en langage sont supposées avoir été travaillées L écriture en base b d un entier est ainsi défini à partir
Nouvelles propositions pour la résolution exacte du sac à dos multi-objectif unidimensionnel en variables binaires
Nouvelles propositions pour la résolution exacte du sac à dos multi-objectif unidimensionnel en variables binaires Julien Jorge [email protected] Laboratoire d Informatique de Nantes Atlantique,
Ys - Règle Française. Le Plateau. Ys et plus...
Ys - Règle Française Le Plateau Un jeu de Cyril Demaegd Illustrations d Arnaud Demaegd Design de Cyril Demaegd Ys et plus... Ys est un jeu destiné à 2, 3 ou 4 joueurs. La règle qui suit explique les détails
Manuel d utilisation 26 juin 2011. 1 Tâche à effectuer : écrire un algorithme 2
éducalgo Manuel d utilisation 26 juin 2011 Table des matières 1 Tâche à effectuer : écrire un algorithme 2 2 Comment écrire un algorithme? 3 2.1 Avec quoi écrit-on? Avec les boutons d écriture........
Algorithmes d'apprentissage
Algorithmes d'apprentissage 1 Agents qui apprennent à partir d'exemples La problématique : prise de décision automatisée à partir d'un ensemble d'exemples Diagnostic médical Réponse à une demande de prêt
Compter à Babylone. L écriture des nombres
Compter à Babylone d après l article de Christine Proust «Le calcul sexagésimal en Mésopotamie : enseignement dans les écoles de scribes» disponible sur http://www.dma.ens.fr/culturemath/ Les mathématiciens
FOCUS Evolution. Lisez-Moi. Version FE 7.0.t
Lisez-Moi Version FE 7.0.t SOMMAIRE 1. PARAMETRAGE... 5 1.1. Banque... 5 1.1.1. Code Banque... 6 1.1.2. Comptes bancaires... 7 1.1.3. Edition... 8 2. FICHE CLIENTS... 9 2.1. Renseignements Comptables...
Excel avancé. Frédéric Gava (MCF) [email protected]
Excel avancé Frédéric Gava (MCF) [email protected] LACL, bâtiment P2 du CMC, bureau 221 Université de Paris XII Val-de-Marne 61 avenue du Général de Gaulle 94010 Créteil cedex Rappels et compléments
Cours d introduction à l informatique. Partie 2 : Comment écrire un algorithme? Qu est-ce qu une variable? Expressions et instructions
Cours d introduction à l informatique Partie 2 : Comment écrire un algorithme? Qu est-ce qu une variable? Expressions et instructions Qu est-ce qu un Une recette de cuisine algorithme? Protocole expérimental
Ateliers de formation Internet. epub : netlinking et Adwords
Ateliers de formation Internet epub : netlinking et Adwords Publicité en ligne Objectif de ce module : optimiser la notoriété de son site en maillant son réseau en ligne. Résultats attendus : savoir analyser
Application de K-means à la définition du nombre de VM optimal dans un cloud
Application de K-means à la définition du nombre de VM optimal dans un cloud EGC 2012 : Atelier Fouille de données complexes : complexité liée aux données multiples et massives (31 janvier - 3 février
avec des nombres entiers
Calculer avec des nombres entiers Effectuez les calculs suivants.. + 9 + 9. Calculez. 9 9 Calculez le quotient et le rest. : : : : 0 :. : : 9 : : 9 0 : 0. 9 9 0 9. Calculez. 9 0 9. : : 0 : 9 : :. : : 0
Construction d un cercle tangent à deux cercles donnés.
Préparation au CAPES Strasbourg, octobre 2008 Construction d un cercle tangent à deux cercles donnés. Le problème posé : On se donne deux cercles C et C de centres O et O distincts et de rayons R et R
Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé
Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé A. P. M. E. P. Exercice 1 5 points 1. Réponse d. : 1 e Le coefficient directeur de la tangente est négatif et n est manifestement pas 2e
Fiche pédagogique : ma famille et moi
Fiche pédagogique : ma famille et moi Tâche finale de l activité : Jouer au «Cluedo» Niveau(x) Cycle 3 Contenu culturel : - jeux de sociétés Connaissances : Connaissances requises : - cf séquences primlangue
LES TYPES DE DONNÉES DU LANGAGE PASCAL
LES TYPES DE DONNÉES DU LANGAGE PASCAL 75 LES TYPES DE DONNÉES DU LANGAGE PASCAL CHAPITRE 4 OBJECTIFS PRÉSENTER LES NOTIONS D ÉTIQUETTE, DE CONS- TANTE ET DE IABLE DANS LE CONTEXTE DU LAN- GAGE PASCAL.
LES CONTENUS ET LES OPTIONS MOINS DE 14 ANS MOINS DE 16 ANS
LES CONTENUS ET LES OPTIONS DU JOUEUR DE HANDBALL MOINS DE 12 ANS MOINS DE 14 ANS MOINS DE 16 ANS Les contenus Quels sont les contenus dans le cadre la formation du joueur? o EN ATTAQUE Mo oins de 12 a
