SSLV110 - Fissure elliptique dans un milieu infini

Documents pareils
TUTORIAL 1 ETUDE D UN MODELE SIMPLIFIE DE PORTIQUE PLAN ARTICULE

SSNL126 - Flambement élastoplastique d'une poutre droite. Deux modélisations permettent de tester le critère de flambement en élastoplasticité :

Manuel de validation Fascicule v4.25 : Thermique transitoire des structures volumiques

SDLS08 - Modes propres d'une plaque carrée calculés sur base réduite

Analyse statique d une pièce

Jean-Marc Schaffner Ateliers SCHAFFNER. Laure Delaporte ConstruirAcier. Jérémy Trouart Union des Métalliers

AUTRES ASPECTS DU GPS. Partie I : tolérance de Battement Partie II : tolérancement par frontières

SDLV120 - Absorption d'une onde de compression dans un barreau élastique

ÉTUDE DE L EFFICACITÉ DE GÉOGRILLES POUR PRÉVENIR L EFFONDREMENT LOCAL D UNE CHAUSSÉE

Chapitre 0 Introduction à la cinématique

Corrigé Exercice 1 : BRIDE HYDRAULIQUE AVEC HYPOTHÈSE PROBLÈME PLAN.

Sujet proposé par Yves M. LEROY. Cet examen se compose d un exercice et de deux problèmes. Ces trois parties sont indépendantes.

P M L R O G W. sylomer. Gamme de Sylomer Standard. Propriétés Méthode de test Commentaires. Polyuréthane (PUR) Cellulaire mixte

(Exemple ici de calcul pour une Ducati 748 biposto, et également pour un S2R1000, équipé d un disque acier en fond de cloche, et ressorts d origine)

Version default Titre : Opérateur MECA_STATIQUE Date : 17/10/2012 Page : 1/5 Responsable : Jacques PELLET Clé : U4.51.

DÉVERSEMENT ÉLASTIQUE D UNE POUTRE À SECTION BI-SYMÉTRIQUE SOUMISE À DES MOMENTS D EXTRÉMITÉ ET UNE CHARGE RÉPARTIE OU CONCENTRÉE

Annexe A. Annexe A. Tableaux et données relatifs à la vérification par Eurocode 3 A.3

SIMULATION DU PROCÉDÉ DE FABRICATION DIRECTE DE PIÈCES THERMOPLASTIQUES PAR FUSION LASER DE POUDRE

1 Définition. 2 Systèmes matériels et solides. 3 Les actions mécaniques. Le système matériel : Il peut être un ensemble.un sous-ensemble..

aux différences est appelé équation aux différences d ordre n en forme normale.

Calcul intégral élémentaire en plusieurs variables

Fonctions de plusieurs variables

COMPTE-RENDU «MATHS EN JEANS» LYCEE OZENNE Groupe 1 : Comment faire une carte juste de la Terre?

ANNEXE J POTEAUX TESTÉS SELON UN CHARGEMENT STATIQUE ET TESTÉS SELON UN CHARGEMENT CYCLIQUE ET STATIQUE

AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x =

TP2 ACTIVITE ITEC. Centre d intérêt : AUBE D UN MIRAGE 2000 COMPORTEMENT D UNE PIECE. Documents : Sujet Projet Dossier technique - Document réponse.

Championnat de France de Grilles Logiques Finale 7 juin Livret d'instructions

Corps des nombres complexes, J Paul Tsasa

Généralités. Aperçu. Introduction. Précision. Instruction de montage. Lubrification. Conception. Produits. Guides à brides FNS. Guides standards GNS

Quick Tower. Blocs verticaux nus Page 123. Quick Point. Plaques pour Quick Tower Page 124. Präge Fix. Makro Grip. Quick Point. Quick Tower.

Fonctions de plusieurs variables

Rappel. Analyse de Données Structurées - Cours 12. Un langage avec des déclaration locales. Exemple d'un programme

PROBLEME(12) Première partie : Peinture des murs et du plafond.

SSNV143 - Traction biaxiale avec la loi de comportement BETON_DOUBLE_DP

= 1 si n = m& où n et m sont souvent des indices entiers, par exemple, n, m = 0, 1, 2, 3, 4... En fait,! n m

DISQUE DUR. Figure 1 Disque dur ouvert

Une approche statique quasi-périodique de la capacité portante des groupes de micropieux

Qualité du logiciel: Méthodes de test

Les travaux doivent être remis sous forme papier.

SOMMAIRE Thématique : Matériaux

Sartorius ME Seuls les résultats comptent

Fonctions de deux variables. Mai 2011

Série 77 - Relais statiques modulaires 5A. Caractéristiques. Relais temporisés et relais de contrôle

Centreur fin cylindrique pour la fabrication de moules. Le développement

Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 %

BOUYGUES TELECOM ENTREPRISES - CLOUD

Extrait des Exploitations Pédagogiques

SSLS116 - Chargement membranaire d une plaque excentrée

FÉDÉRATION INTERNATIONALE DE PÉTANQUE ET JEU PROVENÇAL REGLEMENT DU CHAMPIONNAT DU MONDE DE TIR INDIVIDUEL

POMPIERS TERRAIN DIFFICILE

Structur 3. Brillant sans polissage. Structur 3. Composite pour la fabrication de couronnes

Cours de Mécanique du point matériel

Utilisation du logiciel ImageJ gratuit

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R.

L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ

Aide - mémoire gnuplot 4.0

enquête pour les fautes sur le fond, ce qui est graves pour une encyclopédie.

Actions de réduction de bruit sur un moteur poids lourd

Cours IV Mise en orbite

Concours EPITA 2009 Epreuve de Sciences Industrielles pour l ingénieur La suspension anti-plongée de la motocyclette BMW K1200S

Comparaison des performances d'éclairages

Exercices Alternatifs. Quelqu un aurait-il vu passer un polynôme?

Exercices Alternatifs. Quelqu un aurait-il vu passer un polynôme?

CONCOURS COMMUNS POLYTECHNIQUES

Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables

INTRODUCTION À L ANALYSE FACTORIELLE DES CORRESPONDANCES

BREVET D ETUDES PROFESSIONNELLES REPRESENTATION INFORMATISEE DE PRODUITS INDUSTRIELS. Epreuve EP1 Unité : UP1

IMAGE BASED MODELING généralités et utilisation des outils de photomodélisation. 123D Catch de Autodesk.

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Rappel sur les bases de données

Contribution à la conception par la simulation en électronique de puissance : application à l onduleur basse tension

Module d Electricité. 2 ème partie : Electrostatique. Fabrice Sincère (version 3.0.1)

Séminaire des chefs de centre

SOL FORTE ÉPAISSEUR INDUSTRIAL FLORIM

G.P. DNS02 Septembre Réfraction...1 I.Préliminaires...1 II.Première partie...1 III.Deuxième partie...3. Réfraction

Tout le matériel (actif) qui sert à produire: boulons, capteurs, automates, vérins, câblage, éclairage, etc.

Fiche Technique d Évaluation sismique : Construction basse en Maçonnerie Non-armée, Chaînée, ou de Remplissage en Haïti

Contrôle thermographique Tarifs et prestations :

Texte Agrégation limitée par diffusion interne

Rupture et plasticité

R310FR 2202 ( ) The Drive & Control Company

Principales Fonctionnalités - Version 8

MDM appliqué au DM. Formation MOA 14 mai Franck GENER

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

ICS Destiné à remplacer EN 926-1:1995. Version Française

Chapitre 2 : Systèmes radio mobiles et concepts cellulaires

Routage Statique. Protocoles de Routage et Concepts. Version Cisco Systems, Inc. All rights reserved. Cisco Public 1

Chapitre 7 - Relativité du mouvement

Développements actuels dans le positionnement satellites GNSS - RTCM - RTK. Moritz Lauwiner / Dr. Werner Lienhart

LABORATOIRE NATIONAL DU BÂTIMENT ET DES TRAVAUX PUBLICS REPUBLIQUE D HAÏTI

NF26 Data warehouse et Outils Décisionnels Printemps 2010

ELEC2753 Electrotechnique examen du 11/06/2012

Exercice 1 Trouver l équation du plan tangent pour chaque surface ci-dessous, au point (x 0,y 0,z 0 ) donné :

Direction des Études et Synthèses Économiques Département des Comptes Nationaux Division des Comptes Trimestriels

Cours No 3 : Identificateurs, Fonctions, Premières Structures de contrôle.

SOCIETE NATIONALE DES CHEMINS DE FER BELGES SPECIFICATION TECHNIQUE

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours.

Nantes, le 22 décembre Monsieur le Directeur IONISOS Zone industrielle Les Chartinières DAGNEUX

Notice de montage de la sellette 150SP

SAGASAFE Mode d'emploi de la série DCP Version 7.0

Transcription:

Titre : SSLV110 - Fissure elliptique dans un milieu infini Date : 20/10/2016 Page : 1/17 SSLV110 - Fissure elliptique dans un milieu infini Résumé : Il s'agit d'un test en statique pour un problème tridimensionnel. Ce test permet de calculer le taux de restitution d'énergie global et local sur le fond de fissure par la méthode thêta (commande CALC_G). Les rayons des couronnes d'intégration sont variables le long de la fissure, et le taux de restitution d'énergie local est calculé suivant 3 méthodes différentes (LEGENDRE, et LAGRANGE). L'intérêt du test est la validation de la méthode thêta en 3D et des points suivants : comparaison des résultats avec une solution analytique, stabilité des résultats suivant les couronnes d'intégration, comparaison entre 3 méthodes différentes pour le calcul de G local, 2 cas de chargements équivalents (pression répartie et chargement volumique). Ce test contient 5 modélisations différentes. La modélisation E est une validation informatique de la prise en compte de différents chargements appliqués sur les lèvres de la fissure dans le calcul de G. La modélisation F teste le calcul de K1 pour une fissure non maillée (méthode X-FEM). Elle permet aussi de comparer les erreurs commises sur le calcul de K1 avec l opérateur POST_K1_K2_K3 ou l opérateur CALC_G. La modélisation G permet de valider le calcul de facteur d'intensité des contrainte équivalents en présence de zones cohésives (voir documentation [R7.02.18]), par l'opérateur CALC_G.

Titre : SSLV110 - Fissure elliptique dans un milieu infini Date : 20/10/2016 Page : 2/17 1 Problème de référence 1.1 Géométrie Il s'agit d'une fissure elliptique plongée dans un milieu supposé infini. On ne modélise qu'un huitième d'un parallélépipède : P Y Z X 120 mm 6 mm 0 1250 mm 25 mm 72,5 mm Figure 1.1-1: géométrie et fond de fissure elliptique 1.2 Propriétés matériaux E=210000.MPa =0.3 1.3 Conditions aux limites et chargements Symétrie par rapport aux 3 plans principaux : U x =0. dans le plan X =0. U Y =0. dans le plan Y =0. U Z =0. dans le plan Z =0. hors de la fissure Les conditions de chargements sont soit : P=1 MPa dans le plan Z =1250 mm (modélisations A et B ) soit :

Titre : SSLV110 - Fissure elliptique dans un milieu infini Date : 20/10/2016 Page : 3/17 FZ =8.10 4 N /mm 3 sur tous les éléments de volume (chargement équivalent au précédent) (modélisations C, D, F et G ).

Titre : SSLV110 - Fissure elliptique dans un milieu infini Date : 20/10/2016 Page : 4/17 2 Solution de référence 2.1 Méthode de calcul utilisée pour la solution de référence La solution de référence est une solution analytique issue de SIH [bib1] et [bib2]. On note que l angle désigne ici l angle paramétrique du point M (angle par rapport à l axe Ox du projeté de M sur le cercle de rayon b ) et non la coordonnée polaire de ce point. Ici : a=25 mm et b=6 mm, donc k=0,9707728 Les valeurs de l intégrale elliptique E k sont tabulées dans [bib3], en fonction de asin k qui vaut ici 76,11. On trouve alors : E k =1,0672. 1 / 4 D où le facteur d intensité des contraintes en MPa. mm : K I =4.0680[ sin 2 b2 a ] 2 cos2 Puis, à partir de la formule d Irwin (déformation plane) : Le taux de restitution global de l énergie G ref se calcule par intégration de G : G ref =5,76.10 3 J /mm. 2.2 Bibliographie 1) G.C. SIH : Mathematical Theories of Brittle Fracture - FRACTURE, vol II - Academic Press - 1968 2) M.K. KASSIN et G.C. SIH : Three-dimensional stress distribution around an elliptical crack under arbitrary loadings J. Appl. Mech., 88, 601-611, 1966. 3) H. TADA, P.PARIS, G. IRWIN : The Stress Analysis of Cracks Handbook - Third Edition - ASM International - 2000

Titre : SSLV110 - Fissure elliptique dans un milieu infini Date : 20/10/2016 Page : 5/17 3 Modélisation A 3.1 Caractéristiques de la modélisation A=N01099 ( s=0. ) B=N01259 ( s=26.68 ) C= N01179 ( s=17.8 ; = / 4 ) Chargement : Pression unitaire répartie sur la face du bloc opposée au plan de la lèvre : P=1.MPa dans le plan Z =1250.mm. 3.2 Caractéristiques du maillage Nombre de nœuds : 1716 Nombre de mailles et types : 304 PENTA15 et 123 HEXA20 3.3 Grandeurs testées et résultats Les valeurs testées sont : le taux de restitution d'énergie global G, le taux de restitution d'énergie local g en tous les nœuds du fond de fissure. Le maillage ne comprend qu une des lèvres de la fissure, il faut donc utiliser le mot-clé SYME pour multiplier automatiquement par 2 dans le calcul Aster le taux de restitution de l énergie calculé par extension virtuelle de la lèvre unique. De même, le G global calculé ici correspond au quart du G de référence défini précédemment, seul un huitième de parallélépipède étant représenté. Identification Référence % tolérance G Couronne C 1 1.44 10 3-2.1 G Couronne C 2 1.44 10 3 0.8 G Couronne C 3 1.44 10 3-1.1 g A couronne C 1 ( LEGENDRE ) 7.171 10-5 -4.8 g A couronne C 2 ( LEGENDRE ) 7.171 10-5 0.95 g A couronne C 3 ( LEGENDRE ) 7.171 10-5 -4.3 g B couronne C 1 ( LEGENDRE ) 1.721 10-5 -13.8 g B couronne C 2 ( LEGENDRE ) 1.721 10-5 -8.7 g B couronne C 3 ( LEGENDRE ) 1.721 10-5 -6.9 g C couronne C 1 ( LEGENDRE ) 5.215 10-5 -4.3 g C couronne C 2 ( LEGENDRE ) 5.215 10-5 -1.7 g C couronne C 3 ( LEGENDRE ) 5.215 10-5 -3.9

Titre : SSLV110 - Fissure elliptique dans un milieu infini Date : 20/10/2016 Page : 6/17 3.4 Remarque Les résultats sont assez stables entre les couronnes sauf au point B où la variation de g s est plus grande et les résultats éloignés de la solution de référence. On peut expliquer cet écart par le maillage de qualité médiocre.

Titre : SSLV110 - Fissure elliptique dans un milieu infini Date : 20/10/2016 Page : 7/17 4 Modélisation B 4.1 Caractéristiques de la modélisation A=N01099 ( s=0. ) B=N01259 ( s=26.68 ) C= N01179 ( s=17.8 ) Chargement : Pression unitaire répartie sur la face du bloc opposée au plan de la lèvre : P=1 MPa dans le plan Z =1250 mm. 4.2 Caractéristiques du maillage Nombre de nœuds : 1716 Nombre de mailles et types : 304 PENTA15 et 123 HEXA20 4.3 Grandeurs testées et résultats Les valeurs testées sont : le taux de restitution d'énergie global G, le taux de restitution d'énergie local g en tous les nœuds du fond de fissure. Le maillage ne comprend qu une des lèvres de la fissure, il faut donc utiliser le mot-clé SYME pour multiplier automatiquement par 2 dans le calcul Aster le taux de restitution de l énergie calculé par extension virtuelle de la lèvre unique. De même, le G global calculé ici correspond au quart du G de référence défini précédemment, seul un huitième de parallélépipède étant représenté. Identification Référence % tolérance G Couronne C 1 1.44 10 3-2.1 G Couronne C 2 1.44 10 3 0.8 G Couronne C 3 1.44 10 3-1.1 g A couronne C 1 7.171 10-5 -0.7 g A couronne C 2 7.171 10-5 3.9 g A couronne C_ 3 7.171 10-5 3.6 g B couronne C 1 1.721 10-5 -6.6 g B couronne C 2 1.721 10-5 -3.4 g B couronne C 3 1.721 10-5 -0.9 g C couronne C 1 5.215 10-5 -4.5 g C couronne C 2 5.215 10-5 -2.3 g C couronne C 3 5.215 10-5 -3.9

Titre : SSLV110 - Fissure elliptique dans un milieu infini Date : 20/10/2016 Page : 8/17 Remarque Les résultats sont meilleurs que dans la modélisation A au point B, mais la disparité entre les couronnes reste forte.

Titre : SSLV110 - Fissure elliptique dans un milieu infini Date : 20/10/2016 Page : 9/17 5 Modélisation D 5.1 Caractéristiques de la modélisation A=N01099 ( s=0. ) B=N01259 ( s=26.68 ) C= N01179 ( s=17.8 ) Chargement : Force volumique Fz équivalente à une pression unitaire répartie sur la face du bloc opposée au plan de la lèvre : FORCE_INTERNE : FZ = 8.10 4 N / mm 3 sur tous les éléments de volume. 5.2 Caractéristiques du maillage Nombre de nœuds : 1716 Nombre de mailles et types : 304 PENTA15 et 123 HEXA20 5.3 Grandeurs testées et résultats Les valeurs testées sont : le taux de restitution d'énergie global G, le taux de restitution d'énergie local g en tous les nœuds du fond de fissure. Le maillage ne comprend qu une des lèvres de la fissure, il faut donc utiliser le mot-clé SYME pour multiplier automatiquement par 2 dans le calcul Aster le taux de restitution de l énergie calculé par extension virtuelle de la lèvre unique. De même, le G global calculé ici correspond au quart du G de référence défini précédemment, seul un huitième de parallélépipède étant représenté. Identification Référence % tolérance G Couronne C 1 1.44 10 3-0.2 G Couronne C 2 1.44 10 3 2.7 G Couronne C 3 1.44 10 3 0.7 g A couronne C 1 7.171 10-5 1.2 g A couronne C 2 7.171 10-5 5.9 g A couronne C 3 7.171 10-5 5.7 g B couronne C 1 1.721 10-5 4.9 g B couronne C 2 1.721 10-5 1.7 g B couronne C 3 1.721 10-5 0.7 g C couronne C 1 5.215 10-5 2.7 g C couronne C 2 5.215 10-5 0.4 g C couronne C 3 5.215 10-5 2.1

Titre : SSLV110 - Fissure elliptique dans un milieu infini Date : 20/10/2016 Page : 10/17 Remarque Les résultats sont meilleurs que dans la modélisation C au point B.

Titre : SSLV110 - Fissure elliptique dans un milieu infini Date : 20/10/2016 Page : 11/17 6 Modélisation E Le maillage est le même que celui de la modélisation D. Le but de cette modélisation est uniquement informatique : tester que la commande CALC_G fonctionne bien pour des charges de pression sur les lèvres de la fissure. La pression est modélisée de 3 manières différentes : une pression fonction (AFFE_CHAR_MECA_F / PRES_REP), une force répartie constante (AFFE_CHAR_MECA / FORCE_FACE) et une force répartie fonction (AFFE_CHAR_MECA_F / FORCE_FACE). À noter qu'une seule résolution mécanique est effectuée avec une charge de pression constante, et que les 3 différentes charges détaillées ci-dessus sont transmises à 3 CALC_G différents via le mot-clé EXCIT. 6.1 Grandeurs testées et résultats Les valeurs testées sont : le taux de restitution d'énergie global G, le taux de restitution d'énergie local g au nœud A du fond de fissure (en s=0 ). Le choix des couronnes pour la méthode thêta est celui de la couronne n 2 de la modélisation D (couronne C 2 ). Le G global calculé ici correspond au quart du G de référence défini précédemment car le chargement est symétrique. Identification Type de référence Valeur de référence Tolérance G pression fonction 'ANALYTIQUE' 1,44 10 3 1,00% G pression fonction 'NON_REGRESSION' 1,449052 10 3 10 4 % G force constante 'AUTRE_ASTER' 1,449052 10 3 10 4 % G force fonction 'AUTRE_ASTER' 1,449052 10 3 10 4 % g A pression fonction 'ANALYTIQUE' 7,16 10 5 3,00% g A pression fonction 'NON_REGRESSION' 6,98287 10 5 10 4 % g A force constante 'AUTRE_ASTER' 6,98287 10 5 10 4 % g A force fonction 'AUTRE_ASTER' 6,98287 10 5 10 4 %

Titre : SSLV110 - Fissure elliptique dans un milieu infini Date : 20/10/2016 Page : 12/17 7 Modélisation F 7.1 Caractéristiques de la modélisation Dans cette modélisation, la fissure n'est pas maillée. On utilise la méthode X-FEM. Compte tenu des symétries du problème, il est possible de ne représenter qu'un huitième de la structure (comme cela est fait dans la modélisation A). Cependant, avec la méthode X-FEM, il n'est pas possible de représenter une fissure qui se situe dans un plan de symétrie (sur la bord du domaine modélisé). On modélise donc dans cette modélisation un quart de la structure, c'est-à-dire une portion de 90 de l'ellipse. Le maillage est composé de mailles HEXA8, uniformément réparties suivant les axes X et Y et réparties en progression géométrique suivant l'axe Z de manière à ce que dans le plan Z =0, les mailles sont environ des cubes de coté 10 mm. Des conditions de symétrie sont appliquées sur les faces en X =0 et Y =0. Le mode rigide suivant l'axe Z est bloqué en bloquant le déplacement suivant Z du point situé en 0,0, 1250 mm. Chargement : Pression unitaire répartie sur les deux faces normales du bloc : P=1 MPa dans les plan Z =±1250 mm. 7.2 Caractéristiques du maillage Nombre de nœuds : 21000 Nombre de mailles et types : 13000 PENTA6 et 12500 HEXA8 (maillage linéaire) Figure 7.2-1 : maillage initial, vue d'ensemble

Titre : SSLV110 - Fissure elliptique dans un milieu infini Date : 20/10/2016 Page : 13/17 Figure 7.2-2: maillage initial, zoom dans le plan milieu Comme ce maillage initial est bien trop grossier pour un calcul précis des facteurs d'intensité de contraintes le long du fond du fissure, une procédure de raffinement automatique des mailles proches du fond de fissure est utilisée, telle que préconisée dans la documentation [U2.05.02]. La taille cible des mailles souhaité est b/9. Cela va induire 5 raffinements successifs. La taille des mailles du maillage ainsi raffiné est alors h=0,39 mm. Le maillage raffiné (celui sur lequel le calcul mécanique est effectué) a pour caractéristiques : 26484 noeuds 7720 TETRA4, 10650 PYRAM5 et 20080 HEXA8 Ce maillage induit 99 points le long du fond de fissure et compte-tenu des conditions de blocage 118404 équations dans le système à résoudre

Titre : SSLV110 - Fissure elliptique dans un milieu infini Date : 20/10/2016 Page : 14/17 Figure 7.2-3: maillage raffiné, zoom sur la zone proche de la fissure 7.3 Grandeurs testées et résultats Les valeurs testées sont les facteurs d intensité des contraintes K1 le long du fond de fissure, calculés soit par CALC_G, soit par POST_K1_K2_K3. Pour CALC_G, la couronne d'intégration vaut 2 h 4 h. Le lissage par défaut (Legendre) est utilisé. Pour POST_K1_K2_K3, l'abscisse curviligne maximale vaut 4 h. Afin de réduire les temps de calcul de POST_K1_K2_K3, on ne post-traite que sur 20 points répartis uniformément le long du fond de fissure. Notons que le temps de calcul pour le lissage Legendre de CALC_G est insensible à ce nombre. On teste les valeurs aux points A ( s=0 ) et B ( s=26,7 ). Identification Type de référence Valeur de référence Tolérance CALC_G : K1( A) 'ANALYTIQUE' 0,000 2,0% CALC_G : K1( B) 'ANALYTIQUE' 4,068 2,0% POST_K1_K2_K3 : K1( A) 'ANALYTIQUE' 0,000 6,0% POST_K1_K2_K3 : K1( B) 'ANALYTIQUE' 4,068 6,0% Pour l opérateur CALC_G, les lissages de type LAGRANGE ne permettent pas d avoir des résultats facilement exploitables ; un lissage de type LEGENDRE est donc à privilégier.

Titre : SSLV110 - Fissure elliptique dans un milieu infini Date : 20/10/2016 Page : 15/17

Titre : SSLV110 - Fissure elliptique dans un milieu infini Date : 20/10/2016 Page : 16/17 8 Modélisation G 8.1 Caractéristiques de la modélisation La géométrie et le chargement sont identiques à la modélisation F : un quart de la structure est modélisé, une pression est appliquée sur la face supérieure. Dans cette modélisation, la fissure initiale est maillée. Par rapport à la modélisation F, on introduit des zones cohésives dans le prolongement de la fissure. Ce prolongement est représenté par des level-sets, de sorte que la discontinuité est prise en compte par une modélisation XFEM, comme pour la modélisation F. La loi cohésive CZM_LIN_MIX est introduite dans ce modèle XFEM par la commande DEFI_CONTACT. Chargement : Pression unitaire répartie sur la face du bloc opposée au plan de la lèvre : P=1 MPa dans le plan Z =1250 mm. Les paramètres cohésifs sont choisis pour que ceci ait pour effet d'ouvrir quelques éléments cohésifs au voisinage du fond de fissure initiale: Pour ne pas avoir une rupture complète, mais simplement une dé-cohésion proche de la pointe de fissure initiale, on prend G c >G max, avec G max le G local maximal le long front, tout en conservant le même ordre de grandeur pour les deux valeurs. Dans notre cas, G c =2.5 10 4 N.mm 1 contre G max =7.2 10 5 N.mm 1. Pour tout de même observer une dé-cohésion au voisinage de la pointe, la taille caractéristique de la zone cohésive l c = E G c (1 ν 2 2 est choisie de sorte à couvrir quelques éléments tout en restant )σ c petite devant la taille de la structure h l c a. Dans ce cas test, pour réduire le temps de calcul, on a pris l c =14 mm, ce qui conduit à σ c =2MPa, à comparer avec des tailles typiques d'éléments h=1mm sur le petit côté de l'ellipse, et h=2 mm sur le grand côté. 8.2 Caractéristiques du maillage Nombre de nœuds : 4522 Nombre de mailles et types : 22300 TETRA4 8.3 Grandeurs testées et résultats Les valeurs testées sont les facteurs d intensité des contraintes équivalents K1 le long du fond de fissure, calculés par CALC_G. Afin d'obtenir un résultat régulier, on ne post-traite que sur 5 points répartis uniformément le long du fond de fissure (NB_POINT_FOND=5). On teste les valeurs aux points extrémités du front A ( s=0 ) et B ( s=26,7 ). Le lissage 'LAGRANGE' est utilisé pour θ et ' LAGRANGE_NO_NO' pour G. Identification Type de référence Valeur de référence Tolérance CALC_G : K1 A 'ANALYTIQUE' 0,000 4,0% CALC_G : K1 B 'ANALYTIQUE' 4,068 8,0% Remarque Pour ce test, il y a un écart de quelques pour-cents. La précision peut être améliorée en choisissant une zone cohésive de taille inférieure et en raffinant encore le maillage. Ceci n'a pas été fait ici pour que la modélisation puisse tourner en moins d'une minute.

Titre : SSLV110 - Fissure elliptique dans un milieu infini Date : 20/10/2016 Page : 17/17 9 Synthèse des résultats Calcul de G ou de K local : pour une fissure maillée, les 2 méthodes (LEGENDRE et LAGRANGE) donnent sensiblement les mêmes résultats (moins de 5 % d'erreur par rapport à la solution analytique) sauf au point B (point extrémité de l'ellipse sur le grand axe) où la méthode Lagrange est la plus précise ; cas de charge : les valeurs obtenues avec le chargement volumique sont légèrement supérieures à celles obtenues avec contraintes imposées (y compris pour les valeurs de G ). Les différences sont minimes et dues aux intégrations numériques différentes sur le terme de volume et le terme de bord ; la méthode X-FEM permet d évaluer les facteurs d intensité des contraintes K sur un maillage non fissuré avec une erreur inférieure à 10%.