Université d Orléans - Maitrise Econométrie Econométrie des Variables Qualitatives
|
|
|
- Josselin Primeau
- il y a 8 ans
- Total affichages :
Transcription
1 Université d Orléans - Maitrise Econométrie Econométrie des Variables Qualitatives Contrôle Continu Avril 2008 Exercice 1 (13 points) On s intéresse à l e cacité d un type de traitement analgésique employé dans le traitement de patients âgés atteints de névralgie faciale. Pour cela, on dispose d un échantillon de 60 patients pour lesquels les variables suivantes sont renseignées : la variable d intérêt notée y est codée 1 si la douleur persiste suite au traitement (traitement ine cace) et 0 en cas de disparition (traitement e cace), la variable x 1 renseigne sur le type de traitement reçu et a trois modalités (A et B pour deux dosages de traitement di érents et P s il s agit d un placebo). En n les variables x 2, x 3 et x 4 désignent respectivement le sexe (M=masculin, F=féminin), l âge du patient et la durée (en mois) de la présence de la maladie avant le début du traitement. L objectif bien évidemment est de mesurer l impact de la variable x 1 (type de traitement) sur la variable y, les autres variables étant des variables de contrôle. Question 1 (2 points) : On décide de modéliser la probabilité de rémission de la névralgie (y = 0) en fonction des variables explicatives avec la procédure "logistic" de SAS. (i) La variable x 1 étant qualitative, quel choix vous semble le plus adéquat (au vu de l objectif de l étude) pour la modalité de référence en ce qui concerne cette variable. Justi ez votre réponse. (ii) Ecrivez alors le modèle de régression logistique correspondant en fonction des variables explicatives et des paramètres à estimer. Question 2 (2 points) : Ecrivez la log-vraisemblance du modèle associé à un échantillon de T observations. Soit b l estimateur du MV du vecteur de paramètres. Quelles sont les propriétés asympotiques de cet estimateur? Question 3 (5points) : Les résultats de l estimation par maximum de vraisemblance sont présentés en Annexe. Retrouvez les valeurs non reportées marquées xxxx. Question 4 (3 points): Interprétez les résultats obtenus. Quel type de traitement (A, B ou P) vous semble le plus e cace? Question 5 (1 point): Ecrivez le programme SAS utlisé pour générer les résultats de l Annexe. Exercice 2 (7.5 points) Soit z 1 un vecteur de variables explicatives, z 2 une variable continue et d 1 une variable dichotomique. Question 1 (1.5 points): Dans le modèle suivant P (y = 1 jz 1 ; z 2 ) = z z z2 2 (1) quel est l e et marginal de z 2 sur la probabilité que y = 1? Question 2 (3 points): Dans le modèle suivant P (y = 1 jz 1 ; z 2 ) = (z z d z 2 d 1 ) (2) (i) trouvez l e et marginal de z 2 sur la probabilité que y = 1? (ii) trouvez l e et marginal de d 1 sur la probabilité que y = 1?
2 Contrôle Continu Avril 2008 page 2 On considère une modélisation pour une variable qualitative dichotomique y i : La spéci cation du modèle est la suivante: 1 y i = 0 si y i > 0 sinon (3) y i est une variable latente fonction de deux variables exogènes x 1i et x 2i : La spéci cation retenue est: y i = 1 x 1i + 2 x 2i + " i (4) Les pertubations du modèle sont supposées i:i:d: et suivent une distribution logistique de moyenne nulle et de variance égale à 1. Question 3 (1point) : Donnez l expression du vecteur gradient (G Li ()) pour un individu i, en fonction des exogènes et des paramètres = ( 1 2 ) 0 : Question 4 (2point) : Vous ne disposez que de façon partielle des résultats de l estimation, à savoir b 1 = 3: Mais vous savez néanmoins que pour un individu de l échantillon d étude, x 1i ; x 2i et la première composante de G Li () sont respectivement égales à 1:5; 2 et 1:4938: On suppose que pour cet individu y i = 0. Donnez la valeur estimée du paramètre 2. 2
3 The LOGISTIC Procedure Model Information Data Set Response Variable WORK.NEURALGIA y Number of Response Levels 2 Model Optimization Technique binary logit Fisher's scoring Number of Observations Read 60 Number of Observations Used 60 Response Profile Ordered Value y Total Frequency Probability modeled is y='0'. Class Level Information Class Value Design Variables X1 A 1 0 X2 F 1 B 0 1 P -1-1 M -1
4 Model Convergence Status Convergence criterion (GCONV=1E-8) satisfied. Model Fit Statistics Criterion Intercept Only Intercept and Covariates AIC SC Log L Testing Global Null Hypothesis: BETA=0 Test Chi-Square DF Pr > ChiSq Likelihood Ratio <.0001 Score Wald xxxx (1) Type 3 Analysis of Effects Effect DF Wald Chi-Square Pr > ChiSq x x x x
5 Analysis of Maximum Likelihood Estimates Parameter DF Estimate Standard Error Wald Chi-Square Pr > ChiSq Intercept x1 A x1 B x2 F x3 1 xxxx (3) xxxx (2) x Odds Ratio Estimates Effect Point Estimate 95% Wald Confidence Limits x1 A vs P x1 B vs P x2 F vs M xxxx (4) x x Association of Predicted Probabilities and Observed Responses Percent Concordant 90.5 Somers' D Percent Discordant 9.5 Gamma Percent Tied 0.0 Tau-a Pairs 875 c 0.905
Étude de cas Assurance (d après une étude de Philippe Périé, CISIA)
Étude de cas Assurance (d après une étude de Philippe Périé, CISIA) I.1.Les données L échantillon est constitué de 1106 assurés Belges observés en 1992 et répartis en 2 groupes. - les assurés qui n ont
Un exemple de régression logistique sous
Fiche TD avec le logiciel : tdr341 Un exemple de régression logistique sous A.B. Dufour & A. Viallefont Etude de l apparition ou non d une maladie cardiaque des coronaires 1 Présentation des données Les
Exemple PLS avec SAS
Exemple PLS avec SAS This example, from Umetrics (1995), demonstrates different ways to examine a PLS model. The data come from the field of drug discovery. New drugs are developed from chemicals that
Données longitudinales et modèles de survie
ANALYSE DU Données longitudinales et modèles de survie 5. Modèles de régression en temps discret André Berchtold Département des sciences économiques, Université de Genève Cours de Master ANALYSE DU Plan
Lire ; Compter ; Tester... avec R
Lire ; Compter ; Tester... avec R Préparation des données / Analyse univariée / Analyse bivariée Christophe Genolini 2 Table des matières 1 Rappels théoriques 5 1.1 Vocabulaire....................................
Modèles pour données répétées
Résumé Les données répétées, ou données longitudinales, constituent un domaine à la fois important et assez particulier de la statistique. On entend par données répétées des données telles que, pour chaque
Une introduction. Lionel RIOU FRANÇA. Septembre 2008
Une introduction INSERM U669 Septembre 2008 Sommaire 1 Effets Fixes Effets Aléatoires 2 Analyse Classique Effets aléatoires Efficacité homogène Efficacité hétérogène 3 Estimation du modèle Inférence 4
Exercices M1 SES 2014-2015 Ana Fermin (http:// fermin.perso.math.cnrs.fr/ ) 14 Avril 2015
Exercices M1 SES 214-215 Ana Fermin (http:// fermin.perso.math.cnrs.fr/ ) 14 Avril 215 Les exemples numériques présentés dans ce document d exercices ont été traités sur le logiciel R, téléchargeable par
distribution quelconque Signe 1 échantillon non Wilcoxon gaussienne distribution symétrique Student gaussienne position
Arbre de NESI distribution quelconque Signe 1 échantillon distribution symétrique non gaussienne Wilcoxon gaussienne Student position appariés 1 échantillon sur la différence avec référence=0 2 échantillons
CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures)
CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE Cinquième épreuve d admissibilité STATISTIQUE (durée : cinq heures) Une composition portant sur la statistique. SUJET Cette épreuve est composée d un
Imputation du salaire d ego dans TeO
Imputation du salaire d ego dans TeO Objet de la note : linéariser la réponse en tranche du salaire, et imputer le salaire en cas de non réponse Champ et principe de la méthode Les individus qui se sont
Surveillance et maintenance prédictive : évaluation de la latence de fautes. Zineb SIMEU-ABAZI Univ. Joseph Fourier, LAG)
Surveillance et maintenance prédictive : évaluation de la latence de fautes Zineb SIMEU-ABAZI Univ. Joseph Fourier, LAG) SURVEILLANCE Analyser une situation et fournir des indicateurs! Détection de symptômes!
MODELE A CORRECTION D ERREUR ET APPLICATIONS
MODELE A CORRECTION D ERREUR ET APPLICATIONS Hélène HAMISULTANE Bibliographie : Bourbonnais R. (2000), Econométrie, DUNOD. Lardic S. et Mignon V. (2002), Econométrie des Séries Temporelles Macroéconomiques
Approche par groupe de gènes pour les données longitudinales d expression génique avec une application dans un essai vaccinal contre le VIH
Approche par groupe de gènes pour les données longitudinales d expression génique avec une application dans un essai vaccinal contre le VIH Boris Hejblum 1,2,3 & Rodolphe Thiébaut 1,2,3 1 Inserm, U897
«Cours Statistique et logiciel R»
«Cours Statistique et logiciel R» Rémy Drouilhet (1), Adeline Leclercq-Samson (1), Frédérique Letué (1), Laurence Viry (2) (1) Laboratoire Jean Kuntzmann, Dép. Probabilites et Statistique, (2) Laboratoire
Mulford C. (1992). The Mother-Baby Assessment(MBA): An Apgar Score for breastfeeding. Journal of Human Lactation, 8(2), 79-82.
MOTHER-BABY ASSESSMENT SCALE Mulford C. (1992). The Mother-Baby Assessment(MBA): An Apgar Score for breastfeeding. Journal of Human Lactation, 8(2), 79-82. Instrument de Mother-Baby Assessment scale mesure
Analyse statistique de données qualitatives et quantitatives en sciences sociales : TP RÉGRESSION LOGISTIQUE (MODÈLES CHAPITRE 1)
Analyse statistique de données qualitatives et quantitatives en sciences sociales : TP RÉGRESSION LOGISTIQUE (MODÈLES CHAPITRE 1) Modèles de régression logistique à réaliser Une explicative catégorielle
Analyse de la variance Comparaison de plusieurs moyennes
Analyse de la variance Comparaison de plusieurs moyennes Biostatistique Pr. Nicolas MEYER Laboratoire de Biostatistique et Informatique Médicale Fac. de Médecine de Strasbourg Mars 2011 Plan 1 Introduction
(Customer Relationship Management, «Gestion de la Relation Client»)
(Customer Relationship Management, «Gestion de la Relation Client») Les Banques et sociétés d assurance sont aujourd'hui confrontées à une concurrence de plus en plus vive et leur stratégie " clientèle
ESSEC. Cours «Management bancaire» Séance 3 Le risque de crédit Le scoring
ESSEC Cours «Management bancaire» Séance 3 Le risque de crédit Le scoring Les méthodes d évaluation du risque de crédit pour les PME et les ménages Caractéristiques Comme les montants des crédits et des
EFFICACITÉ ET INNOCUITÉ D UN MÉDICAMENT CONTRE LA MPOC COMPARATIVEMENT À UN CONTRÔLE
MICHÈLE PICARD FLIBOTTE EFFICACITÉ ET INNOCUITÉ D UN MÉDICAMENT CONTRE LA MPOC COMPARATIVEMENT À UN CONTRÔLE Essai-stage présenté à la Faculté des études supérieures de l Université Laval dans le cadre
De la mesure à l analyse des risques
De la mesure à l analyse des risques Séminaire ISFA - B&W Deloitte Jean-Paul LAURENT Professeur à l'isfa, Université Claude Bernard Lyon 1 [email protected] http://laurent.jeanpaul.free.fr/ 0 De
Exemples d application
AgroParisTech Exemples d application du modèle linéaire E Lebarbier, S Robin Table des matières 1 Introduction 4 11 Avertissement 4 12 Notations 4 2 Régression linéaire simple 7 21 Présentation 7 211 Objectif
TABLE DES MATIERES. C Exercices complémentaires 42
TABLE DES MATIERES Chapitre I : Echantillonnage A - Rappels de cours 1. Lois de probabilités de base rencontrées en statistique 1 1.1 Définitions et caractérisations 1 1.2 Les propriétés de convergence
Introduction à la statistique non paramétrique
Introduction à la statistique non paramétrique Catherine MATIAS CNRS, Laboratoire Statistique & Génome, Évry http://stat.genopole.cnrs.fr/ cmatias Atelier SFDS 27/28 septembre 2012 Partie 2 : Tests non
AICp. Vincent Vandewalle. To cite this version: HAL Id: inria-00386678 https://hal.inria.fr/inria-00386678
Sélection prédictive d un modèle génératif par le critère AICp Vincent Vandewalle To cite this version: Vincent Vandewalle. Sélection prédictive d un modèle génératif par le critère AICp. 41èmes Journées
Chapitre 6 Test de comparaison de pourcentages χ². José LABARERE
UE4 : Biostatistiques Chapitre 6 Test de comparaison de pourcentages χ² José LABARERE Année universitaire 2010/2011 Université Joseph Fourier de Grenoble - Tous droits réservés. Plan I. Nature des variables
Pratique de l analyse de données SPSS appliqué à l enquête «Identités et Capital social en Wallonie»
Centre de recherche en démographie et sociétés UCL/IACCHOS/DEMO Pratique de l analyse de données SPSS appliqué à l enquête «Identités et Capital social en Wallonie» 1 2 3+ analyses univariées Type de variables
Utilisation du Logiciel de statistique SPSS 8.0
Utilisation du Logiciel de statistique SPSS 8.0 1 Introduction Etude épidémiologique transversale en population générale dans 4 pays d Afrique pour comprendre les différences de prévalence du VIH. 2000
Nouveau Barème W.B.F. de points de victoire 4 à 48 donnes
Nouveau Barème W.B.F. de points de victoire 4 à 48 donnes Pages 4 à 48 barèmes 4 à 48 donnes Condensé en une page: Page 2 barèmes 4 à 32 ( nombre pair de donnes ) Page 3 Tous les autres barèmes ( PV de
L Econométrie des Données de Panel
Ecole Doctorale Edocif Séminaire Méthodologique L Econométrie des Données de Panel Modèles Linéaires Simples Christophe HURLIN L Econométrie des Données de Panel 2 Figure.: Présentation Le but de ce séminaire
Analyse de variance à deux facteurs (plan inter-sujets à deux facteurs) TP9
Analyse de variance à deux facteurs (plan inter-sujets à deux facteurs) TP9 L analyse de variance à un facteur permet de vérifier, moyennant certaines hypothèses, si un facteur (un critère de classification,
Validation probabiliste d un Système de Prévision d Ensemble
Validation probabiliste d un Système de Prévision d Ensemble Guillem Candille, janvier 2006 Système de Prévision d Ensemble (EPS) (ECMWF Newsletter 90, 2001) Plan 1 Critères de validation probabiliste
STATISTIQUES. UE Modélisation pour la biologie
STATISTIQUES UE Modélisation pour la biologie 2011 Cadre Général n individus: 1, 2,..., n Y variable à expliquer : Y = (y 1, y 2,..., y n ), y i R Modèle: Y = Xθ + ε X matrice du plan d expériences θ paramètres
1 Modélisation d être mauvais payeur
1 Modélisation d être mauvais payeur 1.1 Description Cet exercice est très largement inspiré d un document que M. Grégoire de Lassence de la société SAS m a transmis. Il est intitulé Guide de démarrage
Analyse discriminante et régression logistique: application au cas de l innovation pour les entreprises du Canton du Tessin
Analyse discriminante et régression logistique: application au cas de l innovation pour les entreprises du Canton du Tessin Sandro Petrillo Université de Neuchâtel - Diplôme Postgrade en Statistique Projet
Grégoire de Lassence. Copyright 2006, SAS Institute Inc. All rights reserved.
Grégoire de Lassence 1 Grégoire de Lassence Responsable Pédagogie et Recherche Département Académique Tel : +33 1 60 62 12 19 [email protected] http://www.sas.com/france/academic SAS dans
L olivier Assurances Licence 3 Econométrie Lyon II
15 novembre 2013 L olivier Assurances Licence 3 Econométrie Lyon II Pascal Gonzalvez 1 L olivier Assurances et le Groupe Admiral Segmentation et tarification en assurance auto Autres applications de la
Introduction aux Statistiques et à l utilisation du logiciel R
Introduction aux Statistiques et à l utilisation du logiciel R Christophe Lalanne Christophe Pallier 1 Introduction 2 Comparaisons de deux moyennes 2.1 Objet de l étude On a mesuré le temps de sommeil
Instructions pour mettre à jour un HFFv2 v1.x.yy v2.0.00
Instructions pour mettre à jour un HFFv2 v1.x.yy v2.0.00 HFFv2 1. OBJET L accroissement de la taille de code sur la version 2.0.00 a nécessité une évolution du mapping de la flash. La conséquence de ce
Génération de code binaire pour application multimedia : une approche au vol
Génération de binaire pour application multimedia : une approche au vol http://hpbcg.org/ Henri-Pierre Charles Université de Versailles Saint-Quentin en Yvelines 3 Octobre 2009 Présentation Présentation
Analyses de Variance à un ou plusieurs facteurs Régressions Analyse de Covariance Modèles Linéaires Généralisés
Analyses de Variance à un ou plusieurs facteurs Régressions Analyse de Covariance Modèles Linéaires Généralisés Professeur Patrice Francour [email protected] Une grande partie des illustrations viennent
Probabilités III Introduction à l évaluation d options
Probabilités III Introduction à l évaluation d options Jacques Printems Promotion 2012 2013 1 Modèle à temps discret 2 Introduction aux modèles en temps continu Limite du modèle binomial lorsque N + Un
Analyse de la réinsertion des personnes arrivées en fin de droit de l assurance chômage
Département fédéral de l intérieur DFI Office fédéral de la statistique OFS Actualités OFS 3 Vie active et rémunération du travail Neuchâtel, octobre 2009 Arriver en fin de droit, et après? Analyse de
Statistiques. Rappels de cours et travaux dirigés. Master 1 Biologie et technologie du végétal. Année 2010-2011
Master 1 Biologie et technologie du végétal Année 010-011 Statistiques Rappels de cours et travaux dirigés (Seul ce document sera autorisé en examen) auteur : Jean-Marc Labatte [email protected]
DOSSIER DE CANDIDATURE APPLICATION FORM
DOSSIER DE CANDIDATURE APPLICATION FORM BACHELOR EN MANAGEMENT INTERNATIONAL EM NORMANDIE N D INSCRIPTION (Réservé à l EM NORMANDIE) (to be filled by EM NORMMANDIE) CHOISISSEZ UNE SEULE OPTION / CHOOSE
4 Exemples de problèmes MapReduce incrémentaux
4 Exemples de problèmes MapReduce incrémentaux 1 / 32 Calcul des plus courtes distances à un noeud d un graphe Calcul des plus courts chemins entre toutes les paires de noeuds d un graphe Algorithme PageRank
ENSEIGNEMENT ET MONDE PROFESSIONNEL. Illustration d un lien fort au travers d un cours de scoring. Jean-Philippe KIENNER 7 novembre 2013
ENSEIGNEMENT ET MONDE PROFESSIONNEL Illustration d un lien fort au travers d un cours de scoring Jean-Philippe KIENNER 7 novembre 2013 CONTEXTE Une bonne insertion professionnelle des étudiants passe par
IBM SPSS Regression 21
IBM SPSS Regression 21 Remarque : Avant d utiliser ces informations et le produit qu elles concernent, lisez les informations générales sous Remarques sur p. 46. Cette version s applique à IBM SPSS Statistics
1 Définition de la non stationnarité
Chapitre 2: La non stationnarité -Testsdedétection Quelques notes de cours (non exhaustives) 1 Définition de la non stationnarité La plupart des séries économiques sont non stationnaires, c est-à-direqueleprocessusquiles
FIMA, 7 juillet 2005
F. Corset 1 S. 2 1 LabSAD Université Pierre Mendes France 2 Département de Mathématiques Université de Franche-Comté FIMA, 7 juillet 2005 Plan de l exposé plus court chemin Origine du problème Modélisation
Tests d indépendance en analyse multivariée et tests de normalité dans les modèles ARMA
Tests d indépendance en analyse multivariée et tests de normalité dans les modèles ARMA Soutenance de doctorat, sous la direction de Pr. Bilodeau, M. et Pr. Ducharme, G. Université de Montréal et Université
Coup de Projecteur sur les Réseaux de Neurones
Coup de Projecteur sur les Réseaux de Neurones Les réseaux de neurones peuvent être utilisés pour des problèmes de prévision ou de classification. La représentation la plus populaire est le réseau multicouche
NON-LINEARITE ET RESEAUX NEURONAUX
NON-LINEARITE ET RESEAUX NEURONAUX Vêlayoudom MARIMOUTOU Laboratoire d Analyse et de Recherche Economiques Université de Bordeaux IV Avenue. Leon Duguit, 33608 PESSAC, France tel. 05 56 84 85 77 e-mail
Feuille 6 : Tests. Peut-on dire que l usine a respecté ses engagements? Faire un test d hypothèses pour y répondre.
Université de Nantes Année 2013-2014 L3 Maths-Eco Feuille 6 : Tests Exercice 1 On cherche à connaître la température d ébullition µ, en degrés Celsius, d un certain liquide. On effectue 16 expériences
Modèle GARCH Application à la prévision de la volatilité
Modèle GARCH Application à la prévision de la volatilité Olivier Roustant Ecole des Mines de St-Etienne 3A - Finance Quantitative Décembre 2007 1 Objectifs Améliorer la modélisation de Black et Scholes
TESTS PORTMANTEAU D ADÉQUATION DE MODÈLES ARMA FAIBLES : UNE APPROCHE BASÉE SUR L AUTO-NORMALISATION
TESTS PORTMANTEAU D ADÉQUATION DE MODÈLES ARMA FAIBLES : UNE APPROCHE BASÉE SUR L AUTO-NORMALISATION Bruno Saussereau Laboratoire de Mathématiques de Besançon Université de Franche-Comté Travail en commun
Le Data Mining au service du Scoring ou notation statistique des emprunteurs!
France Le Data Mining au service du Scoring ou notation statistique des emprunteurs! Comme le rappelle la CNIL dans sa délibération n 88-083 du 5 Juillet 1988 portant adoption d une recommandation relative
Predictive Analytics For Operational Decisions. Dr. Rado Kotorov
Predictive Analytics For Operational Decisions Dr. Rado Kotorov The Red and Black Side of Forecasts We all have the data, but some organizations take the analysis one step further. Use Cases Use Cases
Algebra & Trigonometry High School Level Glossary English / French
Algebra & Trigonometry High School Level Glossary / Algebra 2 and Trigonometry Problem Solving algebraically alternate approach collaborate constraint critique equivalent evaluate explain formulate generalization
Bureau : 238 Tel : 04 76 82 58 90 Email : [email protected]
Dominique Muller Laboratoire Inter-universitaire de Psychologie Bureau : 238 Tel : 04 76 82 58 90 Email : [email protected] Supports de cours : webcom.upmf-grenoble.fr/lip/perso/dmuller/m2r/acm/
Medication management ability assessment: results from a performance based measure in older outpatients with schizophrenia.
Medication Management Ability Assessment (MMAA) Patterson TL, Lacro J, McKibbin CL, Moscona S, Hughs T, Jeste DV. (2002) Medication management ability assessment: results from a performance based measure
SAS ENTERPRISE MINER POUR L'ACTUAIRE
SAS ENTERPRISE MINER POUR L'ACTUAIRE Conférence de l Association des Actuaires I.A.R.D. 07 JUIN 2013 Sylvain Tremblay Spécialiste en formation statistique SAS Canada AGENDA Survol d Enterprise Miner de
Cours de méthodes de scoring
UNIVERSITE DE CARTHAGE ECOLE SUPERIEURE DE STATISTIQUE ET D ANALYSE DE L INFORMATION Cours de méthodes de scoring Préparé par Hassen MATHLOUTHI Année universitaire 2013-2014 Cours de méthodes de scoring-
Keywords: Probability of catastrophic events, Bivariate extreme value theory, Heavy tailed distributions, ALS methods.
E Laurence Lescourret & Christian Y. Robert Centre de Recherche en Economie et Statistique LaboratoiredeFinanceetd Assurance 5 Boulevard Gabriel Peri, 92245 Malakoff Résumé: De par leur nature, les événements
Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles
Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles Valentin Patilea 1 Cesar Sanchez-sellero 2 Matthieu Saumard 3 1 CREST-ENSAI et IRMAR 2 USC Espagne 3 IRMAR-INSA
Solvabilité II Les impacts sur la tarification et l offre produit
Solvabilité II Les impacts sur la tarification et l offre produit Colloque du CNAM 6 octobre 2011 Intervenants OPTIMIND Gildas Robert actuaire ERM, senior manager AGENDA Introduction Partie 1 Mesures de
DMP1 DSFT des Interfaces DMP des LPS Annexe : complément de spécification sur l impression des documents à remettre au patient
DMP1 DSFT des Interfaces DMP des LPS Annexe : complément de spécification sur l impression des documents à remettre au patient Identification du document Référence Date de dernière mise à jour 30/06/11
Tests paramétriques de comparaison de 2 moyennes Exercices commentés José LABARERE
Chapitre 5 UE4 : Biostatistiques Tests paramétriques de comparaison de 2 moyennes Exercices commentés José LABARERE Année universitaire 2010/2011 Université Joseph Fourier de Grenoble - Tous droits réservés.
Exercices sur SQL server 2000
Exercices sur SQL server 2000 La diagramme de classe : Exercices sur SQL server 2000 Le modèle relationnel correspondant : 1 Créer les tables Clic-droit on Tables et choisir «New Table» Créer la table
Modèle de troncature gauche : Comparaison par simulation sur données indépendantes et dépendantes
de troncature gauche : Comparaison par simulation sur données indépendantes et dépendantes Zohra Guessoum 1 & Farida Hamrani 2 1 Lab. MSTD, Faculté de mathématique, USTHB, BP n 32, El Alia, Alger, Algérie,[email protected]
Les transactions 1/46. I même en cas de panne logicielle ou matérielle. I Concept de transaction. I Gestion de la concurrence : les solutions
1/46 2/46 Pourquoi? Anne-Cécile Caron Master MAGE - SGBD 1er trimestre 2014-2015 Le concept de transaction va permettre de définir des processus garantissant que l état de la base est toujours cohérent
Econométrie et applications
Econométrie et applications Ecole des Ponts ParisTech Département Sciences Economiques Gestion Finance Nicolas Jacquemet ([email protected]) Université Paris 1 & Ecole d Economie de Paris
BIG Data et R: opportunités et perspectives
BIG Data et R: opportunités et perspectives Guati Rizlane 1 & Hicham Hajji 2 1 Ecole Nationale de Commerce et de Gestion de Casablanca, Maroc, [email protected] 2 Ecole des Sciences Géomatiques, IAV Rabat,
FINANCEMENT DU DEFICIT BUDGETAIRE AU MAROC
FINANCEMENT DU DEFICIT BUDGETAIRE AU MAROC Rabat, 19 octobre 21 M. Ahmed HAJOUB Adjoint au Directeur du Trésor et des Finances Extérieures chargé du pôle macroéconomie I- Consolidation budgétaire: expérience
A l Aise Web - Liens sponsorisés
Référencement Web Analytique Webmarketing A l Aise Web - Liens sponsorisés Etudes & veille Comment éviter les pièges du référencement payant? Formations Mediaveille Une offre bâtie autour de 5 expertises
Économétrie, causalité et analyse des politiques
Économétrie, causalité et analyse des politiques Jean-Marie Dufour Université de Montréal October 2006 This work was supported by the Canada Research Chair Program (Chair in Econometrics, Université de
Conférence Bales II - Mauritanie. Patrick Le Nôtre. Directeur de la Stratégie - Secteur Finance Solutions risques et Réglementations
Conférence Bales II - Mauritanie Patrick Le Nôtre Directeur de la Stratégie - Secteur Finance Solutions risques et Réglementations AGENDA Le positionnement et l approche de SAS Notre légitimité dans les
Didacticiel - Études de cas. Description de quelques fonctions du logiciel PSPP, comparaison des résultats avec ceux de Tanagra, R et OpenStat.
1 Objectif Description de quelques fonctions du logiciel PSPP, comparaison des résultats avec ceux de Tanagra, R et OpenStat. Tout le monde l aura compris, je passe énormément de temps à analyser les logiciels
1.The pronouns me, te, nous, and vous are object pronouns.
1.The pronouns me, te, nous, and vous are object pronouns.! Marie t invite au théâtre?!! Oui, elle m invite au théâtre.! Elle te parle au téléphone?!! Oui, elle me parle au téléphone.! Le prof vous regarde?!!!
LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING»
LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING» Gilbert Saporta Professeur de Statistique Appliquée Conservatoire National des Arts et Métiers Dans leur quasi totalité, les banques et organismes financiers
Modélisation du risque opérationnel Approche Bâle avancée
Modélisation du risque opérationnel Approche Bâle avancée Université Laval Conférence LABIFUL Département de Finance et Assurance 1 Mars, 2013. Ridha Mahfoudhi, Ph.D. Senior Manager Quantitative Analytics,
Lamia Oukid, Ounas Asfari, Fadila Bentayeb, Nadjia Benblidia, Omar Boussaid. 14 Juin 2013
Cube de textes et opérateur d'agrégation basé sur un modèle vectoriel adapté Text Cube Model and aggregation operator based on an adapted vector space model Lamia Oukid, Ounas Asfari, Fadila Bentayeb,
COMPARAISON DE LOGICIELS TESTANT L INDEPENDANCE DE VARIABLES BINAIRES
J. sci. pharm. biol., Vol.9, n - 00, pp. 9-0 EDUCI 00 9 VALLEE POLNEAU S.* DIAINE C. COMPARAISON DE LOGICIELS TESTANT L INDEPENDANCE DE VARIABLES BINAIRES Notre étude visait à comparer les résultats obtenus
Proposition commerciale étude de référencement
A lʼattention de : Monsieur Fabien basset pour PARISLUXURYCAR 10, place Vendome 75001 Paris FRANCE Proposition commerciale étude de référencement Yann leroquais WEBMASTER +33.(0)1.75.50.59.04(ligne directe)
Tableau récapitulatif de l analyse fréquentielle
Tableau récapitulatif de l analyse fréquentielle Très Plutôt Quelque Ni Quelque Plutôt Très TOTAL peu ni peu 1. L utilité du d inclure le contexte dans la note de stratégie 4% 4% 4% 8% 64% 16% 100% 2.
CHAMPIONNAT DU MONDE SENIOR EPREUVES DE COUPE DU MONDE ARC A POULIES
CHAMPIONNAT DU MONDE SENIOR EPREUVES DE COUPE DU MONDE ARC A POULIES OBJECTIFS FEDERAUX 2015 INDIVIDUEL ARC A POULIES EQUIPE Au moins une médaille MIXTE MODE DE SELECTION Le nombre de places pour le Championnat
La survie nette actuelle à long terme Qualités de sept méthodes d estimation
La survie nette actuelle à long terme Qualités de sept méthodes d estimation PAR Alireza MOGHADDAM TUTEUR : Guy HÉDELIN Laboratoire d Épidémiologie et de Santé publique, EA 80 Faculté de Médecine de Strasbourg
Introduction à l économétrie : Spécifications, formes fonctionnelles, hétéroscédasticité et variables instrumentales
Introduction à l économétrie : Spécifications, formes fonctionnelles, hétéroscédasticité et variables instrumentales Pierre Thomas Léger IEA, HEC Montréal 2013 Table des matières 1 Introduction 2 2 Spécifications
Classification non supervisée
AgroParisTech Classification non supervisée E. Lebarbier, T. Mary-Huard Table des matières 1 Introduction 4 2 Méthodes de partitionnement 5 2.1 Mesures de similarité et de dissimilarité, distances.................
Expertis. Étude Stress. Stress. sur le Éléments statistiques. Dr Brigitte Lanusse-Cazalé. Production : Le Laussat.
Expertis Étude Stress Stress sur le Éléments statistiques Dr Brigitte Lanusse-Cazalé Production : Le Laussat. Les réactions au stress Les phases de stress + le stress dure, + le capital d adaptation s
Actuariat I ACT2121. septième séance. Arthur Charpentier. Automne 2012. [email protected]. http ://freakonometrics.blog.free.
Actuariat I ACT2121 septième séance Arthur Charpentier [email protected] http ://freakonometrics.blog.free.fr/ Automne 2012 1 Exercice 1 En analysant le temps d attente X avant un certain événement
Arbres binaires de décision
1 Arbres binaires de décision Résumé Arbres binaires de décision Méthodes de construction d arbres binaires de décision, modélisant une discrimination (classification trees) ou une régression (regression
L exclusion mutuelle distribuée
L exclusion mutuelle distribuée L algorithme de L Amport L algorithme est basé sur 2 concepts : L estampillage des messages La distribution d une file d attente sur l ensemble des sites du système distribué
Statistique Bayésienne
Statistique Bayésienne Éléments de Culture Générale Lionel RIOU FRANÇA INSERM U669 Mai 2009 Lionel RIOU FRANÇA (INSERM U669) Statistique Bayésienne Mai 2009 1 / 139 Sommaire Sommaire 1 Approche Bayésienne
ENQUETE SUR LA SITUATION DES GRANDES VILLES ET AGGLOMERATIONS EN MATIERE D ASSURANCES DOMMAGES
ENQUETE SUR LA SITUATION DES GRANDES VILLES ET AGGLOMERATIONS EN MATIERE D ASSURANCES DOMMAGES N 202 AOUT 2003 SOMMAIRE 1. PRESENTATION p.3 2. SYNTHESE DE L ENQUETE p.4 3. LES REPONSES DES VILLES ET AGGLOMERATIONS
données en connaissance et en actions?
1 Partie 2 : Présentation de la plateforme SPSS Modeler : Comment transformer vos données en connaissance et en actions? SPSS Modeler : l atelier de data mining Large gamme de techniques d analyse (algorithmes)
Cours (7) de statistiques à distance, élaboré par Zarrouk Fayçal, ISSEP Ksar-Said, 2011-2012 LES STATISTIQUES INFERENTIELLES
LES STATISTIQUES INFERENTIELLES (test de Student) L inférence statistique est la partie des statistiques qui, contrairement à la statistique descriptive, ne se contente pas de décrire des observations,
