Echantillonnage Non uniforme Marie CHABERT IRIT/INP-ENSEEIHT/ ENSEEIHT/TéSASA Patrice MICHEL et Bernard LACAZE TéSA 1
Plan Introduction Echantillonnage uniforme Echantillonnage irrégulier Comparaison Cas de l él échantillonnage entrelacé Discussion 2
Introduction Cadre généralg Conversion Analogique Numérique Algorithmes Entrée Echantillonnage Processus aléatoire stationnaire au sens large de densité spectrale de puissance Z(t Z(t n n )) Quantification Traitement Numérique Sortie ^ Z(t)? 3
ECHANTILLONNAGE uniforme Introduction Schémas d éd échantillonnage et type de reconstruction SIGNAL Passe-bas CONDITION Shannon RECONSTRUCTION exacte irrégulier Passe-bas Shannon - instants mesurés en - exacte - modèle probabiliste des instants périodique non uniforme par exemple entrelacé Passe-bande ou multibande moyenne Landau en moyenne - optimale (minimum de l erreur quadratique) exacte 4
Reconstruction exacte en théorie orie Et dans la pratique? EN THEORIE : RECONSTRUCTION EXACTE sous forme d une somme infinie. EN PRATIQUE : RECONSTRUCTION APPROCHEE à partir d une fenêtre d observation. CRITERE DE COMPARAISON DES METHODES EN PRATIQUE : rapidité de convergence de la série. 5
Plan Introduction Echantillonnage uniforme Echantillonnage irrégulier Comparaison des schémas d éd échantillonnage uniforme et irrégulier Cas de l él échantillonnage entrelacé Discussion 6
Echantillonnage uniforme d un d signal passe-bas Reconstruction exacte CONDITION de Shannon 0 7
Echantillonnage uniforme d un d signal passe-bas avec repliement «Sous- échantillonnage» Repliement et reconstruction exacte impossible 0 Estimateur linéaire du minimum de l erreur quadratique qui minimise 8
Echantillonnage uniforme d un d signal passe-bas Reconstruction exacte «Echantillonnage à Shannon» RECONSTRUCTION exacte par interpolation linéaire EN PRATIQUE par troncature de la série précédente Fonction d interpolation de Shannon Faible taux de convergence après échantillonnage 0 9
Echantillonnage uniforme d un d signal passe-bas Formule de Shannon «Sur-échantillonnage» RECONSTRUCTION exacte par interpolation linéaire. RECONSTRUCTION APPROCHEE par troncature de la série. Convergence plus rapide pour transmittance du filtre plus régulière : cosinus surélevé par ex. après échantillonnage 0 10
Plan Introduction Echantillonnage uniforme Echantillonnage irrégulier Comparaison des schémas d éd échantillonnage uniforme et irrégulier Cas de l él échantillonnage entrelacé Discussion 11
Echantillonnage irrégulier - instants mesurés Schéma d éd échantillonnage Echantillons manquants : séquence incomplète d échantillons relevés à intervalles réguliers Echantillonnage dit «pseudoaléatoire» gigue modèle additif 12
Echantillonnage irrégulier - instants mesurés Méthodes de reconstruction 1. Méthode matricielle : résolution d un système d équations. 2. Splines cubiques : interpolation polynomiale de degré 3. 3. Algorithmes itératifs : filtrage successif de l erreur de reconstruction. 4. Formule de Lagrange modifiée. 1. Méthode matricielle 2. Splines cubiques n polynômes de degré 3 observations Calculées par inversion matricielle Réinjectées dans Shannon 13
Echantillonnage irrégulier - instants mesurés Méthodes de reconstruction 3. Algorithmes itératifs (Sauer-Allebach, Marvasti, Gershberg, ) Itérations Connaissance de la bande spectrale Erreur de reconstruction calculée aux instants d échantillonnage connus 14
Echantillonnage irrégulier - instants mesurés Méthodes de reconstruction 4. Formule de Lagrange modifiée CONDITION Shannon en moyenne CONDITION sur les instants d échantillonnage fréquence moyenne d échantillonnage sur-échantillonnage en moyenne 15
Echantillonnage irrégulier - instants mesurés Méthodes de reconstruction Formule de Lagrange modifiée (suite) RECONSTRUCTION EXACTE dépend des instants mesurés M : nombre d échantillons observés Mise en œuvre pratique : approximation du signal par troncature de la série. 16
Comparaison échantillonnage régulier r et irrégulier Problème : reconstruction d un processus à spectre borné après un échantillonnage périodique ou irrégulier. Méthodes comparées : Formule de Shannon. Interpolation par splines, Algorithmes itératifs, Méthode matricielle, Formule de Lagrange modifiée. Critères d évaluations : Quantitatif : Performances en reconstruction (EQM) Qualitatif : Nature du repliement spectral hors condition de Shannon 17
Paramètres des simulations Signal : Bruit blanc gaussien filtré. Fréquence de Shannon définie pour une atténuation de 25dB ou de 50dB. Gigue : Uniforme sur Fenêtre d observation : N=64 échantillons pris en compte de part et d autre de l origine. Fenêtre de reconstruction : Signal reconstruit sur 0 18
Comparaison des performances Respect du Théor orème de Shannon à 25 db Faible écart entre Shannon et Lagrange modifiée Fréquence de Shannon définie à 25 db 19
Comparaison des performances Respect du Théor orème de Shannon à 50dB Performances de Lagrange modifiée encore meilleures Fréquence de Shannon définie à 50 db 20
Comparaison des performances Non respect du Théor orème de Shannon QUANTITATIVEMENT Baisse de performances pour toutes les méthodes 21
Comparaison des performances Non respect du Théor orème de Shannon Echantillonnage régulier r + reconstruction par Shannon QUALITATIVEMENT Raie repliée Raie hors bande sur le signal initial F max F shan = 2F max 22
Comparaison des performances Non respect du Théor orème de Shannon Echantillonnage régulier r + reconstruction matricielle QUALITATIVEMENT Repliement étalé F max F shan = 2F max 23
Comparaison des performances : Bilan Echantillonnage régulier + Formule de Shannon Critère Quantitatif Critère Qualitatif (repliement) hors condition de Shannon Echantillonnage irrégulier + Formule de Lagrange modifiée 24
Application en traitement d images d biomédicales Echantillonnage aléatoire atoire Image Originale 128x128 50% des échantillons prélevés aléatoirement Algorithme de reconstruction itératif 25
Application en traitement d images d Echantillonnage aléatoire atoire Formules de reconstruction 1D Image Originale Image ré-échantillonnée aléatoirement puis reconstruite ligne par ligne avec la Formule de Lagrange modifiée 26
Application en traitement d images d Echantillonnage aléatoire atoire Reconstruction 1D (ligne par ligne) Cubic Spline 27
Echantillonnage non uniforme adapté au contenu Méthode 1 An Adaptive Irregular Sampling Method for Progressive Transmission Ramponi & Carrato 2001 Grille grossière re + échantillons en fonction d estimations d locales du moment centré d ordre 3 - points de contours 28
Echantillonnage non uniforme adapté au contenu Méthode 2 «Content Adaptive Mesh Representation of Images Using Binary Space Partitions», Sarkis & Lorscheider & Diepold 29
Echantillonnage non uniforme adapté au contenu Performances de la reconstruction A partir de 16387 échantillons réguliers 25% A partir de 16382 échantillons irréguliers 25% Reconstruction 2D par la méthode m des 4 plus proches voisins 30
Echantillonnage non uniforme adapté au contenu Performances de la reconstruction régulier irrégulier A partir de 16387 échantillons réguliers A partir de 16382 échantillons irréguliers 31
Bilan Reconstruction exacte d un signal aléatoire à partir de ses échantillons prélevés à des instants non uniformes ou dans le cas de perte d échantillons. Approximation à très fort taux de convergence dans le cas d une fenêtre d observation limitée Intérêt de l échantillonnage non uniforme en terme d interprétation (anti-repliement) Intérêt potentiel d un échantillonnage non uniforme en terme de compression (adapté au contenu) 32
Elèments de bibliographie A.J. Jerri, The Shannon sampling theorem, its various extensions and applications: A tutorial review, Proc IEEE, 1977. Bilinskis, I., Mikelsons, A., Application of randomized or irregular sampling as an antialiasing technique, EUSIPCO 1990. J.R. Higgins, Sampling theory in Fourier and signal analysis, Oxford Sc Pub., 1996. Marvasti and al, Non uniform sampling theory and Practice, Ed. 2001. B.Lacaze, A theoretical exposition of stationary process sampling, STSIP Journal, 2005. B.Lacaze, Reconstruction formula for irregular sampling, STSIP Journal, 2005. B. Lacaze, C. Mailhes, Reconstruction of sampled complex processes with timing jitter, STSIP 2004. B. Lacaze, C. Mailhes, Can timing jitter improve random process reconstruction in the presence of aliasing? ICASSP04. B. Lacaze, M. Chabert, New reconstruction formulas for oversampled processes and functions, Signal Processing, 2006. M. Chabert, B. Lacaze, A New Formula for Lost Sample Restoration, EUSIPCO 2007. W. Chauvet, M. Chabert, B. Lacaze, Influence d un échantillonnage irrégulier sur les performances de la reconstruction, GRETSI 2009. B. Lacaze, M. Chabert, Une formule de reconstruction exacte pour l'échantillonnage 33 aléatoire, GRETSI 2007.
Merci de votre attention! 34
Formule de Lagrange modifiée Espace de Hilbert engendré par Isométrie Espace de Hilbert engendré par 35
Formule de Lagrange modifiée Intégration de sur un contour fermé. Théorème des résidus 36