LA QUALITÉ EN BIOCHIMIE -PRÉCISION ET EXACTITUDE



Documents pareils
Evaluation de la variabilité d'un système de mesure

Mesures et incertitudes

DÉTERMINATION DU POURCENTAGE EN ACIDE D UN VINAIGRE. Sommaire

Précision d un résultat et calculs d incertitudes

Chapitre 7 Les solutions colorées

DETERMINATION DE L INCERTITUDE DE MESURE POUR LES ANALYSES CHIMIQUES QUANTITATIVES

CAPTEURS - CHAINES DE MESURES

Nombres, mesures et incertitudes en sciences physiques et chimiques. Groupe des Sciences physiques et chimiques de l IGEN

La correction des erreurs d'enregistrement et de traitement comptables

JCGM 100:2008(F) GUM 1995 avec des corrections mineures. Évaluation des données de mesure Guide pour l expression de l incertitude de mesure

Observer TP Ondes CELERITE DES ONDES SONORES

(aq) sont colorées et donnent à la solution cette teinte violette, assimilable au magenta.»

Perrothon Sandrine UV Visible. Spectrophotométrie d'absorption moléculaire Étude et dosage de la vitamine B 6

FICHE 1 Fiche à destination des enseignants

259 VOLUMETRIE ET TITRATION DOSAGE DU NaOH DANS LE DESTOP

Cours de Métrologie & Assurance qualité

SP. 3. Concentration molaire exercices. Savoir son cours. Concentrations : Classement. Concentration encore. Dilution :

Classe : 1 ère STL Enseignement : Mesure et Instrumentation. d une mesure. Titre : mesure de concentration par spectrophotométrie

Site : mail : mennier@isnab.fr SUJET ES - session 2003 Page 1 68-(7(6VHVVLRQ

Exemple de cahier de laboratoire : cas du sujet 2014

Séries Statistiques Simples

Réseau SCEREN. Ce document a été numérisé par le CRDP de Bordeaux pour la. Base Nationale des Sujets d Examens de l enseignement professionnel.

Arrondissage des résultats de mesure. Nombre de chiffres significatifs

Trajet d'une recette payée par un tiers (2)

Matériel de laboratoire

1. Vocabulaire : Introduction au tableau élémentaire

Bleu comme un Schtroumpf Démarche d investigation

1. Contexte général page Le compte auprès de la BCGE...page La procuration 2.2 Les accès e-banking 2.3 Le bon de retrait 2.

Meine Flüssigkeit ist gefärbt*, comme disaient August Beer ( ) et Johann Heinrich Lambert ( )

Les solutions. Chapitre 2 - Modèle. 1 Définitions sur les solutions. 2 Concentration massique d une solution. 3 Dilution d une solution

PRISE EN MAIN DU SPECTROPHOTOMETRE UV-VISIBLE SHIMADZU U.V. 240

Tutoriel - flux de facturation

Chapitre 1 : Évolution COURS

L'INTÉRÊT COMPOSÉ. 2.1 Généralités. 2.2 Taux

TP n 1: Initiation au laboratoire

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :

Epreuve écrite d admissibilité du Mercredi 15 Janvier 2014 DOSSIER REPONSE

POLITIQUE ET LIGNES DIRECTRICES EN MATIERE DE TRACABILITE DES RESULTATS DE MESURE

Dosage des sucres par CLHP dans les vins (Oeno 23/2003)

Les mesures à l'inclinomètre

Mesures calorimétriques

La spectrophotométrie

RÉSOLUTION DE SYSTÈMES À DEUX INCONNUES

2. RAPPEL DES TECHNIQUES DE CALCUL DANS R

Complément d information concernant la fiche de concordance

CORRECTION TP Multimètres - Mesures de résistances - I. Mesure directe de résistors avec ohmmètre - comparaison de deux instruments de mesure

Statistique descriptive. Fabrice MAZEROLLE Professeur de sciences économiques Université Paul Cézanne. Notes de cours

APPLICATION QMS AMIKACINE Système intégré Ortho Clinical Diagnostics VITROS 5600, systèmes de chimie VITROS 5,1 FS et 4600

Initiation à la compta : le trajet d'une recette payée en chèque -5-23/04/2004

Mesure du volume d'un gaz, à pression atmosphérique, en fonction de la température. Détermination expérimentale du zéro absolu.

GdsCompta. Logiciel de comptabilité générale

Indicateur i 20. Manuel d utilisation

SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique

Chapitre 1 I:\ Soyez courageux!

Sujet. calculatrice: autorisée durée: 4 heures

A chaque couleur dans l'air correspond une longueur d'onde.

Spectrophotométrie - Dilution 1 Dilution et facteur de dilution. 1.1 Mode opératoire :

Introduction à la Statistique Inférentielle

SUIVI CINETIQUE PAR SPECTROPHOTOMETRIE (CORRECTION)

Bureau : 238 Tel : dominique.muller@upmf-grenoble.fr

Quelles sont les principales formules utiles pour l étude de cas de vente?

APPLICATION DU SCN A L'EVALUATION DES REVENUS NON DECLARES DES MENAGES

TESTS D'HYPOTHESES Etude d'un exemple

4. Conditionnement et conservation de l échantillon

1 Culture Cellulaire Microplaques 2 HTS- 3 Immunologie/ HLA 4 Microbiologie/ Bactériologie Containers 5 Tubes/ 6 Pipetage

Représentation des Nombres

C2 - DOSAGE ACIDE FAIBLE - BASE FORTE

1 Complément sur la projection du nuage des individus

SOFI Gestion+ Version 5.4. Echanges de données informatiques Spicers Sofi gestion+ Groupements. SOFI Informatique. Actualisé le

pka D UN INDICATEUR COLORE

Introduction aux sondages

SVE 222 & PCL-442. Fascicule de Travaux Pratiques

Dérivation CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES

FORMULES DE CALCUL. Prix = PV TTC = PV HT x (1 + taux de TVA) TVA = PV HT x taux de TVA PV HT = PV TTC 1 + taux de TVA

L affectation du résultat

Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire

Evry Crédits vous informe : la réglementation bancaire

BREVET DE TECHNICIEN SUPÉRIEUR QUALITÉ DANS LES INDUSTRIES ALIMENTAIRES ET LES BIO-INDUSTRIES

LABORATOIRES DE CHIMIE Techniques de dosage

évaluation des risques professionnels

ANALYSE DU BESOIN. L ANALYSE FONCTIONNELLE par Jean-Marie VIRELY & all (ENS Cachan) Cette présentation décrit l outil «Analyse du Besoin».

Taux d évolution moyen.

SOMMAIRE. Travailler avec les requêtes... 3

STAGE IREM 0- Premiers pas en Python

BACCALAURÉAT PROFESSIONNEL EPREUVE DE TRAVAUX PRATIQUES DE SCIENCES PHYSIQUES SUJET A.1

TP01: Installation de Windows Server 2012

UEO11 COURS/TD 1. nombres entiers et réels codés en mémoire centrale. Caractères alphabétiques et caractères spéciaux.

INFO 2 : Traitement des images

6 ème FONCTIONS. Pratiquer une démarche scientifique et technologique. Capacités

Chapitre 4 : les stocks

Puissances d un nombre relatif

Module 02 - Leçon 04 : Evaluation des stocks

FRANCAIS ENGLISH DEUTSCH ITALIANO ESPANOL NEDERLANDS PORTUGUESES MANUEL UTILISATEUR USER S GUIDE BENUTZERHANDBUCH GUIDA PER L UTENTE GUIA DEL USUARIO

B2i. LE B2i Brevet Informatique et Internet. Niveau : tous. 1 S'approprier un environnement informatique de travail. b2ico1.odt.

Cylindre interrupteur

TRAVAUX PRATIQUESDE BIOCHIMIE L1

Statistique Descriptive Élémentaire

Figure 1 Différents éléments influençant les mesures de seuil réalisées en champ visuel

LE RÔLE DE LA STATISTIQUE DANS UN PROCESSUS DE PRISE DE DÉCISION

β-galactosidase A.2.1) à 37 C, en tampon phosphate de sodium 0,1 mol/l ph 7 plus 2-mercaptoéthanol 1 mmol/l et MgCl 2 1 mmol/l (tampon P)

Transcription:

LA QUALITÉ EN BIOCHIMIE -PRÉCISION ET EXACTITUDE I. Incidences d'une mauvaise qualité dans le domaine industriel - Mise en vente de produits de mauvaise qualité. - Mécontentement des clients. - Perte de temps et d'argent. - Fermeture de l'entreprise. II. Les facteurs liés à une mauvaise qualité en biochimie 2.1. Les erreurs liées au manipulateur (facteur humain) Ces erreurs sont plus ou moins grossières et évidentes. Par exemples : - non respect du protocole. - utilisation incorrecte du matériel. - lecture erronée d'un ménisque. - imperfection des sens du manipulateur... Ces erreurs peuvent et doivent être éliminées par un respect des "bonnes pratiques de laboratoire" à tous les stades : - Avant la manipulation : Lecture attentive du protocole : schématisation des étapes opératoires, organisation dans le temps, calcul des prise d'essais, identification des points critiques de la manipulation... Evaluation des risques : inventaire et contrôle des réactifs employés (lecture des pictogrammes, étiquetage, concentrations). - Pendant la manipulation : Choix et utilisation correcte du matériel et des appareils appropriés, Mesure des risques, Utilisation du carnet de laboratoire : noter les résultats expérimentaux, les anomalies repérées (en cas d'anomalies, en rechercher les causes). - Après la manipulation : Exploitation et analyse critique des résultats, Expression correcte du résultat final de l'analyse. 2.2. Les erreurs liées aux matériels et aux réactifs utilisés Ces erreurs peuvent être : - aléatoires et inévitables. - systématiques et évitables si elles sont décelées à temps. Elles affectent la précision (ou fidélité) de l'analyse et d'autres part l'exactitude (ou justesse). 2.2.1. Les erreurs aléatoires - notion de précision Exemples : incertitude sur la mesure d'un volume, instabilité du thermostat... Ces erreurs affectent la précision (ou fidélité) du dosage. Elles se caractérisent par une dispersion des résultats expérimentaux lors de mesures répétées sur le même échantillon. Il s'agit donc 1

d'erreurs par excès ou par défaut qui se produisent accidentellement. Définition de la précision : C'est l'accord, dans une zone définie de valeurs à mesurer, entre des mesures répétées effectuées sur un même échantillon dans des conditions constantes et déterminées. Signification : elle reflète la reproductibilité c'est-à-dire la concordance entre les mesures effectuées sur un même échantillon dans les mêmes conditions, au cours d'une ou plusieurs séries de mesures, d'un jour à l'autre ou dans la même journée. Deux paramètres permettent d'évaluer la précision : - l'écart-type (σ ou s) ou imprécision absolue = racine carrée de la variance (V), la variance chiffrant la dispersion des résultats autour de la moyenne. σ = Σ(Xi - Xmoy) 2 / (n-1) - le coefficient de variation (CV) ou imprécision relative = Ecart-type exprimé en pourcentage de la moyenne. Très utilisé en Bioch CV = σ /Xmoy x100 Plus la valeur du CV est petite, plus la précision d'une mesure est grande. Les limites de confiance d'un résultat sont situées dans la zone : moyenne ± 2σ. En effet, d'après le doc 1, 95% des résultats expérimentaux se trouvent dans l'intervalle ± 2σ. 2.2.2. Les erreurs systématiques - notion d'exactitude Elles peuvent être liées : - A la méthode utilisée : indicateur coloré virant avant la neutralisation (changer d'indicateur), réaction incomplète (changer la méthode),... - Aux produits : produit impur (utiliser des produits purs ou dont on connaît la teneur en impureté)... - Aux instruments défectueux : balances déréglées, volumes prélevés inexacts, burette sale (recalibrer, laver)... Ces erreurs affectent l'exactitude (ou justesse). Elles se caractérisent par une déviation des résultats expérimentaux, toujours dans le même sens, entre les valeurs trouvées (ou expérimentales ou mesurées) et les valeurs attendues (ou vraies, ou cibles). Ces erreurs sont évitables si elles sont décelées à temps par la qualification régulière des appareils (vérification si le fonctionnement est conforme). Définition de l'exactitude ou justesse : c'est la qualité de l'accord entre l'estimation de la valeur mesurée et la valeur vraie, en dehors des erreurs aléatoires. Elle nécessite d'inclure dans une série de mesure un contrôle connu traité dans les mêmes conditions. 2

Deux paramètres définissent l'exactitude : - l'inexactitude absolue = X valeurs expérimentales - X vraie - l'inexactitude relative = X valeurs expérimentales - X vraie x 100 X vraie Exactitude et précision sont donc des paramètres différents : des mesures peuvent être très précises mais inexactes suite au défaut d'un appareil par exemple. III- L'incertitude dans les mesures Suivant le matériel dont on dispose, la mesure d'une même grandeur peut être réalisée avec une imprécision plus ou moins grande. Cette imprécision est due à la fabrication de l'instrument de mesure et ne dépend pas du manipulateur. 3.1. Précision du matériel de laboratoire Les limites de précision d'un instrument de mesure sont indiquées par le fabricant. Par exemple pour la verrerie, elles dépendent de la classe A ou B, du volume délivré, de la graduation...(cf. doc.2) 3.2. Notions sur les incertitudes 3.2.1. Définitions L'incertitude absolue (ou erreur absolue) : on appelle incertitude absolue sur la mesure de la grandeur A ( A), la valeur maximale "a" dont on peut se tromper (par excès ou par défaut). C'est un nombre concret qui s'exprime avec l'unité de la grandeur mesurée. valeur mesurée - a < A < valeur mesurée + a A = valeur mesurée ± a A = valeur mesurée ± A Exemple : on veut prélever 10 ml avec une pipette jaugée de 10 ml. - elle présente une incertitude absolue de 0,02 ml - l'incertitude absolue sur la pipette s'écrit : V = 0,02 ml - le volume réel prélevé avec cette pipette est compris dans l'intervalle suivant : (10 0,02) ml < volume réel < (10 + 0,02) soit 9,98 ml < V < 10,02 ml ou V = 10,00 ± 0,02 ml 3

- la mesure est donnée avec le même nombre de décimales que l'incertitude absolue, car elle porte sur le dernier chiffre significatif. - les deux nombres sont donnés dans la même unité. L'incertitude relative ( ou erreur relative) est le rapport de l'erreur absolue a sur la grandeur A que l'on veut mesurée : a / A. C'est un nombre abstrait que l'on donne en %. C'est de cette incertitude relative que dépend la précision. Incertitude relative = ( A/A) x 100 Exemple : Plusieurs mesures faites à la burette de 25 ml, classe A, ont donné les résultats suivants : V1 = 0,5 ml V2 = 6,35 ml V3 = 16,90 ml. Calculer l'incertitude relative de chacun des volumes en %. V = 0,03mL V/V1 = 6% V/V2 = 0,5% V/V3 = 0,2% On remarque que plus le volume mesuré est grand, plus l'incertitude relative est faible. L'incertitude renseigne sur l'imprécision de la mesure. Plus la mesure est imprécise, plus l'incertitude relative est forte. Par conséquent, il faut éviter de mesurer des volumes trop faibles avec une burette de 25 ml. 3.2.2. Théorème sur les incertitudes Théorème de l'incertitude absolue sur les sommes et les différences : L'incertitude absolue sur une somme ou une différence est la somme des incertitudes absolues de chacun des termes. X = X1 + X2 Y = Y1 - Y2 X = X1 + X2 Y = Y1 + Y2 Théorème de l'incertitude relative sur les produits et les quotients : L'incertitude relative sur les produits et les quotients est la somme des incertitudes relative de chacun des termes. Z = Z1 x Z2 W = W1/W2 Z/Z = Z1/Z1 + Z2/Z2 W/W = W1/W1 + W2/W2 Application au choix du matériel utilisé : Exercice : Quel matériel choisir pour réaliser une dilution au 1/5 d'un jus de fruit? Vous avez à votre disposition : - des fioles jaugées de 5, 10 et 50 ml. - des pipettes jaugées de 1, 2 et 10 ml. 4

Pour cela, on va calculer l'incertitude relative pesant sur cette dilution pour chaque fiole jaugée, on les compare et on choisira le matériel le plus précis. d = dilution V1 = volume de jus de fruit prélevé V2 = volume de la fiole jaugée utilisée d = V1/V2 => d/d = V1/V1 + V2/V2 V1 = incertitude absolue sur la pipette utilisée V2 = incertitude absolue sur la fiole utilisée Cas 1 : fiole jaugée de 5 ml et pipette jaugée de 1 ml V1 = 1 ml V2 = 5 ml V1 = 0,007 ml => d/d = 1,2% V2 = 0,025 ml Cas 2 : fiole jaugée de 10 ml et pipette jaugée de 2 ml V1 = 2 ml V2 = 10 ml V1 = 0,01 ml => d/d = 0,75% V2 = 0,025 ml Cas 3 : fiole jaugée de 50 ml et pipette jaugée de 10 ml V1 = 10 ml V2 = 50 ml V1 = 0,02 ml => d/d = 0,32% V2 = 0,06 ml Plus la mesure est imprécise, plus l'incertitude relative est forte. Par conséquent, pour réaliser cette dilution, il vaut mieux utiliser le matériel du cas 3. IV- Expression d'un résultat avec l'imprécision L'imprécision peut être fournie par : - l'incertitude relative : ne peut s'appliquer qu'aux dosages simples ne comptant qu'un petit nombre de mesures physiques. - le coefficient de variation : donnée la plus utilisée. Dans les deux cas, la démarche est la même. 4.1.Expression du résultat en fonction de l'imprécision fournie par le coefficient de variation (99,99 % des TP de BTS!) donc à connaître par Soit 2 résultats R1 = 0,05051 mol/l et R2 = 0,05060 mol/l CV = 0,5% 1-Calculer l'écart-type (2σ) : 2σ = 2xCVxRmoyenne/100 2σ = 2x0,5x 0,050555/100 = 0,0005055 mol/l 5

Attention, 2σ a TOUJOURS une unité = la même que celle de R1 et R2. Rem : pour le calcul de 2σ, quand on écrit CV/100, cela signifie que l'on prend CV = 0,5 non 0,5% sinon cela revient à diviser CV par 10 000! 2- Arrondir 2σ avec 1 seul chiffre significatif par excès ou défaut : En effet, 95% des résultats expérimentaux se trouvent dans l'intervalle ± 2σ soit entre 0,0501 et 0,0511 mol/l. Il serait donc aberrant d'exprimer le résultat avec plus de chiffres significatifs. Rappels de mathématiques: - On arrondit par excès quand le dernier chiffre du résultat est 5. - On arrondit par défaut quand le dernier chiffre du résultat est < 5. - le 0 n'est pas un chiffre significatif quand il est placé AVANT une chiffre unitaire. Ex : 0,005051 : les 3 premiers 0 ne sont pas significatifs. Conclusion : on peut utiliser la notation scientifique pour ne pas s'y perdre: 0, 0,005051 = 5,051. 10-3. Pour notre exemple, 2σ 0,0005 mol/l 3- Vérifier si les résultats sont concordants donc valides : Si R1 - R2 2σ, les résultats sont incompatibles ou non concordants, il faut faire un troisième essai. Dans les cas où cela n'est pas possible (par manque de temps en général), proposer alors une moyenne avec 2 chiffres significatifs seulement. Dans ce cas, R 5,1. 10-2 mol/l. Si R1 - R2 < 2σ, les résultats sont compatibles ou concordants, on peut faire la moyenne des résultats. Ici, R1 - R2 = 1 10-4 < 0,0005 donc concordants. Rem : en BTS QIABI, dans de nombreux sujets d'examen, Quand vous rencontrerez cette formule, vous n'aurez pas besoin de revérifier si les résultats sont concordants. Par contre, il vous faudra toujours calculer le 2σ pour l'expression finale du résultat. Si vous ne trouvez pas cette formule, vous effectuez la démarche classique. 4- Expression finale des résultats en fonction de l'imprécision absolue (2σ) : LE PLUS IMPORTANT car c'est le résultat qui sera noté! - Faire la moyenne de R1 et R2. - Mettre le même nombre de chiffres après la virgule pour la moyenne que pour le 2σ et donc arrondir par excès ou par défaut la moyenne. - Donner le résultat final : R = 0,0506 ± 0,0005 mol/l Rem : si le résultat a moins de chiffres que le 2σ, alors on rajoute un 0. Ex : R = 0,05 mol/l et 2σ = 0,0005 mol/l. Dans ce cas, on donne R = 0,0500 ± 0,0005 mol/l 6

4.2.Expression du résultat en fonction de l'imprécision fournie par l'incertitude relative (0,001% des cas rencontrés en TP de BTS) : Soit 2 résultats R1 = 0,054821 mol/l et R2 = 0,055574 mol/l Incertitude relative R/R = 1% 1- Calculer l'incertitude absolue ( R) sur chaque résultat : R1= 0,000548 mol/l R2=0,000555 mol/l 2- Arrondir R par excès avec 1 seul chiffre significatif : R = 0,0006 mol/l 3- Ecrire chaque résultat en fonction de son incertitude absolue : - même nombre de chiffre après la virgule - arrondir par excès ou par défaut R1 = 0,0548 mol/l ± 0,0006 mol/l R2 = 0,0556 mol/l ± 0,0006 mol/l 4- Vérifier si les résultats sont concordants : Si R1 - R2 2σ : les résultats sont incompatibles, il faut faire un troisième essai. Si R1 - R2 2σ : les résultats sont compatibles, on peut faire la moyenne des résultats. Ici, R1 - R2 = 8 10-4 < 2 x 0,0006 concordants. 5- Expression finale des résultats : R = 0,0552 mol/l ± 0,0006 mol/l 7