La fonction de transfert dans le domaine fréquentiel est obtenue en remplaçant s par jω, soit : (8.1)



Documents pareils
Erreur statique. Chapitre Définition

Automatique Linéaire 1 Travaux Dirigés 1A ISMIN

Analyse des Systèmes Asservis

Circuits RL et RC. Chapitre Inductance

SYSTEMES LINEAIRES DU PREMIER ORDRE

Exercices Alternatifs. Une fonction continue mais dérivable nulle part

Exercices Alternatifs. Une fonction continue mais dérivable nulle part

AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x =

Systèmes de transmission

FONCTION DE DEMANDE : REVENU ET PRIX

Automatique Linéaire 1 1A ISMIN

SYSTÈMES ASSERVIS CORRECTION

Cours de Systèmes Asservis

Automatique des systèmes linéaires continus

Exo7. Limites de fonctions. 1 Théorie. 2 Calculs

Fonctions homographiques

Représentation et analyse des systèmes linéaires. 1 Compléments sur l analyse fréquentielle des systèmes

Filtres passe-bas. On utilise les filtres passe-bas pour réduire l amplitude des composantes de fréquences supérieures à la celle de la coupure.

Notions d asservissements et de Régulations

Le théorème de Thalès et sa réciproque

Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 %

Chapitre 6. Fonction réelle d une variable réelle

LES ORDRES PERMANENTS

Bien lire l énoncé 2 fois avant de continuer - Méthodes et/ou Explications Réponses. Antécédents d un nombre par une fonction

Rapport de projet de fin d étude

La fonction exponentielle

Circuits intégrés micro-ondes

(Exemple ici de calcul pour une Ducati 748 biposto, et également pour un S2R1000, équipé d un disque acier en fond de cloche, et ressorts d origine)

Chapitre 7. Circuits Magnétiques et Inductance. 7.1 Introduction Production d un champ magnétique

DOMAIN NAME SYSTEM. CAILLET Mélanie. Tutoriel sur le DNS. Session Option SISR

A. N(p) B + C p. + D p2

Continuité et dérivabilité d une fonction

Développements limités, équivalents et calculs de limites

Université de La Rochelle. Réseaux TD n 6

Petite introduction à l utilisation de Matlab/Simulink pour l Automatique

L'ELASTICITE-PRIX I- QUAND LES PRIX VARIENT...

BACCALAURÉAT PROFESSIONNEL EPREUVE DE TRAVAUX PRATIQUES DE SCIENCES PHYSIQUES SUJET A.1

Voyez la réponse à cette question dans ce chapitre.

Réalisation de cartes vectorielles avec Word

Chapitre 2 Les ondes progressives périodiques

Dérivation : cours. Dérivation dans R

Mesures de temps de propagation de groupe sur convertisseurs de fréquence sans accès aux OL

Fonctions linéaires et affines. 1 Fonctions linéaires. 1.1 Vocabulaire. 1.2 Représentation graphique. 3eme

Module : systèmes asservis linéaires

avec des nombres entiers

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation )

Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé.

5.2 Théorème/Transformée de Fourier a) Théorème

G.P. DNS02 Septembre Réfraction...1 I.Préliminaires...1 II.Première partie...1 III.Deuxième partie...3. Réfraction

Université Mohammed Khidher Biskra A.U.: 2014/2015

Quels enseignements de l expérience française ( )

PROJET DE GESTION PORTEFEUILLE. Evaluation d une Stratégie de Trading

Vision industrielle et télédétection - Détection d ellipses. Guillaume Martinez 17 décembre 2007

Pôle Performance Industrielle Durable. Page 1 Rencontre SEE Le 20/05/2014 Lille. Innover

TD1 Signaux, énergie et puissance, signaux aléatoires

PLAN DE FORMATION COMPTABLE NOVEMBRE 2013

Chapitre 1 Régime transitoire dans les systèmes physiques

INTRODUCTION A L ELECTRONIQUE NUMERIQUE ECHANTILLONNAGE ET QUANTIFICATION I. ARCHITECTURE DE L ELECRONIQUE NUMERIQUE

Orientation professionnelle Charpentier bois

Cisco Certified Network Associate

Le calcul du barème d impôt à Genève

CA Mainframe Chorus for Security and Compliance Management version 2.0

BE-TME Questions série 0

L2T SMS RESELLER MANUEL DE CONFIGURATION ESPACE RESELLER AVERTISSEMENT

Dérivation : Résumé de cours et méthodes

L analyse boursière avec Scilab

Partie 1 - Séquence 3 Original d une fonction

Introduction à la présentation graphique avec xmgrace

Aide - mémoire gnuplot 4.0

Le transistor bipolaire. Page N 6 Tranlin

Méthode : On raisonnera tjs graphiquement avec 2 biens.

Infolettre #18 : Les graphiques avec Excel 2010

Suva Sécurité durant les loisirs Case postale, 6002 Lucerne. Renseignements Tél

choisir H 1 quand H 0 est vraie - fausse alarme

Oscillations libres des systèmes à deux degrés de liberté

GELE5222 Chapitre 9 : Antennes microruban

FctsAffines.nb 1. Mathématiques, 1-ère année Edition Fonctions affines

SCP d Architecture et d Aménagement du Territoire DESCOEUR F & C 49 rue des Salins, Clermont Fd. 7 juin 2010

Compatibilité Électromagnétique

Premier ordre Expression de la fonction de transfert : H(p) = K

1 Comment faire un document Open Office /writer de façon intelligente?

ROBOT ET CHIRURGIE AORTIQUE:

O, i, ) ln x. (ln x)2

SINE QUA NON. Découverte et Prise en main du logiciel Utilisation de bases

Séance 4. Gestion de la capacité. Gestion des opérations et de la logistique

TP Modulation Démodulation BPSK

Interpréter correctement l évolution de la part salariale.

PRECISION - REJET DE PERTURBATIONS T.D. G.E.I.I.

Entrées d'air hygroréglables

Les Conditions aux limites

J AUVRAY Systèmes Electroniques TRANSMISSION DES SIGNAUX NUMERIQUES : SIGNAUX EN BANDE DE BASE

Mode d emploi ALTO MONITOR PROCESSEUR D ÉCOUTE. Version 1.0 Juillet 2003 Français

TOUT CE QU IL FAUT SAVOIR POUR LE BREVET

CABLECAM de HYMATOM. Figure 1 : Schéma du système câblecam et détail du moufle vu de dessus.

C f tracée ci- contre est la représentation graphique d une

IOC 2010 Support à destination des éleveurs caprins CR n

Chapitre 14 Cours à terme et futures. Plan

LA COUCHE PHYSIQUE EST LA COUCHE par laquelle l information est effectivemnt transmise.

TD 11. Les trois montages fondamentaux E.C, B.C, C.C ; comparaisons et propriétés. Association d étages. *** :exercice traité en classe.

Automatique (AU3): Précision. Département GEII, IUT de Brest contact:

Transcription:

Chapitre 8 Réponse en fréquence On se sert de la réponse en fréquence des systèmes principalement pour des systèmes dont on ne connaît pas la fonction de transfert. Elle offre des avantages lorsqu on modélise des systèmes avec des données expérimentales, lorsqu on design des compensateurs à avance de phase, ou lorsqu on cherche la stabilité de systèmes non-linéaires. La réponse en fréquence d un système représente la réponse en régime permanent de ce système à une entrée sinusoïdale, qu on mesure à plusieurs fréquences. 8. Fonction de transfert La fonction de transfert dans le domaine fréquentiel est obtenue en remplaçant s par jω, soit : G(jω) = G(s) (8.) s=jω On ré-arrange l expression de la fonction de transfert pour séparer la partie réelle de la partie imaginaire, pour mieux calculer l amplitude et la phase. Exemple Soit la fonction suivante : G(s) = s + 2 Calculer la fonction de transfert dans le domaine fréquentiel.

La fonction de transfert est : G(jω) = CHAPITRE 8. RÉPONSE EN FRÉQUENCE 2 + jω On transforme pour séparer la partie imaginaire de la partie réelle : on multiplie par (2 jω) pour éliminer la partie imaginaire au dénominateur. G(jω) = 2 + jω 2 jω 2 jω = 2 jω 4 + ω 2 2 = 4 + ω 2 jω 4 + ω 2 L amplitude est : ( ) 2 2 ( G(jω) = 4 + ω 2 + ( = (4 + ω 2 ) ) ω 2 4 + ω 2 ) 2 4 + ω 2 = 4 + ω 4 + ω 2 2 = 4 + ω 2 La phase est : G(jω) = tan ( ω 2 ) Le diagramme de Bode est : 8.2 Éléments de base On peut simplifier le calcul de fonctions complexes si on considère certaines propriétés des nombres complexes. Soit deux nombres complexes z et z 2. Alors :. z z 2 = z z 2 (8.2) L amplitude de la multiplication est la multiplication des amplitudes. 2. (z z 2 ) = (z ) + (z 2 ) (8.3) La phase de la multiplication est la somme des phase individuelles. Gabriel Cormier 2 GELE533

2 3 4 2 2 4 6 8 2 Donc, si on sépare une fonction de transfert en plusieurs éléments de base, il est plus facile de trouver la réponse globale. Soit G(s) = G (s)g 2 (s)g 3 (s)... (8.4) alors G(jω) = G (jω) G 2 (jω) G 3 (jω)... (8.5) G(jω) = (φ + φ 2 + φ 3 + ) (8.6) Les simplifications, en domaine fréquentiel, sont plus faciles si on réécrit la fonction de transfert de la forme suivante : G(s) = K b( + c s)( + c 2 s) ( + c m s) s q ( + d s)( + d 2 s) ( + d n s) (8.7) où K b est appelé le gain de Bode. Gabriel Cormier 3 GELE533

Élément : G(s) = K C est le cas le plus simple ; la fonction est indépendante de s, et donc de jω. G(jω) = K (8.8) G(jω) = (8.9) Élément 2 : G(s) = + sτ Si on substitue s = jω, et on a : G(jω) = + jωτ = jωτ + ω 2 τ 2 (8.) G(jω) = + ω 2 τ 2 (8.) G(jω) = tan (ωτ) (8.2) Le diagramme de Bode (normalisé) de cette fonction est : 2 ω c ω 2 4 6 8 ω c ω Figure 8. Diagramme de Bode Gabriel Cormier 4 GELE533

Élément 3 : G(s) = + sτ et Ceci est l inverse de l élément précédent. G(jω) = + jωτ (8.3) G(jω) = + ω 2 τ 2 (8.4) G(jω) = tan (ωτ) (8.5) Le diagramme de Bode (normalisé) de cette fonction est donné à la figure 8.2. 4 2 ω c ω 8 6 4 2 ω c ω Figure 8.2 Diagramme de Bode pour l élément + s Élément 4 : G(s) = s La fonction de transfert est G(jω) = jω = j ω (8.6) Gabriel Cormier 5 GELE533

et l amplitude et la phase sont G(jω) = ω (8.7) G(jω) = 9 (8.8) Le diagramme de Bode (normalisé) de cette fonction est donné à la figure 8.3. 2 2 7 ω c ω 8 9 ω c ω Figure 8.3 Diagramme de Bode pour l élément /s Élément 5 : G(s) = s n On peut décomposer cet élément : s n = s s (8.9) s Gabriel Cormier 6 GELE533

Ce qui veut dire que G(jω) = ω ω ω = ω n (8.2) G(jω) = 9 + 9 + 9 = 9n (8.2) ω n Élément 6 : G(s) = s 2 + 2ζω n s + ωn 2 On modifie la fonction de transfert pour obtenir : G(s) = + 2ζ ω n s + s2 ω 2 n (8.22) on remplace alors s = jω, Donc, G(jω) = = ( ω2 + j 2ζω (8.23) ωn 2 ω n [( ) ] ω2 ω 2 n ) 2 + 4ζ 2 ω 2 ω 2 n ω2 ω 2 n j 2ζω ω n (8.24) G(jω) = ( ) 2 ω2 + 4ζ 2 ω 2 (8.25) ω 2 n G(jω) = tan 2ζ ω ω n ω2 ω 2 n ω 2 n (8.26) Le diagramme de Bode (normalisé) de cette fonction est donné à la figure 8.4. 8.3 Diagramme de Nyquist Le diagramme de Nyquist permet principalement de recueillir de l information sur la stabilité d un système. Il s agit de tracer une courbe de I{G(s)} en fonction de R{G(s)}. Les points importants du diagramme sont : Gabriel Cormier 7 GELE533

2 4 ζ = ζ =.2 ω c ω 5 5 ω c ω Figure 8.4 Diagramme de Bode d un système de 2 e ordre ω = ω = où la courbe croise l axe imaginaire, φ = ±9 où la courbe croise l axe réel, φ = ±8 Gabriel Cormier 8 GELE533

Exemple 2 Tracer le diagramme de Nyquist de la fonction pour ω n = et ζ =. ω 2 n G o (s) = s 2 + 2ζω n s + ωn 2 Le diagramme de Nyquist est :.5 Imaginaire ω = ω =.5.5.5.5 Réel 8.4 Stabilité Critère de stabilité de Nyquist : Un système est stable si l amplitude est plus petite que lorsque la phase est 8. On obtient aussi de l information sur la stabilité d un système par le diagramme de Nyquist. En effet, lorsqu on trace la courbe sur le diagramme de Nyquist, si le point (-,) est à la gauche du contour tracé par la courbe, le système est stable. Par exemple, dans la figure 8.5, la courbe a indique un système stable, tandis que la courbe b indique un système instable. Gabriel Cormier 9 GELE533

.5 ω = Imaginaire.5 a ω =.5 b 2 2.5.5.5 Réel Figure 8.5 Diagramme de Nyquist montrant la stabilité 8.5 Marge de gain et marge de phase Lors du design d un système, si on trouve un gain K qui rend un système stable, est-ce qu un gain K + le rendra instable? Ou K + 2? On va maintenant définir deux termes, la marge de gain et la marge de phase, qui aident à caractériser un système. Marge de gain G M : C est le facteur par lequel le gain peut être augmenté avant de causer une instabilité. Souvent exprimé en db, la marge de gain est : G M = K c K où K c est le gain critique qui cause l instabilité, et K est le gain actuel du système. (8.27) Marge de phase Φ M : C est l angle par lequel le système peut être déphasé avec de rendre le système instable. On peut observer plus clairement ces deux paramètres sur le diagramme de Nyquist ou des diagrammes de Bode. Dans la figure 8.6, la marge de gain est : G M = 2loga [db] (8.28) et la marge de phase est Φ M = α (8.29) Gabriel Cormier GELE533

.5 a α ω = Imaginaire.5 G(jω) =.5.5.5.5 Réel Figure 8.6 Diagramme de Nyquist: marge de gain et marge de phase Les diagrammes de Nyquist peuvent présenter certaines ambiguïtés quand à la marge de gain. En effet, la courbe traverse parfois l axe réel à plusieurs endroits, et il est alors difficile de trouver la marge de gain. Le diagramme de Bode permet souvent d enrayer cette ambiguïté. La figure 8.7 montre la marge de gain et la marge de phase dans un diagramme de Bode. Dans le diagramme de Bode, pour trouver la marge de gain, on trouve la fréquence ω g où la phase coupe l axe de -8. La marge de gain est la différence entre l amplitude G(jω g ) = G g et la ligne de db. Si la marge de gain est négative (quand la courbe est plus grande que db à ω g ), le système est instable. G M = G g = G g [db] (8.3) Pour trouver la marge de phase, on trouve la fréquence ω p où la courbe d amplitude traverse la ligne de db. La marge de phase est alors la différence entre la phase actuelle φ p et la ligne de 8. Si la marge de phase est négative, le système est instable. Φ M = φ p ( 8 ) = φ p + 8 (8.3) Comme exemple, la marge de gain est environ 2dB et la marge de phase environ 6 dans la figure 8.7. Certaines ambiguïtés peuvent se présenter quand on essaie de déterminer la stabilité en utilisant les diagrammes de Bode. Gabriel Cormier GELE533

5 G M ω p Φ M 2 2 2 Figure 8.7 Diagramme de Bode : marge de gain et marge de phase ω g 8.5. Exemples d ambiguïté de la stabilité Soit le diagramme de Bode (figure 8.8) de la fonction suivante : G(s) = ( + s) s 2 ( +.s) (8.32) Dans la figure 8.8, on a une marge de phase de 45 environ. Par contre, la phase ne traverse pas l axe de -8. On a donc pas de marge de gain. La marge de phase est positive, donc le système est stable. On peut vérifier à l aide d une table de Routh. On considère maintenant un deuxième cas ambiguë, dont la fonction de transfert est : G(s) = ( + s)( +.s) s 3 ( +.s)( +.s) (8.33) Le diagramme de Bode est donné à la figure 8.9. On voit dans cette figure que la phase traverse le point -8 à deux reprises. On a donc deux marges de gain. Gabriel Cormier 2 GELE533

5 5 2 4 6 Φ M 8 2 2 Figure 8.8 Exemple de diagramme de Bode ambiguë Dans la figure 8.9, on trouve : Φ M = -45 < instable G M = 4dB > stable G M2 = 4dB < stable Il y a contradiction. On doit se fier à la marge de phase, et on conclut que le système est instable (on peut vérifier avec d autre méthodes). Note : La marge de phase est le seul critère fiable de la stabilité d un système. Un système est stable si Φ M >. Exemple 3 Soit le système suivant : Calculer la marge de gain et de phase lorsque le gain de Bode est. Calculer la valeur maximale de K pour un système stable. Utiliser la table de Routh pour confirmer. Gabriel Cormier 3 GELE533

2 G M G M2 5 2 25 Φ M 2 2 3 4 5 6 Figure 8.9 Deuxième exemple de diagramme de Bode ambiguë R(s) + K(s + ) s 3 s + 2 s + C(s) La fonction en boucle ouverte est qu on peut écrire d une autre façon : G o (s) = G o (s) = K( + s)(s + 2) s 3 (s + ) 2K( + s)( +.5s) s 3 ( +.s) Pour que K b =, 2K = K = 5 On trace alors le diagramme de Bode : On trouve alors que G M = 5.6dB et Φ M = 5. Puisque la marge de phase est négative, le système est instable. Pour stabiliser le système, on doit déplacer la courbe de gain vers Gabriel Cormier 4 GELE533

4 2 2 4 G M 5 2 25 Φ M 2 le haut. Pour rendre le système stable, on ajoute 5.6dB. Il faut donc multiplier le gain par un facteur N, où 2logN = 5.6 N =.9 et K = K N = (5)(.9) = 9.54. On peut confirmer la stabilité du système en utilisant la table de Routh. L équation caractéristique (le dénominateur de la fonction de transfert en boucle fermée) est : La table de Routh : s 3 (s + ) + K( + s)(s + 2) = s 4 + s 3 + Ks 2 + 3Ks + 2K s 4 K 2K s 3 3K s 2.7K 2K s 2.K2 2K.7K s 2K Les conditions nécessaires à la stabilité sont K > et 2.K 2 2K > 2.K > 2 K > 9.52 Gabriel Cormier 5 GELE533

Donc, K > 9.52, ce qui est très près de la valeur calculée auparavant. Si on prend un gain, par exemple, de K =, et qu on trace le diagramme de Bode, on obtient la figure suivante : 5 G M 5 5 Φ M 2 25 2 La marge de gain est négative, alors que la marge de phase est positive. On doit se fier à Φ M : le système est stable. Gabriel Cormier 6 GELE533