CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Probabilités Épreuve de Bernoulli, loi de Bernoulli.



Documents pareils
Probabilités conditionnelles Loi binomiale

Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes

Loi binomiale Lois normales

Fluctuation d une fréquence selon les échantillons - Probabilités

Probabilités. Rappel : trois exemples. Exemple 2 : On dispose d un dé truqué. On sait que : p(1) = p(2) =1/6 ; p(3) = 1/3 p(4) = p(5) =1/12

LEÇON N 7 : Schéma de Bernoulli et loi binomiale. Exemples.

Probabilités Loi binomiale Exercices corrigés

TSTI 2D CH X : Exemples de lois à densité 1

TESTS D'HYPOTHESES Etude d'un exemple

Estimation et tests statistiques, TD 5. Solutions

Estimation: intervalle de fluctuation et de confiance. Mars IREM: groupe Proba-Stat. Fluctuation. Confiance. dans les programmes comparaison

Probabilités conditionnelles Loi binomiale

Lois de probabilité. Anita Burgun

LES GENERATEURS DE NOMBRES ALEATOIRES

NOTIONS DE PROBABILITÉS

Raisonnement par récurrence Suites numériques

Feuille 6 : Tests. Peut-on dire que l usine a respecté ses engagements? Faire un test d hypothèses pour y répondre.

Correction du baccalauréat ES/L Métropole 20 juin 2014

Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé

Les suites numériques

Baccalauréat ES/L Amérique du Sud 21 novembre 2013

Chapitre 3 : INFERENCE

Couples de variables aléatoires discrètes

Calculs de probabilités conditionelles

Probabilités. I Petits rappels sur le vocabulaire des ensembles 2 I.1 Définitions... 2 I.2 Propriétés... 2

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé

Les probabilités. Chapitre 18. Tester ses connaissances

4. Exercices et corrigés

Statistiques à une variable

UFR de Sciences Economiques Année TESTS PARAMÉTRIQUES

La survie nette actuelle à long terme Qualités de sept méthodes d estimation

Correction du baccalauréat STMG Polynésie 17 juin 2014

Espaces probabilisés

RapidMiner. Data Mining. 1 Introduction. 2 Prise en main. Master Maths Finances 2010/ Présentation. 1.2 Ressources

Seconde et première Exercices de révision sur les probabilités Corrigé

GEA II Introduction aux probabilités Poly. de révision. Lionel Darondeau

Plan général du cours

Ressources pour le lycée général et technologique

Distribution Uniforme Probabilité de Laplace Dénombrements Les Paris. Chapitre 2 Le calcul des probabilités

Principe d un test statistique

Réseau SCEREN. Ce document a été numérisé par le CRDP de Bordeaux pour la. Base Nationale des Sujets d Examens de l enseignement professionnel.

Les devoirs en Première STMG

Introduction à la Statistique Inférentielle

1 TD1 : rappels sur les ensembles et notion de probabilité

Exercices de dénombrement

DENOMBREMENT-COMBINATOIRE-PROBABILITES GENERALES

Annexe commune aux séries ES, L et S : boîtes et quantiles

Chapitre 3 : Principe des tests statistiques d hypothèse. José LABARERE

Probabilités sur un univers fini

Probabilités. Une urne contient 3 billes vertes et 5 billes rouges toutes indiscernables au toucher.

LES DECIMALES DE π BERNARD EGGER

Chaînes de Markov au lycée

Statistiques Descriptives à une dimension

dénombrement, loi binomiale

Statistiques Décisionnelles L3 Sciences Economiques & Gestion Faculté d économie, gestion & AES Université Montesquieu - Bordeaux

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé

315 et 495 sont dans la table de 5. 5 est un diviseur commun. Leur PGCD n est pas 1. Il ne sont pas premiers entre eux

Calcul élémentaire des probabilités

Exercices sur le chapitre «Probabilités»

LE RÔLE DE LA STATISTIQUE DANS UN PROCESSUS DE PRISE DE DÉCISION

Exercices supplémentaires sur l introduction générale à la notion de probabilité

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée.

Probabilités sur un univers fini

Variables Aléatoires. Chapitre 2

Licence MASS (Re-)Mise à niveau en Probabilités. Feuilles de 1 à 7

Travaux dirigés d introduction aux Probabilités

Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT

mathématiques mathématiques mathématiques mathématiques

Précision d un résultat et calculs d incertitudes

Tests paramétriques de comparaison de 2 moyennes Exercices commentés José LABARERE

Initiation aux calculatrices graphiques numériques TI en français TI-82 STATS.fr TI-83 Plus TI-83 Plus SE TI-84 Plus TI-84 Plus SE

Cours (7) de statistiques à distance, élaboré par Zarrouk Fayçal, ISSEP Ksar-Said, LES STATISTIQUES INFERENTIELLES

Séries Statistiques Simples

Analyse de la variance Comparaison de plusieurs moyennes

Evaluation de la variabilité d'un système de mesure

4 Distributions particulières de probabilités

Simulation de variables aléatoires

LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING»

FORMULAIRE DE STATISTIQUES

Probabilité. Table des matières. 1 Loi de probabilité Conditions préalables Définitions Loi équirépartie...

Moments des variables aléatoires réelles

Probabilités conditionnelles Exercices corrigés

I3, Probabilités 2014 Travaux Dirigés F BM F BM F BM F BM F B M F B M F B M F B M

CRÉER DES LEÇONS AVEC L'ÉDITEUR DU LOGICIEL 1000 MOTS POUR APPRENDRE À LIRE EN FRANÇAIS, ANGLAIS ET ALLEMAND

Chapitre 6 Test de comparaison de pourcentages χ². José LABARERE

F7n COUP DE BOURSE, NOMBRE DÉRIVÉ

Introduction à l approche bootstrap

Université Paris 8 Introduction aux probabilités Licence Informatique Exercices Ph. Guillot. 1 Ensemble fondamental loi de probabilité

Tests de comparaison de moyennes. Dr Sahar BAYAT MASTER 1 année UE «Introduction à la biostatistique»

Représentation d une distribution

mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques SÉRIE ES ANNALES DES SUJETS DE MATHÉMATIQUES SESSION 2013

La simulation probabiliste avec Excel

ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #4-5

Feuille d exercices 2 : Espaces probabilisés

TS 35 Numériser. Activité introductive - Exercice et démarche expérimentale en fin d activité Notions et contenus du programme de Terminale S

Nombres, mesures et incertitudes en sciences physiques et chimiques. Groupe des Sciences physiques et chimiques de l IGEN

Taux d évolution moyen.

Nombre dérivé et tangente

Terminale STMG Lycée Jean Vilar 2014/2015. Terminale STMG. O. Lader

MATHÉMATIQUES APPLIQUÉES S4 Exercices

Transcription:

1 ère - 3 Chap.9 : Loi binomiale. Échantillonnage. 1 ère - Chapitre 9 : LOI BINOMIALE. ÉCHANTILLONNAGE. Textes officiels (30 septembre 2010) : CONTENU CAPACITÉ ATTENDUE COMMENTAIRE Probabilités Épreuve de Bernoulli, loi de Bernoulli. chéma de Bernoulli, loi binomiale (loi du nombre de succès). Coefficients binomiaux, triangle de Pascal. Reconnaître des situations relevant de la loi binomiale. Calculer une probabilité dans le cadre de la loi binomiale. La représentation à l aide d un arbre est privilégiée : il s agit ici d installer une représentation mentale efficace. On peut ainsi : faciliter la découverte de la loi binomiale pour des petites valeurs de n (n 4) ; introduire le coefficient binomial ( n k) comme nombre de chemins de l arbre réalisant k succès pour n répétitions ; établir enfin la formule générale de la loi binomiale. GT du LP Léo Lagrange de Bully-Les-Mines (62) Page 1/8

1 ère - 3 Chap.9 : Loi binomiale. Échantillonnage. 1 ère - Chapitre 9 : LOI BINOMIALE. ÉCHANTILLONNAGE. I. Épreuve de Bernouilli Une épreuve de Bernoulli est une expérience aléatoire à deux issues : l'une que l'on nomme «UCCÈ», que l'on note, et dont la probabilité d'apparition est p ; l'autre nommée «ÉCHEC», que l'on note et dont la probabilité d'apparition est 1 - p. p 1 - p Exemple : Une urne contient 6 boules rouges, 3 boules jaunes et 1 boule bleue, toutes indiscernables. Avant de jouer, on mise un euro. On tire une boule au hasard et on obtient : 0 euro si elle est rouge ; 1 euro si elle est jaune ; 5 euros si elle est bleue. On peut donc définir comme UCCÈ le fait de tirer la boule bleue. Il s'agit donc d'une épreuve de Bernoulli avec pour : «tirer une boule bleue» et pour : «tirer une boule qui n'est pas bleue» (donc une boule rouge ou une jaune). Dans une épreuve de Bernoulli de paramètre p, la variable aléatoire X, prenant la valeur 1 si se produit et la valeur 0 sinon, suit la loi de probabilité ci-contre : on espérance est E ( X )= p, sa variance est V ( X )= p (1 p ). On dit alors que X est une variable de Bernoulli de paramètre p ou encore que X suit la loi de Bernoulli de paramètre p. k 0 1 P(X = k) 1 - p p Exemple : Dans l'exemple précédent, l'épreuve de Bernoulli a pour loi de paramètre p= 1 10. Donc la loi de Bernoulli de paramètre p= 1 est définie par le tableau suivant : 10 Issue Probabilité 1 10 9 10 II. chéma de Bernoulli Un schéma de Bernoulli est la répétition d'une même épreuve de Bernoulli dans des conditions d'indépendance : c'est-à-dire que l'issue d'une épreuve n'influe pas sur les autres. Exemple 1 : On reprend l'exemple du paragraphe 1 et après avoir tiré une boule, on la replace dans l'urne avant d'en choisir une seconde. On répète alors plusieurs fois cette expérience. Le fait de replacer la boule dans l'urne assure l'indépendance entre deux tirages. Le schéma de Bernoulli peut être illustré par un arbre comportant autant d'étapes qu'il y a de tirages. Avec deux tirages GT du LP Léo Lagrange de Bully-Les-Mines (62) Page 2/8

1 ère - 3 Chap.9 : Loi binomiale. Échantillonnage. Exemple 2 : Dans l 'exemple précédent, on effectue trois fois le tirage d'une boule. Comme on l'a vu précédemment, chaque tirage est une épreuve de Bernoulli. La probabilité d'obtenir la liste est : P ( )= P ( ) P ( ) P ( ) = =0,09. 1 er 2 ème 3 ème Nombre k tirage tirage tirage Résultats de succès 3 2 2 1 On note X la variable aléatoire qui compte le nombre de succès sur 3 tirages. La probabilité d'obtenir deux succès est : P(X = 2) = P ( )+ P ( )+ P ( ) = 0,009 + 0,009 + 0,009 = 0,027. 2 1 1 0 Avec trois tirages On peut alors construire de la même manière le tableau donnant la loi de probabilité de la variable aléatoire X : Nombre k de succès 0 1 2 3 Probabilité P(X = k) 0,729 0,243 0,027 0,001 Remarque : Comme toute loi de probabilité, la somme des probabilités est égale à 1. Ici : P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) = 0,729 + 0,243 + 0,027 + 0,001 = 1. De plus : E ( X )= 0 0,729+ 1 0,243+ 2 0,027+ 3 0,001=0,3. Cela signifie qu'en répétant un grand nombre de fois l'expérience (de trois lancers), on obtient en moyenne 0,3 fois le succès. On considère un schéma de Bernoulli de n épreuves, n N*, représenté par un arbre. Pour tout entier k tel que 0 k n, on note ( n le nombre de chemins de l'arbre réalisant k k) succès lors des n répétitions. Par convention, on pose ( 0 0) = 1. ( n est aussi appelé un «coefficient binomial» et se lit «k parmi n». k) Exemple : À l'aide de l'arbre réalisé précédemment, on obtient : ( 3 0) nombre de chemins amenant à 0 succès en 3 répétitions ; il y en a un seul donc ( 3 0) = 1 ; ( 3 1) nombre de chemins amenant à 1 succès en 3 répétitions ; il y en a un seul donc ( 3 1) =3 ; ( 3 2) nombre de chemins amenant à 2 succès en 3 répétitions ; il y en a un seul donc ( 3 2) = 3 ; ( 3 3) nombre de chemins amenant à 3 succès en 3 répétitions ; il y en a un seul donc ( 3 3) =1. GT du LP Léo Lagrange de Bully-Les-Mines (62) Page 3/8

1 ère - 3 Chap.9 : Loi binomiale. Échantillonnage. III.Propriété des ( n k) Propriété : Pour tout entier n 0, ( n 0) = 1 et ( n n) = 1. Démonstration : Un seul chemin mène à 0 succès lors de n répétitions : c'est... ; Un seul chemin mène à n succès lors de n répétitions : c'est. Propriété : Pour tous entiers naturels n et k tels que 0 k n, ( n k) = ( n n k). Démonstration : i n =0, 0 k n implique k = 0 et donc l'égalité est vérifiée ; i n>0, alors sur l'arbre du schéma de n épreuves de Bernoulli, ( n désigne le nombre de chemins k) menant à k succès, donc aussi le nombre de chemins réalisant n k échecs parmi n. C'est-à-dire ( n n k). Propriété : Pour tous entiers naturels n et k tels que 0 k n 1, ( n k) = ( n 1 k 1) + ( n 1 k ) Démonstration : ur l'arbre du schéma de n épreuves de Bernoulli, les chemins qui conduisent à k succès sont : ceux qui conduisent à k - 1 succès lors des n - 1 premières répétitions et à un succès lors de la n-ième répétition. Il y en a ( n 1 k 1) ; ceux qui conduisent à k succès lors des n - 1 premières répétitions et à un échec lors de la n-ième répétition. Il y en a ( n 1 k k 1) ( + n 1 k ). IV. Loi binomiale ). d'où : ( n k) = ( n 1 On considère un schéma de Bernoulli constitué de n épreuves dont la probabilité de succès est p. On désigne par X la variable aléatoire associée au nombre de succès lors de ces n épreuves. Alors : P(X = k) = ( n k) pk (1 p ) n k où k prend les valeurs 0, 1, 2,, n. on espérance est E ( X )= np. a variance est V ( X )= np (1 p) et son écart-type est σ ( X )= np (1 p ). La loi de probabilité de la variable aléatoire X est appelée loi binomiale de paramètre n et p et on la note B(n ; p). Exemple : Comme on l'a vu dans l'exemple 2, les trois tirages consécutifs constituent un schéma de Bernoulli et on peut alors associer une loi binomiale à ces trois tirages consécutifs : B(n = 3 ; p = ). On a donc E ( X )= np=3 =0,3. Et σ ( X )= np (1 p )= 3 = 0,27 0,52. GT du LP Léo Lagrange de Bully-Les-Mines (62) Page 4/8

1 ère - 3 Chap.9 : Loi binomiale. Échantillonnage. Annexes TICE : Avec la calculatrice ou un tableur Calculer un coefficient binomial (combinaison) On veut calculer le coefficient binomial ( 10 3 ), c'est-à-dire le nombre de combinaisons de «3 parmi 12», ou encore, le nombre de manières différentes de choisir «3 parmi 12». Taper 10 Casio TI Tableur électionner Taper pour, puis pour Choisir pour Taper 3 puis Taper 10 électionner MATH PRB Taper 3 (ncr) Fonction COMBIN yntaxe : =COMBIN(n;k) Donc ( 10 3 ) =120. Calcul pratique de P(X = k) et P(X k) Donc ( 10 3 ) =120. ource : Manuel Indice Maths 1ère E-L Éditions Bordas - 2011 yntaxe Casio TI OpenOffice/LibreOffice Excel Touche OPTN puis choisir TAT, puis DIT, puis BINM, puis Bpd ou Bcd Menu distrib (2nde var), puis choisir binomfdp (ou binomfrép) Fonction LOI.BINOMIALE P(X = k) BinomialPD(k,n,p) binomfdp(n,p,k) =LOI.BINOMIALE(k;n;p;0) =LOI.BINOMIALE(k;n;p;FAUX) P(X k) BinomialCD(k,n,p) binomfrep(n,p,k) =LOI.BINOMIALE(k;n;p;1) =LOI.BINOMIALE(k;n;p;VRAI) Tableau donnant la loi de probabilité de X On peut afficher un tableau donnant la loi binomiale de X. Pour cela, on utilise les calculatrices en mode TABLE : on choisit pour x les entiers de 0 jusque n («pas» de 1) ; pour Y1, on utilise les fonctions de lois binomiales en remplaçant k par X. ource : Manuel Indice Maths 1ère E-L Éditions Bordas - 2011 Casio TI Tableur Dans le menu TABLE, entrer en Y1 : Y1=BinomialPD(X,n,p) BinomialPD est accessible par HIFT 4 (CATALOG) en prenant le soin de remplacer n et p par les valeurs voulues. Dans le menu f(x), entrer en Y1 : Y1=BinomFdp(n,p,X) BinomFdp est accessible par 2nde 0 (catalog) en prenant le soin de remplacer n et p par les valeurs voulues. On entre 0, 1, 2,, jusque n, puis la formule calculant les probabilités dans la colonne suivante avec la fonction : =LOI.BINOMIALE(Cellule;n;p;FAUX) Régler la table avec ET (F5) puis l'afficher avec TABLE (F6). Régler la table avec déf table (2nde fenêtre) puis l'afficher avec table (2nde Graphe). ci-dessus, n = 7 et p = 0,2. ource : Manuel Indice Maths 1ère E-L Éditions Bordas - 2011 GT du LP Léo Lagrange de Bully-Les-Mines (62) Page 5/8

1 ère - 3 Chap.9 : Loi binomiale. Échantillonnage. V. Échantillonnage Activité p. : 1. Étudier une hypothèse à partir d'un échantillon On pose une hypothèse : dans une population donnée de taille N, on suppose qu'un caractère est présent dans la proportion p. Pour juger de la validité de cette hypothèse, on effectue un prélèvement, au hasard et avec remise, un échantillon de taille n, n N, et on observe la fréquence f du caractère observé dans cet échantillon. Population Proportion théorique p Taille N Échantillon Proportion dans l'échantillon f Taille n On cherche à savoir si la fréquence observée (appelée aussi fréquence empirique) f est suffisamment éloignée de p, dans un sens ou dans l'autre, pour pouvoir rejeter l'hypothèse. Propriété : (vue en 2nde) 2. Intervalle de fluctuation : rappel On a déterminé en classe de seconde un intervalle de fluctuation d'une proportion d'un caractère à 95 %. i p est la proportion d'un caractère dans une population, avec 0,2 p 0,8, alors pour un échantillon de taille n 25, la fréquence f du caractère dans l'échantillon appartient à l'intervalle [ 1 p n ; p+ 1 avec une probabilité d'au moins 95 %. n] On va améliorer ce résultat en utilisant une loi binomiale. 3. Intervalle de fluctuation à 95 % La proportion de la population présentant le caractère étudié est noté p. Propriété : La variable aléatoire X qui compte le nombre d'individus de l'échantillon qui présente le caractère étudié, suit une loi binomiale de paramètre n et p : B(n ; p). Pour limiter l'influence des valeurs aberrantes, on va écarter les valeurs extrêmes et créer ainsi un nouvel intervalle : on partage l'intervalle de l'échantillon [0 ; n] en trois sous-intervalles : [0 ; a 1], [a ; b] et [b +1 ; n], de façon à ce que X prenne ses valeurs dans les deux intervalles extrêmes avec une probabilité proche de 2,5 % mais sans jamais la dépasser. L'intervalle de fluctuation à 95 % d'une fréquence correspondant à la réalisation, sur un échantillon de taille n, d'une variable aléatoire X de loi binomiale B(n ; p), est l'intervalle [ a ; n bn] défini par : a est le plus petit entier tel que P ( X a)> 2,5 % ; b est le plus petit entier tel que P ( X b) 97,5 %. On obtient alors que P (a X b) 95 %. L'intervalle de fluctuation est aussi appelé «intervalle de confiance». VI. Un exemple La proportion des personnes ayant les yeux marrons dans la population française est 0,34. On veut déterminer un intervalle de fluctuation de la fréquence f des personnes ayant les yeux marrons dans des échantillons de taille 100. GT du LP Léo Lagrange de Bully-Les-Mines (62) Page 6/8

1 ère - 3 Chap.9 : Loi binomiale. Échantillonnage. Réponse : On définit la variable aléatoire X égale au nombre de personnes ayant les yeux marrons dans un échantillon de taille 100. En assimilant le choix d'une personne au hasard dans cet échantillon à un tirage avec remise, on peut supposer que X suit une loi binomiale de paramètre n=100 et p=0,34. X prend alors les valeurs de 0 à 100. Avec la calculatrice ou un tableur, on dresse la liste de ces valeurs que prend X. On en profite pour faire calculer les valeurs cumulées (ci-contre dans la colonne C). On va partager l'ensemble des valeurs de X en trois parties : - A : valeurs comprises entre 0 et a 1 (a entier) ; - B : valeurs comprises entre a et b (entier) ; - C : Valeurs comprises entre b + 1 et n. Avec Excel. P ( X k ) 2,5% pour k 25. P ( X k ) 97,5% pour k 44. On détermine ensuite a et b de façon à ce que la probabilité que X appartienne à A et à C soit inférieure à 0,025 : on aura alors un intervalle [a ; b] tel que la probabilité que X soit compris entre a et b soit au moins égale à 5. Ici, a=25 et b=43. Donc l'intervalle [a ; b] est [25 ; 43]. La fréquence f appartient à l'intervalle [0,25 ; 0,43] avec une probabilité au moins égale à 5. 0,09 0,08 0,07 0,06 0,05 0,04 0,03 0,02 0,01 0 P(X = k) Zone de rejet Zone de rejet 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 k 4. Prendre des décisions ource : Manuel Indice Maths 1ère E-L Éditions Bordas - 2011 Règle de décision : si f [ a n ; b, alors on rejette l'hypothèse selon laquelle la n] proportion du caractère dans la population est p, au risque de 5 %. si f [ a n ; b, alors on ne peut pas rejeter cette hypothèse. n] Remarque : «au risque de 5 %» signifie que la probabilité de rejeter l'hypothèse, alors qu'elle est vraie, est inférieure à 5 %. Exemple : Un laboratoire annonce qu'un médicament sauve 40 % des patients atteint d'une maladie rare. Pour contrôler cette affirmation, l'autorité de surveillance demande le test sur 100 patients atteints de cette maladie. oit X le nombre de malades sauvés par ce médicament dans un échantillon aléatoire de malades et assimilé à un tirage avec remise de taille 100. 1. Quelle loi suit X? GT du LP Léo Lagrange de Bully-Les-Mines (62) Page 7/8

1 ère - 3 Chap.9 : Loi binomiale. Échantillonnage. 2. Déterminer les plus petits entiers a et b tels que P ( X a) 0,025 et P ( X b) 75. 3. Énoncer la règle de décision permettant de rejeter ou non l'hypothèse p=0,40 selon la valeur de la fréquence f des malades sauvés dans l'échantillon. 4. ur les 100 malades auxquels on a administré ce traitement, on en a sauvé 30. Au seuil de risque 5 %, que peut-on dire de l'annonce faite par le laboratoire? Réponse : 1. L'épreuve de Bernoulli «un patient est sauvé ou non par le médicament» est répétée 100 fois de manière identique et indépendante, donc X suit la loi binomiale de paramètres n=100 et p=0,4. 2. À l'aide de la calculatrice, on construit la table des valeurs P ( X k ) Avec une TI : Dans f(x)= et 3. L'intervalle de fluctuation à 95 % de la fréquence dans les échantillons de taille 100 est [0,32 ; 0,50]. D'où la règle de décision : si f appartient à l'intervalle [0,32 ; 0,50], l'hypothèse p= 40 est acceptable, sinon elle est rejetée, au seuil de 5 %. 4. La fréquence observée est de 0,30 et 0,30 [0,32 ; 0,50], donc, au seuil de risque de 5 %, on rejette l'hypothèse selon laquelle le médicament sauve 40 % des malades. ource : Manuel Indice Maths 1ère E-L Éditions Bordas 2011 GT du LP Léo Lagrange de Bully-Les-Mines (62) Page 8/8