Étude des propriétés de la gélatine dans le champ électrique



Documents pareils
La voix en images : comment l évaluation objectivée par logiciel permet d optimiser la prise en charge vocale

Système de diffusion d information pour encourager les PME-PMI à améliorer leurs performances environnementales

statique J. Bertrand To cite this version: HAL Id: jpa

Sur le grossissement des divers appareils pour la mesure des angles par la réflexion d un faisceau lumineux sur un miroir mobile

Sur la transformation de l électricité statique en électricité dynamique

Les liaisons intermoléculaires de l eau étudiées dans

Les Champs Magnétiques

Jessica Dubois. To cite this version: HAL Id: jpa

L indice de SEN, outil de mesure de l équité des systèmes éducatifs. Une comparaison à l échelle européenne

Famille continue de courbes terminales du spiral réglant pouvant être construites par points et par tangentes

AGROBASE : un système de gestion de données expérimentales

Compte-rendu de Hamma B., La préposition en français

Dessin assisté par ordinateur en lycée professionnel

Le libre parcours moyen des électrons de conductibilité. des électrons photoélectriques mesuré au moyen de la méthode des couches minces. J. Phys.

Etude des convertisseurs statiques continu-continu à résonance, modélisation dynamique

Notes de lecture : Dan SPERBER & Deirdre WILSON, La pertinence

EXERCICE 2 : SUIVI CINETIQUE D UNE TRANSFORMATION PAR SPECTROPHOTOMETRIE (6 points)

Comptabilité à base d activités (ABC) et activités informatiques : une contribution à l amélioration des processus informatiques d une banque

Jean-Luc Archimbaud. Sensibilisation à la sécurité informatique.

ANALYSE SPECTRALE. monochromateur

pka D UN INDICATEUR COLORE

Chapitre 02. La lumière des étoiles. Exercices :

L ÉLECTROCUTION Intensité Durée Perception des effets 0,5 à 1 ma. Seuil de perception suivant l'état de la peau 8 ma

259 VOLUMETRIE ET TITRATION DOSAGE DU NaOH DANS LE DESTOP

CARACTERISTIQUE D UNE DIODE ET POINT DE FONCTIONNEMENT

Les intermédiaires privés dans les finances royales espagnoles sous Philippe V et Ferdinand VI

Budget Constrained Resource Allocation for Non-Deterministic Workflows on a IaaS Cloud

Chapitre 7 Les solutions colorées

LABORATOIRES DE CHIMIE Techniques de dosage

K W = [H 3 O + ] [OH - ] = = K a K b à 25 C. [H 3 O + ] = [OH - ] = 10-7 M Solution neutre. [H 3 O + ] > [OH - ] Solution acide

1 ère partie : tous CAP sauf hôtellerie et alimentation CHIMIE ETRE CAPABLE DE. PROGRAMME - Atomes : structure, étude de quelques exemples.

DÉTERMINATION DU POURCENTAGE EN ACIDE D UN VINAIGRE. Sommaire

CHROMATOGRAPHIE SUR COUCHE MINCE

ACIDES BASES. Chap.5 SPIESS

RDP : Voir ou conduire

Peut-on perdre sa dignité?

TP : Suivi d'une réaction par spectrophotométrie

TRAVAUX PRATIQUESDE BIOCHIMIE L1

Titre alcalimétrique et titre alcalimétrique complet

SUIVI CINETIQUE PAR SPECTROPHOTOMETRIE (CORRECTION)

Étude des formes de pratiques de la gymnastique sportive enseignées en EPS à l école primaire

La complémentaire santé : une généralisation qui

Les déterminants du volume d aide professionnelle pour. reste-à-charge

Mise en pratique : Etude de spectres

TS1 TS2 02/02/2010 Enseignement obligatoire. DST N 4 - Durée 3h30 - Calculatrice autorisée

Program Analysis and Transformation: From the Polytope Model to Formal Languages

FICHE 1 Fiche à destination des enseignants

Réalisation d un dispositif de mesure de la conductibilité thermique des solides à basses températures

Calcaire ou eau agressive en AEP : comment y remédier?

BALAIS Moteur (charbons)

Correction ex feuille Etoiles-Spectres.

' Département de Chimie Analytique, Académie de Médecine, 38 rue Szewska,

Un SIG collaboratif pour la recherche historique Partie. Partie 1 : Naissance et conception d un système d information géo-historique collaboratif.

Union générale des étudiants de Tunisie Bureau de l institut Préparatoire Aux Etudes D'ingénieurs De Tunis. Modèle de compte-rendu de TP.

Comment suivre l évolution d une transformation chimique? + S 2 O 8 = I SO 4

Une nouvelle technique d'analyse : La spectrophotométrie

Chapitre 2 : Caractéristiques du mouvement d un solide

Recommandations pour le contrôle par méthode électrique des défauts des revêtements organiques appliqués sur acier en usine ou sur site de pose

Mesure de Salinité Réalisation d'un conductimètre

Niveau 2 nde THEME : L UNIVERS. Programme : BO spécial n 4 du 29/04/10 L UNIVERS

Application à l astrophysique ACTIVITE

DIFFRACTion des ondes

1S9 Balances des blancs

101 Adoptée : 12 mai 1981

Sylvain Meille. Étude du comportement mécanique du plâtre pris en relation avec sa microstructure.

Mesures et incertitudes

Cours 9. Régimes du transistor MOS

Rappels sur les couples oxydantsréducteurs

Résonance Magnétique Nucléaire : RMN

Document rédigé par Alexis Michaud (en janvier 2005), réactualisé par Angélique Amelot (septembre 2009)

A chaque couleur dans l'air correspond une longueur d'onde.

contributions Les multiples de la chimie dans la conception des tablettes et des Smartphones Jean-Charles Flores

Comprendre l Univers grâce aux messages de la lumière

Le Test d effort. A partir d un certain âge il est conseillé de faire un test tous les 3 ou quatre ans.

Notice d'utilisation Capteur de niveau TOR. LI214x /00 10/2010

Chapitre 10 : Radioactivité et réactions nucléaires (chapitre 11 du livre)

Notes. Schéma général PRODUCTION ÉLECTROLYTIQUE Composés inorganiques, nonmétaux

Choix multiples : Inscrire la lettre correspondant à la bonne réponse sur le tiret. (10 pts)

Principe de fonctionnement des batteries au lithium

A B C Eau Eau savonneuse Eau + détergent

Décharge électrostatique

Perspectives du développement de l énergie solaire en U.R.S.S. : conversion thermodynamique en électricité

Chapitre 7 : CHARGES, COURANT, TENSION S 3 F

TP 2: LES SPECTRES, MESSAGES DE LA LUMIERE

Les résistances de point neutre

IMAGERIE PAR TOMOGRAPHIE ÉLECTRIQUE RÉSISTIVE DE LA DISTRIBUTION DES PHASES DANS UNE COLONNE À BULLES

Séquence 9. Étudiez le chapitre 11 de physique des «Notions fondamentales» : Physique : Dispersion de la lumière

Nombre dérivé et tangente

FIOLAX. SCHOTT Instruments Solutions. Les solutions tampon dans les ampoules uniques à deux pointes offrent une haute sureté et précision.

DETECTION DE NIVEAU LA GAMME

Cours d électricité. Circuits électriques en courant constant. Mathieu Bardoux. 1 re année

Origine du courant électrique Constitution d un atome

ÉTUDE DE L EFFICACITÉ DE GÉOGRILLES POUR PRÉVENIR L EFFONDREMENT LOCAL D UNE CHAUSSÉE

TECHNIQUES: Principes de la chromatographie

Enseignement secondaire

La spectrophotométrie

Caractéristiques des ondes

Approche expérimentale du rayonnement électromagnétique émis par un téléphone portable

Transcription:

Étude des propriétés de la gélatine dans le champ électrique Suzanne Veil To cite this version: Suzanne Veil. Étude des propriétés de la gélatine dans le champ électrique. J. Phys. Radium, 1933, 4 (7), pp.362367. <10.1051/jphysrad:0193300407036200>. <jpa00233158> HAL Id: jpa00233158 https://hal.archivesouvertes.fr/jpa00233158 Submitted on 1 Jan 1933 HAL is a multidisciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Les ÉTUDE DES PROPRIÉTÉS DE LA GÉLATINE DANS LE CHAMP ÉLECTRIQUE Par Mlle SUZANNE VEIL. Laboratoire de Chimie Générale. Sorbonne. Sommaire. 2014 Au cours des présentes expériences, la gélatine a été étudiée dans le champ électrique du point de vue déformations mécaniques, conductivité électrique, migration de substances incorporées, concentration en ions hydrogène. Les déformations de la gélatine, examinée en couche sensiblement plane, se révèlent plus complexes que ne le fait présumer l étude sous trois dimensions Le milieu subit une série de dénivellations et de plissements. Dans l oedème cathodique, où se manifeste une transpiration aqueuse, il subit une altération de constitution, que révèle l analyse par rayons X. Tandis que les déformations s édifient dans le champ, la conductivité électrique de la gélatine évolue au cours du temps, pour tomber finalement audessous de la limite de sensibilité des appareils de mesure. Le gel est devenu pratiquement un diélectrique. Mesurée en fonction de la différence de potentiel, au début même de l application du champ, l intensité du courant traversant la gélatine ne suit la loi d Ohm que pour les petites valeurs de la tension; puis sa croissance se ralentit, et pour des tensions toujours croissantes elle tend vers une valeur limite. La courbe représentative rappelle celle que, dans un ordre d idées différent, on obtient à propos de l ionisation des gaz. Si la gélatine est imprégnée d une solution colloïdale, telle que l hydrosol de sulfure d arsenic, ou d une matière colorante telle que le bleu de méthylène, les zones de déformation imposées par le champ peuvent se marquer par des stries ou des bandes de cataphorèse. D autre part, l incorporation à la gélatine d indicateurs appropriés montre que dans les zones successives de déformation, les concentrations en ions hydrogène s échelonnent avec des sauts plus ou moins brusques, depuis une forte acidité à l anode jusqu à une forte basicité à la cathode. Des observations analogues, toutefois plus confuses, ont concerné l agaragar. I. Introduction. gelées, et notamment la gélatine, subissent dans le champ électrique, des réactions d ordres divers. Ce sont tout d abord, comme l a indiqué Michaud (1), des réactions mécaniques, qui se traduisent par des déformations. Dans le dispositif adopté par Michaud, la gélatine en expérience était contenue dans.un cristallisoir, et deux fils de platine immergés jouaient le rôle d électrodes. Au passage du courant, on observait un renflement ou 0153dème à la cathode, et une dépression à l anode. L oedème cathodique était caractérisé par l éjection d eau ou transpiration, que les gelées manifestent dans des conditions analogues. L expérience de Michaud a été reprise ici, mais sous deux dimensions seulement, en coulant la gélatine sur une plaque de verre, préalablement garnie de papier métallique pour la nécessité des connexions. Le procédé a permis une observation plus complète des phénomènes. Outre les déformations de la gélatine dans le champ, des altérations consécutives des propriétés électriques du milieu se sont révélées. Dans le champ, en effet, la gélatine subit une évolution, après laquelle elle cesse pratiquement de laisser passer le courant. D autre part, à un instant donné (par exemple au début de l application du champ), le courant qui traverse la gélatine croît avec la tension appliquée, pour tendre vers un courant limite de saturation. D autres données ont été encore recueillies, par l artifice d incorporer à la gélatine des substances étrangères, solutions colloïdales, matières colorantes, qui, dans le champ. subissent une cataphorèse plus ou moins compliquée. En recourant à des indicateurs, les. (1 ) J. Chim. Phy~., 21 (~ 9? s ), 386. Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphysrad:0193300407036200

Déformations Le L application virages apparus ont fourni des indications sur la répartition, dans le milieu, des concen. trations en ions hydrogène. L examen de ces diverses circonstances a fait l objet de ce présent travail, au Laboratoire de Chimie générale de la Sorbonne. Je remercie ici M. le Professeur Urbain d avoir bien voulu mettre à ma disposition les appareils nécessaires, et en particulier le galvanomètre enregistreur qui a servi à l étude de l évolution des propriétés électriques de la gélatine. II. Déformations de la gélatine dans le champ. Avant le phénomène luimême, nous décrirons le dispositif expérimental. Montage des électrodes. papier métallique dont on gainit la plaque de verre, pour le contact électrique, peut être disposé de façons diverses. Il peut consister en deux feuilles à bords parallèles, dont chacune joue le rôle d électrode. Il peut encore être d un seul tenant, et comporter une perforation circulaire. Dans ce cas, il constitue une seule des électrodes, tandis que pour l autre électrode, on adopte un fil métallique, perpendiculaire au plan de la plaque au centre de la perforation. Le premier dispositif est préférable s il s agit d accorder aux deux électrodes un rôle symétrique. Au contraire, le second dispositif convient mieux dans le cas de l observation spéciale de la région d une des électrodes, car autour du point de contact du fil et de la gélatine, les effets se trouvent très amplifiés. C est ce second dispositif qui a été adopté dans la plupart des présentes recherches. Il est utile, au cours des expériences, d obvier à la dessication de la gélatine étalée. On y parvient en recouvrant les préparations de verres de montre. Par exemple, avec le second des dispositifs indiqués, on peut employer deux demiverres de montre rapprochés, et comprenant l électrodefil dans leur intervalle. Zones successives de déformation. suffisamment prolongée d une 363 Fig. 4. de la gélatine dans le champ électrique (cathode centrale, anode annulaire). tension de 6 ou 8 volts à un domaine circulaire de gélatine d environ 3 cm de diamètre, en couche mince sur plaque de verre, sépare le milieu en un certain nombre de régions distinctes (1), comme on peut le voir sur la figure 1, reproduction photographique (1) SWEZAN5B Vit C. R, 194 (1932), ~~J ~1.

Evolution 364 d une préparation relative à un montage avec cathode centrale et anode annulaire. Dans tout l oedème cathodique, consécutivement à la transpiration qui se manifeste, le milieu perd sa transparence, alors que rien de tel ne se produit dans tout le reste du domaine. Dans une seconde région, cellelà demeurée transparente, le niveau de la gélatine s abaisse, puis il y a récupération du niveau initial dans une troisième région. Ultérieurement, la gélatine subit une dépression prononcée la dépression anodique de Michaud pour se relever finalement contre l anode. Dans l oedème cathodique, la perte de transparence est accompagnée d une altération de la constitution du milieu, comme l a révélé l examen par spectrographie de rayons X, présentement exécuté au Laboratoire de Chimie générale, par M. Mathieu. Par contre, aucune altération de constitution ne s est révélée dans la partie du domaine restée transparente. III. Evolution, dans un champ donné, de la conductivité de la gélatine au «cours du temps. Tandis que la gélatine subit des déformations dans le champ élec.trique, elle y éprouve en même temps une altération consécutive de ses propriétés électriques. Après une durée suffisamment prolongée, le milieu cesse pratiquement de conduire Ie courant. L évolution a été suivie à l aide d un galvanomètre enregistreur, à indications se marquant à intervalles réguliers. La tension était assurée par une batterie d accumulateurs. Le courant était réglé au moyen d une boite de résistance. La figure 2 reproduit un enregistrement obtenu sous une tension de 7,2 volts. Les temps sont portés en abscisses et les intensités en ordonnées. Le courant, après une baisse préliminaire généralement trop rapide pour être enregistrée, croît jusqu à un maximum pour diminuer ensuite, en tendant vers une valeur inférieure à la limite de sensibilité des appareils de mesure. Le stade de croissance peut avoir été plus ou moins accusé. Tout se passe finalement comme si le milieu était devenu un diélectrique. Fig. 2. de la conduelivité de la gélatine dans le champ électrique. Pourtant, comme le révèle l emploi d électrodessondes, à l instant même où cesse l application du champ, l oedème cathodique conserve individuellement une conductivité individuelle notable. Mais cette conductivité est fugitive, elle disparaît en quelques minutes, après quoi le domaine tout entier se présente comme nonconducteur. Les phénomènes ont été encore observés en présence d impuretés diverses. L évolution, au cours du temps, de la conductivité de la gélatine dans le champ électrique se trouve plus ou moins perturbée par la présence de substances étran.gères.. L addition d un électrolyte, acide chlorhydrique, soude, bichromate de potassium

Une Loi Dans accroît la conductivité électrique du milieu, mais sans toutefois modifier sensiblement l allure de la courbe représentative intensitétemps. Au contraire, la courbe intensitétemps s altère en montrant une tendance plus ou moins nette à un palier. si l on incorpore à la gélatine une solution colloïdale telle que l hydrosol de sulfure d arsenic; ou une niatière colorante telle que l éosine. IV. Conduction de la gélatine dans le champ, a un instant donné, en fonction de la tension appliquée. d autres expériences, la conduction de la gélatine a été examinée en fonction de la tension appliquée. D après ce qui précède, étant donnée l évolution de la conductivité de la gélatine dans le champ électrique au cours du temps, il est nécessaire, pour étudier la variation de l intensité du courant en fonction de la tension appliquée, de fixer une fois pour toutes l instant de la mesure. Les tensions étant obtenues à partir d une batterie d accumulateurs, le réglage se faisant au moyen d une boîte de résistance. Les intensités étaient relevées au moment même de l établissement du contact, de manière à ne laisser circuler le courant, à propos de chaque observation, que pendant la durée très brève de la lecture. 365 Fig. 3. de conduction de la gélatine (début de l application du champ). La variation cherchée est illustrée par la courbe représentative figure 3. On voit que dans une première phase, pour les faibles tensions, le courant suit approximativement la loi,d Ohaa. Ultérieurement, l intensité n augmente plus aussi rapidement avec la tension, et finalement, elle tend vers une valeur limite. Il s établit ainsi une sorte de courant de saturation qui rappelle, dans une certaine mesure, ce qui se passe, dans un ordre d idées différent, à propos de l ionisation des gaz. V. Migration, dans le champ, de substances diverses imprégnant la gélatine. série d autres essais ont été encore entrepris pour examiner l action du champ sur diverses substances incorporées dans la gélatine. Des solutions colloïdales, telles que l hydrosol de sulfure d arsenic ou l hydrosol de sulfure d antimoine, ou encore des matières colorantes, telles que le bleu de méthylène (1), le vert malachite, le rouge neutre, le violet de méthyle, le bleu de toluidine, l éosine, la fuchsine acide, subissent une cataphorèse plus ou moins compliquée, avec formation éventuelle de stries, de bandes, de lacunes. Vraisemblablement, il s agit dans les diverses zones de déformation du milieu, d inégalités de vitesse de migration. Si le champ est appliqué entre deux bandes parallèles de papier métallique, la figure de cataphorèse présentant des strates et des bandes, est analogue à une sorte de spectre. S il est appliqué entre une feuille à perforation circulaire et un fil central perpendiculaire, les strates et les bandes prennent la forme d anneaux. (1) SUZA",NE VEIL. C. R., 193 (t931), 768. 25.

366 La même technique permet encore de suivre commodément l électrolyse, dans la gélatine, d un sel dont l un des ions est coloré. Pour le bichromate de potassium, par exemple, la couleur jaune, due à l ion chromique, se localise dans la région anodique, avec frontière brusque. Lorsqu il s agit d un sel complexe, tel que l eau céleste, le procédé est susceptible de déterminer dans le gel l apparition de zones distinctes diversement colorées, et correspondant à des stades successifs de la destruction de la molécule. VI. Variations de la concentration en ions hydrogène consécutives aux déformations de la gélatine. L incorporation à la gélatine d un indicateur fournit encore d autres données. En ce cas, en effet, les déformations observées s accompagnent de virages mettant en évidence, entre une électrode et l autre, des sauts brusques dans la concentration en ions hydrogène. Les 1),, s échelonnent, depuis une forte basicité à la cathode jusqu à une forte acidité à l anode. Nous donnons ciaprès les résultats obuenus avec un certain nombre d indicateurs, dont les intervalles de virage sont indiqués, d après Clark (1). En imprégnant la gélatine de phénolphtaléine de 8,3 à 10,0), l oedème cathodique se colore en rouge. En imprégnant la gélatine de bleu de Nil (sulfate) de 10,2 à 13,0). l oedème cathodique vire au pourpre. La zone déjà transparente qui succède à l oedème cathodique est à réaction encore faiblement basique. La teinture de tournesol (~h de 4,5 à 8,3) y est bleue, et le bleu de bromothymol (1Jft de 6,0 à 7,6) n y vire pas au jaune. La zone suivante, légèrement acide, ne paraît guère affectée par l action du champ. Rose lilas au tournesol, elle est jaune pâle au bleu de bromothymol. La zone contigue, de niveau sensiblement inférieur, et qui constitue à proprement parler la dépression anodique, est à réaction très franchement acide. Le rouge Congo (ph de 3,0 à 5,0) y emprunte son virage bleu, le méthylorange de 3,1 à 4,4) son virage rouge, et le violet de méthyle de U,M à a,2) ses virages successifs par gradation jusqu au jaune. Parfois, la région anodique laisse apercevoir, dans sa région médiane, un faible indice de déformation. Enfin, tout contre l anode, où la gélatine subit un redressement, le virage acide des trois précédents indicateurs semble se manifester. Les observations conduisent donc, dans leur ensemble à considérer que les déformations subies par la gélatine dans le champ électrique ne sont pas indépendantes des phénomènes physicochimiques dont le milieu est le siège. Les réactions mécaniques observées sont, d ailleurs, à rapprocher des réactions mécaniques connues de la gélatine à la seule concentration en ions hydrogène, en l absence de tout champ appliqué. Les présentes expériences suggèrent une corrélation à établir entre deux ordres de processus de prime abord distincts, corrélation qui peut intéresser le physiologistes sous divers points de vue, par exemple en ce qui concerne le problème si controversé de la contraction musculaire. VII. Substitution de l agaragar à la gélatine. Les différentes expériences décrites au cours de ce travail ont été reprises en substituant l agaragar à la gélatine. Dans leur ensemble, les résultats énoncés subsistent, encore que n étant plus que grossièrement vérifiés. Notamment, c est la transpiration cathodique, intense dans ce gel, qui perturbe la netteté des phénomènes. VIII. Résultats obtenus. En résumé, dans ce travail : i Les déformations de la gélatine dans le champ électrique ont été décrites. L altération de constitution du milieu dans l oedème cathodique a été décelée par la spectrographie des rayons X. (1) CLARK. The determination of fiydrogen ions, Londres 1928.

" _ 2 L évolution, au cours du temps, de la conductivité électrique de la gélatine a été signalée et suivie au cours du temps. 3 La courbe intensité de couranttension a été déterminée pour la gélatine au début de l application du champ. 4~ La migration, sous l action du ;champ, de diverses substances incorporées dans lp.gélatine, a été j 5 Les variations de la concentration en ions hydrogène, consécutives aux déformations de la gélatine dans le champ, ont été mises en évidence au moyen d indicateurs. 6 La substitution de l agaragar à la gélatine générale des divers phénomènes en ne provoquant qu une diminution de leur netteté. 367 a été reconnue n altérer en rien l allure Manuscrit reçu le 25 mai 1933.