TP n o 1 Électrostatique : mesure d un potentiel et d une capacité

Documents pareils
La charge électrique C6. La charge électrique

Chapitre 7 : CHARGES, COURANT, TENSION S 3 F

Module d Electricité. 2 ème partie : Electrostatique. Fabrice Sincère (version 3.0.1)

CARACTERISTIQUE D UNE DIODE ET POINT DE FONCTIONNEMENT

BACCALAURÉAT PROFESSIONNEL EPREUVE DE TRAVAUX PRATIQUES DE SCIENCES PHYSIQUES SUJET A.1

Union générale des étudiants de Tunisie Bureau de l institut Préparatoire Aux Etudes D'ingénieurs De Tunis. Modèle de compte-rendu de TP.

3 Charges électriques

Chapitre 1 Régime transitoire dans les systèmes physiques

Méthodes de Caractérisation des Matériaux. Cours, annales

!!! atome = électriquement neutre. Science et technologie de l'environnement CHAPITRE 5 ÉLECTRICITÉ ET MAGNÉTISME

Cours d électricité. Circuits électriques en courant constant. Mathieu Bardoux. 1 re année

TP N 1 : ÉLECTRISATION PAR FROTTEMENT

LA MAIN A LA PATE L électricité Cycle 3 L électricité.

L électricité et le magnétisme

Décharge électrostatique

Partie Agir : Défis du XXI ème siècle CHAP 20-ACT EXP Convertisseur Analogique Numérique (CAN)

Donner les limites de validité de la relation obtenue.

Les Conditions aux limites

Circuits RL et RC. Chapitre Inductance

Electrostatique. Le mot électrostatique se divise en deux parties : électron qui en grec veut dire "ambre" et statique qui signifie "ne bouge pas".

T.P. 7 : Définir et contrôler un système d allumage statique

TP 7 : oscillateur de torsion

PRODUIRE DES SIGNAUX 1 : LES ONDES ELECTROMAGNETIQUES, SUPPORT DE CHOIX POUR TRANSMETTRE DES INFORMATIONS

Le transistor bipolaire

Capacité Métal-Isolant-Semiconducteur (MIS)

Module 3 : L électricité

Exercice 1. Exercice n 1 : Déséquilibre mécanique

Acquisition et conditionnement de l information Les capteurs

DISQUE DUR. Figure 1 Disque dur ouvert

M HAMED EL GADDAB & MONGI SLIM

Défi 1 Qu est-ce que l électricité statique?

Choix multiples : Inscrire la lettre correspondant à la bonne réponse sur le tiret. (10 pts)

Électricité. 1 Interaction électrique et modèle de l atome

Cours 9. Régimes du transistor MOS

Rappel sur les atomes Protons p + Neutrons n 0. Les objets sont faits de différents matériaux ou de diverses substances.

Etudier l influence de différents paramètres sur un phénomène physique Communiquer et argumenter en utilisant un vocabulaire scientifique adapté

Cours 1. Bases physiques de l électronique

TRAVAUX PRATIQUES SCIENTIFIQUES SUR SYSTÈME

LYCEE TECHNIQUE PIERRE EMILE MARTIN BOURGES ETUDE D UN TRAITEMENT DE SURFACE

Plan du chapitre «Milieux diélectriques»

Précision d un résultat et calculs d incertitudes

La fonction exponentielle

CORRECTION TP Multimètres - Mesures de résistances - I. Mesure directe de résistors avec ohmmètre - comparaison de deux instruments de mesure

Propriétés électriques de la matière

Mini_guide_Isis_v6.doc le 10/02/2005 Page 1/15

Mario Geiger octobre 08 ÉVAPORATION SOUS VIDE

Instruments de mesure

MESURE DE LA TEMPERATURE

1 Systèmes triphasés symétriques

Les correcteurs accorderont une importance particulière à la rigueur des raisonnements et aux représentations graphiques demandées.

Les transistors à effet de champ.

CH IV) Courant alternatif Oscilloscope.

Electrification statique - Problèmes et solutions L application des sources ionisantes. Auteur: Dr Mark G Shilton, CChem, MRSC. (Copie du document

Deux disques dans un carré

OBJECTIFS. I. A quoi sert un oscilloscope?

Mini_guide_Isis.pdf le 23/09/2001 Page 1/14

TABLE DES MATIÈRES 1. DÉMARRER ISIS 2 2. SAISIE D UN SCHÉMA 3 & ' " ( ) '*+ ", ##) # " -. /0 " 1 2 " 3. SIMULATION 7 " - 4.

Électricité statique. Principes. Problèmes. Applications

SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique

Charges électriques - Courant électrique

Module 3 : L électricité

TD 11. Les trois montages fondamentaux E.C, B.C, C.C ; comparaisons et propriétés. Association d étages. *** :exercice traité en classe.

10 leçon 2. Leçon n 2 : Contact entre deux solides. Frottement de glissement. Exemples. (PC ou 1 er CU)

Chapitre 3 Les régimes de fonctionnement de quelques circuits linéaires

OFPPT ROYAUME DU MAROC RESUME THEORIQUE & GUIDE DE TRAVAUX PRATIQUES ANALYSE DE CIRCUITS A COURANT CONTINU MODULE N : 5 ELECTROTECHNIQUE SECTEUR :

Centrale d alarme DA996

1 Démarrer L écran Isis La boite à outils Mode principal Mode gadget Mode graphique...

Champ électromagnétique?

I GENERALITES SUR LES MESURES

Observer TP Ondes CELERITE DES ONDES SONORES

AP1.1 : Montages électroniques élémentaires. Électricité et électronique

1 Mise en application

Plan du cours : électricité 1

A. N(p) B + C p. + D p2

La température du filament mesurée et mémorisée par ce thermomètre Infra-Rouge(IR) est de 285 C. EST-CE POSSIBLE?

Université Mohammed Khidher Biskra A.U.: 2014/2015

PRODUCTION DE L ENERGIE ELECTRIQUE

Cours d électricité. Introduction. Mathieu Bardoux. 1 re année. IUT Saint-Omer / Dunkerque Département Génie Thermique et Énergie

TS 35 Numériser. Activité introductive - Exercice et démarche expérimentale en fin d activité Notions et contenus du programme de Terminale S

Chapitre 7. Circuits Magnétiques et Inductance. 7.1 Introduction Production d un champ magnétique

Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire

I - Quelques propriétés des étoiles à neutrons

TP Détection d intrusion Sommaire

Électricité statique Édition INRS ED 874

L ÉLECTROCUTION Intensité Durée Perception des effets 0,5 à 1 ma. Seuil de perception suivant l'état de la peau 8 ma

Cours Fonctions de deux variables

ÉVALUATION FORMATIVE. On considère le circuit électrique RC représenté ci-dessous où R et C sont des constantes strictement positives.

Notions de base sur l énergie solaire photovoltaïque

Fonctions de plusieurs variables

ENREGISTREUR DE TEMPERATURE

EP A1 (19) (11) EP A1 (12) DEMANDE DE BREVET EUROPEEN. (43) Date de publication: Bulletin 2011/26

ELEC2753 Electrotechnique examen du 11/06/2012

Recommandations pour la définition des appareils de mesures utilisés en protection cathodique

TP Modulation Démodulation BPSK

BTS Groupement A. Mathématiques Session Spécialités CIRA, IRIS, Systèmes électroniques, TPIL

LES APPAREILS A DEVIATION EN COURANT CONTINU ( LES APPREILS MAGNETOELECTRIQUES)

1 000 W ; W ; W ; W. La chambre que je dois équiper a pour dimensions : longueur : 6 m largeur : 4 m hauteur : 2,50 m.

SYSTEMES LINEAIRES DU PREMIER ORDRE

Circuit comportant plusieurs boucles

Transcription:

TP n o 1 Électrostatique : mesure d un potentiel et d une capacité PREPARATION (à rédiger avant de venir en TP) Il s agit de trouver une méthode pour mesurer la capacité C d un condensateur, en étudiant sa charge et sa décharge dans un circuit RC. V R E b a R C i V G V C FIGURE 1 Circuit RC Décharge. On se place dans le cas où l interrupteur est sur la position a. On suppose que le condensateur de capacité C, initiallement chargé avec une charge Q 0 = C.V 0, se décharge dans la résistance R (cf. Fig.1). En utilisant les lois de l électronique, écrivez une équation différentielle pour V C (t) ou V R (t). Résolvez cette équation en prenant en compte les conditions initiales et montrez que V C (t) et V R (t) s écrivent respectivement : V C (t) = V 0 e t/rc et V R (t) = V 0 e t/rc Donnez l allure des tensions V C (t) et V R (t) en fonction du temps. Quelle est la dimension de RC? Quelle est sa signification physique? Comment à partir des courbes V C (t) ou V R (t) peut-on retrouver la valeur de RC? (Conseil : intéressez vous au développement limité de l exponentiel à t 0 et alors à la tangente à l origine). Charge. On se place dans le cas où l interrupteur est sur la position b. On suppose que le condensateur de capacité C est chargé par l intermédiaire d une résistance R par un générateur de tension continue E. En utilisant les lois de l électronique, écrivez une équation différentielle pour V C (t) ou V R (t). Résolvez cette équation en prenant en compte les conditions initiales et montrez que V C (t) et V R (t) s écrivent respectivement : V C (t) = E(1 e t/rc ) et V R (t) = Ee t/rc Donnez l allure des tensions V C (t) et V R (t) en fonction du temps. Vérifiez que l on peut utiliser la même méthode que trouvée précedemment pour mesurer RC. Que se passe-t-il quand le produit RC devient très grand RC >> t? Et au contraire que se passe-t-il quand le produit RC devient très petit RC << t? 3

TRAVAIL EXPERIMENTAL 1. Première partie : quelques expériences d électrostatique Il s agit de mettre en évidence les forces électrostatiques dues à l interaction entre les charges électriques. Pour cela, on dispose du matériel de base suivant : 1. Pour isoler des charges électriques : des pailles plastiques isolantes : en frottant vivement ces pailles sur de la laine, on fait apparaître des charges (dont on ne connaît pas le signe a priori) qui sont localisées sur la surface des pailles des cristaux piézoélectriques : on crée des charges statiques avec les étincelles d un allume-gaz un générateur de VAN DE GRAAF (voir deuxième partie) 2. Pour mettre les charges en évidence : des électroscopes. On constituera un électroscope avec un conducteur posé sur un support isolant et muni de languettes légères et conductrices (en papier à cigarette). On utilisera en particulier le modèle de la Fig. 2. 3. Différents matériaux conducteurs et isolants : aluminium, plastique, bois, fil de fer, etc. FIGURE 2 Modèle d électroscope. On rappelle que mettre en contact deux conducteurs chargés revient à les mettre au même potentiel. a. Charge d un conducteur par contact et par influence. 1. On va charger un électroscope par contact. Pour cela, commencez par préparer un électroscope et chargez une paille. Approchez celle-ci du chapeau de l électroscope. La languette se dresse. Pourquoi? Réfléchissez en terme de charges qui s attirent et se repoussent. Ensuite, touchez le chapeau de l électroscope avec la paille chargée, et éloignez celle-ci. La languette reste dressée. Pourquoi? Que se passe-t-il si on approche (prudemment) cette paille de la languette? Que peut-on en déduire sur le signe des charges portées par la paille et par l électroscope ainsi chargé par contact? Remarque : pour décharger l électroscope, il suffit de le toucher avec un matériau conducteur, comme votre doigt par exemple! 4

2. On va maintenant charger un électroscope par influence. Pour cela, on se munit d un électroscope non chargé et d une paille frottée avec de la laine. Approchez la paille chargée du chapeau de l électroscope sans le toucher. La languette se dresse. Tout en maintenant la paille près de l électroscope, touchez avec un doigt le bas de l électroscope. La languette retombe. Pourquoi? Eloignez le doigt puis la paille. La languette se dresse. Pourquoi? Réfléchissez en terme de charges qui s attirent et se repoussent. Quel est maintenant le signe des charges portées par la paille et par l électroscope ainsi chargé par influence? 3. On va maintenant déterminer si un matériau est conducteur ou isolant. Chargez un électroscope par la méthode de votre choix. Touchez le avec divers objets tenus à la main : feuille d aluminium, gaine de câble électrique, pince en bois et tout autre trouvaille en tout genre. Repérez les conducteurs et les isolants. Attention toutefois à garder un esprit critique sur vos résultats. b. Pouvoir des pointes. Dans le matériel à votre disposition, prenez un conducteur large en bas et plus étroit en haut, en forme de pointe. Munissez le de deux languettes en papier fin, une en bas du conducteur et une vers la pointe. Préparer un électroscope avec ceci. Chargez le à l aide d un allumegaz, par exemple. Que constatez-vous? Comment les charges sont-elles réparties sur le conducteur? Dans quelle utilisation de la vie courante le pouvoir des pointes est-il utilisé? c. Localisation des charges sur un conducteur. 1. Dans le matériel à votre disposition, prenez un plan conducteur souple, typiquement une feuille d aluminium, avec un support isolant. Munissez le de languettes de chaque côté du plan. Chargez cette électroscope à l aide d un allume-gaz, par exemple. Que constatez-vous lorsque le conducteur est plan? et lorsque que vous transformez progressivement ce conducteur souple en cylindre fermé? Comment les charges sont-elles réparties sur le conducteur? 2. Théorème de GAUSS. Les équations locales de Maxwell régissent le comportement des champs électrique et magnétique engendrés par des charges électriques. Dans le cas de charges statiques, une des équations de Maxwell permet de montrer que le flux du champ électrostatique au travers d une surface fermée S est proportionnel à la charge électrique totale contenue dans le volume délimité par cette surface : S E. ds = Q INT ɛ 0 avec ɛ 0 = 8.85 10 12 F.m 1 la permittivité diélectrique du vide. Comment est le champ électrique à l intérieur d un conducteur à l équilibre? 2. Deuxième partie : mesure du potentiel d un générateur de VAN DE GRAAF IMPORTANT : Les appareils utilisés dans cette partie sont fragiles et seront manipulés en présence de l enseignant Générateur de Van de Graaf Un générateur de Van de Graaff est une machine électrostatique inventée par Robert Van de Graaff au début des années 1930. Le générateur utilise le mouvement d une courroie isolante pour accumuler en continu des charges électriques sur une 5

électrode terminale, typiquement une sphère métallique fixe et creuse. On veut déterminer le potentiel de cette sphère. 1. Sphère creuse chargée positivement 2. Électrode connectée à la sphère (un peigne est au plus près de la courroie) 3. Poulie supérieure 4. Partie de la courroie chargée positivement 5. Partie de la courroie chargée négativement 6. Poulie inférieure (son axe est relié à un moteur) 7. Électrode inférieure destinée à collecter les charges négatives 8. Sphère chargée négativement utilisée pour décharger la boule principale 9. Étincelle ou arc électrique produits par la décharge électrique FIGURE 3 Générateur de VAN DE GRAAF. Pour accumuler des charges statiques sur la sphère, il y a deux électrodes qui sont placées respectivement juste en dessous de la poulie inférieure et à l intérieur de la sphère. Elles sont munies de peignes qui sont au plus près de la courroie, sans la toucher, et permettent le déplacement des charges. La courroie isolante fait fonction de convoyeur de charges électriques. Son mouvement est assuré par la poulie motrice, actionnée par le moteur situé en bas du dispositif. Ce chargement se poursuit jusqu à un certain point qui dépend des caractéristiques de la sphère. Pour décharger la sphère de VAN DE GRAAF, il faut approcher un conducteur de sa surface (voir sphère 8 de la Fig.3). On peut alors voir un éclair lorsque la différence de potentiel est suffisante pour ioniser l air. Attention aux coups de jus! Condensateur cylindrique Un condensateur est constitué de deux armatures conductrices, les électrodes, en influence totale et séparées par un isolant polarisable (ou «diélectrique»), ici l air. Sa propriété principale est de pouvoir stocker des charges électriques opposées sur ses armatures. La charge électrique Q emmagasinée par un condensateur est proportionnelle à la différence de potentiel entre ses deux armatures V. Le coefficient de proportionnalité est appelé capacité C et s exprime en farads (F). On a donc Q = C. V. Soit un condensateur cylindrique de hauteur L et comportant deux armatures cylindriques ayant le même axe de symétrie et respectivement placées à des distances R 1 et R 2 de l axe (avec R 1 < R 2 ). On peut montrer que, dans le cas idéal, sa capacité s exprime C = 2πɛ 0L ln(r 2 /R 1 ). Pour mesurer la différence de potentiel entre les armatures de ce condensateur, on dispose d un électromètre (voltmètre à grande résistance interne de l ordre de 10 14 Ω). Avant toute utilisation, on veillera à bien régler le 0 en l absence de charge et à choisir un calibre approprié. 1. Calculez la capacité du condensateur cylindrique et comparer cette valeur à celle mesurée par un multimètre. Commentez. 2. Que se passe-t-il lorsque l on place un objet chargé dans l enceinte du condensateur cylindrique sans contact? Réfléchissez en terme de charges qui s attirent et se repoussent. On suppose le système en influence totale. Représenter schématiquement la répartition des charges sur les armatures. Expliquez comment on peut déduire le signe et la valeur de la charge de l objet avec la mesure faite par l électromètre. 3. Chargez la sphère de VAN DE GRAAF en laissant tourner le moteur 2 à 3 minutes. Prenez une petite boule conductrice sur un support isolant et chargez la par contact avec la 6

sphère de VAN DE GRAAF. Plongez la dans le condensateur cylindrique. Déduisez-en le signe et la valeur de la charge Q de la petite boule conductrice. 4. Dans la mesure où on peut assimiler la petite boule à un condensateur sphérique (voir cours), on peut établir la relation V boul e = Q 4πɛ 0 R avec R le rayon de la boule. Connaissant la charge portée par la boule conductrice, déduisez-en le potentiel de la boule puis le potentiel de la sphère de VAN DE GRAAF. Donnez des ordres de grandeurs de tensions connues et commentez. 5. Recommencer l expérience en chargeant la petite boule conductrice par influence cette fois-ci. 3. Troisième partie : mesure de la capacité d un condensateur Il s agit de déterminer la capacité C d un condensateur en mesurant son temps caractéristique de charge/décharge dans un circuit RC. Pour mener cette expérience, faîtes le montage de la Figure 4 en utilisant une boîte à décades pour la résistance et une boîte à condensateurs. Vous prendrez bien soin de brancher la masse du circuit correctement et de ne jamais mettre les boîtes à décades à des valeurs trop faibles pour ne pas griller les composants. Conseil : branchez d abord le circuit, puis l oscilloscope. R V G GBF C V c Oscilloscope Voie 1 Voie 2 FIGURE 4 Mesure à l ocilloscope de la charge et décharge d un condensateur. Remarque : on mesure toujours une tension entre un point du circuit et un point de référence commun au circuit appelé la masse, ou la terre. La masse définit le potentiel de référence commun à tous les appareils connectés au réseau 240 V. En particulier, pour des raisons de sécurité, c est le potentiel des boîtiers des appareils. Ici, on mesure la tension aux bornes du condensateur V C sur la voie 1 de l oscilloscope, et la tension aux bornes du générateur V G sur la voie 2. 1. Choix des paramètres du GBF. Quel type de signal choisissez-vous pour alimenter le circuit? sinusoïdal, carré, triangulaire? Justifiez votre choix. Donnez des ordres de grandeurs courants en travaux pratiques pour l amplitude de la tension d alimentation, la résistance et la capacité. Ayant alors un ordre de grandeur pour le temps caractéristique RC, choisissez une fréquence du signal du GBF adaptée afin de bien observer la charge/décharge du condensateur. 2. Influence des paramètres. Pour R et C donnés, observez comment varient la forme et l amplitude de la tension V C (t) en fonction de la fréquence f du signal du GBF. De même, pour f donnée, observez comment varient la forme et l amplitude de la tension V C (t) en 7

fonction de R, puis C. Raisonnez en utilisant la grandeur τ = RC. Vous vous intéresserez notamment aux cas extrêmes où τ >> t et τ << t. 3. Mesure de C. Fixez les paramètres f, R et C de façon à observer correctement la charge et/ou décharge du condensateur. Il faut alors transférer les données V C (t) de l oscilloscope vers l ordinateur à l aide du programme NI Signal Express. Pour cela, dans le programme choisir Add step - Acquire signal - Tektronik - TDS1000/2000 - Acquire signal. Ensuite, dans le menu déroulant Tektronik, faire Save image. Enregistrer le fichier sur le bureau et imprimer l image. Déterminer τ à partir de V C (t) en utilisant la tangente à l origine. Comparer la valeur de C ainsi mesurée avec celle donnée par le constructeur. Commentez. Supplément Dans ce même montage, remplacez la boîte à condensateurs par un condensateur plan à espacement variable, disponible sur vos paillasses. Théoriquement (voir cours et TD), la capacité d un condensateur plan infini s exprime C = ɛ 0 ɛ r S/e, avec ɛ 0 la permittivité diélectrique du vide, ɛ r la permittivité diélectrique du matériau entre les armatures du condensateur, S la surface des armatures et e l espacement entre les armatures. 1. Variez e et observez qualitativement comment V c (t) varie. La variation de la capacité estelle en accord avec l expression théorique d un condensateur plan infini? 2. Placez une lamelle de plexiglass entre les armatures du condensateur bien en contact. Enlevez la rapidement et observez comment varie V C (t). Que peut-on en déduire à propos de la valeur de la constante diélectrique du plexiglass comparée à celle de l air? 8