SUJET 2014_1A Corrigé Question de cours Optique ondulatoire 1) Onde = oscillation (vibration) qui se propage dans l espace/phénomène de propagation de perturbation sans transport de matière. Onde électromagnétique = vibrations du champ électrique et magnétique (les champs sont inséparables). Onde transversale = la direction des oscillations est perpendiculaire à la direction de propagation. Visible = que l on perçoit avec les yeux. 2) a) La longueur d onde est la distance parcourue par l onde pendant une période. (La longueur d onde est la plus petite distance, mesurée en direction de propagation, entre deux point qui vibrent en phase.) b) De la première définition on obtient : = =. c) Le longueures d onde des ondes visibles s étallent entre 400 nm et 800 nm, ce qui donne pour les fréquences : 400 ;800, c = 3 10 8 m/s, donc 3,75 10 ; 7,5 10. 3) expérience de Young a) Les interférences consistent en une superposition des ondes lumineuses qui donne une figure stable dans le temps. b) Les sources sont synchrones (même fréquence) et cohérentes. c) Franges équidistantes. (image) d) Point brillant = superposition constructive, les ondes arrivent en phase. =, où k est un entier naturel (ou bien =2 ", où k est un entier). e) Pour voir une lumière, il faut qu elle arrive dans les yeux. Les ondes passent tout droit vers l écran en se superposant, mais ce n est que l écran qui les diffuse. 4) Les ondes se diffractent sur l ouverture. Elles pénètrent dans des régions d ombre géométrique, derrière l obstacle, le faisceau devient divergent. La diffraction est d autant plus importante que l ouverture est petite. Le phénomène révèle la nature ondulatoire de la lumière. Au total : 4 + 2 + 3 + 8 + 3 = 20 points
Corrigé Exercice à caractère expérimental Nucléaire 1) En appliquant les lois de conservation du nombre de charge et du nombre de masse : % $# ( % ' + % * + + 2 + s 2) a) Voici le tableau complet : t (min) 0 20 40 60 80 100 120 A(t)/A 0 1 0,88 0,78 0,69 0,6 0,53 0,47 y = -ln (A(t)/A 0 )) 0,00 0,13 0,25 0,37 0,51 0,63 0,76 b) Voici la représentation graphique : 0,80 0,70 Décroissance radioactive 0,60 0,50 y = 0,0063x R² = 0,9997 y 0,40 0,30 0,20 0,10 0,00 0 20 40 60 80 100 120 140 t (min) L échelle minimale est 1 cm pour 10 minutes et 1 cm pour 0,1. L échelle plus grande : 2 cm pour 10 minutes et 2 cm pour 0,1. 4 points c) La relation recherchée à partir du graphe (entre y et t) est une proportionnalité directe. On voit que les points sont alignés, que la droite passe par l origine et qu il s agit d une fonction linéaire de l équation : y = k t avec k = 0,0063 min -1. Ce qui représente aussi 1,1 10-4 s -1. Cette valeur doit être déterminée à partir des coordonnées d un point placé sur la droite obtenue. 3) On voit que, =ln/ 0123 0 4 5= 7. En utilisant la définition du logaritme on peut obtenir : 0123 0 4 =' 892. Ce qui nous permet finalement écrire :173 =: ( ' 892. Par comparaison avec la relation qui décrit la courbe de décroissance radioactive :173 =: ( ' 8"2, on identifie que la constante k n est rien d autre que la constante radioactive λ. Son unité s -1 le justifie.
4) La demi-vie t 1/2 est la durée après laquelle il ne reste que la moitié des noyaux radioactifs initialement présents. L expression de la constante radioactive λ en fonction de la demi-vie t 1/2 est la suivante : =;2 7 /. 5) La demi-vie 7 / =;2 0,0063=110?. 2 point 6) La valeur de t 1/2 est petite et c est bon parce que ainsi la radioactivité de la dose administrée au patient décroît rapidement. Au total : 3 + 7 + 3 + 3 + 2 + 2 = 20 points
Corrigé Problème Eruption volcanique 1) La pierre après la projection est soumise seulement à son poids. Les frottements d air sont d après le texte négligés et la pierre n est pas en contacte avec un autre objet. 2) Si la seule force appliquée à la pierre est le poids et le référentiel est supposé galiléen, nous pouvons utiliser la 2 e loi de Newton pour exprimer les composantes de l accélération : @#A +B2 =CA =DEA =FA Le vecteur accélération est donc égal au vecteur champ de pesanteur. Comme on utilise un repère des coordonnées cartésiennes (voir l énoncé), les composantes du vecteur accélération sont suivantes : CA =FA =G 0 F H. y O x 3) Pour obtenir les équations horaires, il faut premièrement exprimer les conditions initiales, cela veut dire la position et la vitesse initiales. En regardant le schéma on a : IA ( =/ 0 h 5 et A ( =/ (cosn ( sinn 5. Les équations horaires peuvent être obtenues comme les fonctions primitives des composantes de l accélération. CA =G 0 F H, A =/ ( cosn ( cosn+0 F7+ ( sinn 5 et IA =P F7 + ( sinn+h Q. 4 points 4) L équation de la trajectoire y=f(x) peut être exprimée des équations horaires en éliminant le temps. De la première équation : 7 = B. Et finalement on obtient de la deuxième W 4 RSTU équation :, =1V3 = X 4 1RSTU3 XV +VtanN+h. Cette équation est un polynôme de second degré, alors la trajectoire est une parabole. 5) Le point B appartient à la trajectoire, donc ces coordonnées [19400 ;0 3 doivent vérifier l équation de la trajectoire. Si on exprime la valeur de la vitesse initiale de l équation de la trajectoire, on obtient : ( =] 1RSTU3 WB X X 1^8B_`aU8b3 =256 /c.
6) Le mouvement de la pierre dans la direction horizontale est uniforme, alors le temps nécessaire pour que la pierre arrive au point B est égal à : 7 d = B =44,1 c. 4 RSTU 7) Pour déterminer la vitesse d impact, il suffit de savoir qu en coordonnées cartésiennes =] B +^. Les coordonnées du vecteur vitesse peuvent être calculées directement car on a les expressions de ces composantes à n importe quel instant de date et la pierre arrive au point B à t = 44,1 s. Après avoir fait l application numérique, on a v B = 354 m/s. 8) Si on veut déterminer l altitude maximale, il faut connaître l instant de date pour lequel l altitude est maximale. C est bien au point pour lequel v y = 0. Donc 7 efb = 4TgaU =15,2 c. W Ensuite on applique cet instant de date dans la deuxième équation horaire et on obtient y(t max ) = 4435 m. Cela signifie que l hélicoptère qui vole à 4500 m ne peut pas être touchée par la pierre. Au total : 1 + 2 + 4 + 3 + 3 + 2 + 3 + 2 = 20 points
Corrigé Document IceCube 1. Les propriétés des neutrinos citées dans le texte sont : les neutrinos ont une grande énergie, une masse très faible, ne veulent pas réagir avec la matière et oscillent (se transforment). 2. Ils trouvent leur origine dans la radioactivité terrestre, dans les réactions de fusion au sein du Soleil et dans la désintégration de rayons cosmiques. Des sources astrophysiques sont également connues (dans l espace lointain, hors système solaire). 3. Le nom de l expérience vient de la forme du dispositif expérimental. Il s agit d un cube de glace de côté égal à 1 km(comme ceux que l on utilise pour l aperitif. 4. Tout d abord il y a interaction entre un neutrino et la glace ce qui produit une particule chargée ; ensuite cette partcicule peut-émettre un rayonnement qui est alors détecté dans le domaine des radiations visibles. 5. On ne sait pas exactement mais il est possible qu ils proviennent d autres galaxies ou de trous noirs. Ces neutrinos ont une énergie supérieure aux neutrinos détectés auparavant. 6. Il s agit des rayonnemetns suivants : 1 La lumière visible, 2 Rayons X, 3 infrarouge, 4 - rayons cosmiques et 5 neutrinos de très haute énergie 7. Une particule émet un rayonnement «Tcherenkov» si dans un milieu de propagation donné (comme ici dans la glace), elle se déplace plus vite que la lumière. Au total : 2 + 2 + 2 + 2 + 2 + 2 + 2 + 6 points pour la qualité de redaction
Corrigé QCM Champs 1A, 2A, 3B, 4D, 5B, 6C, 7C, 8C, 9A, 10D, 11D, 12A, 13D, 14C, 15B correct!