Partie 1 - Séquence 3 Original d une fonction

Dimension: px
Commencer à balayer dès la page:

Download "Partie 1 - Séquence 3 Original d une fonction"

Transcription

1 Partie - Séquence 3 Original d une fonction Lycée Victor Hugo - Besançon - STS 2

2 I. Généralités

3 I. Généralités Définition Si F(p) = L [f(t)u (t)](p), alors on dit que f est l original de F. On note f(t) = L [F(p)].

4 I. Généralités Définition Si F(p) = L [f(t)u (t)](p), alors on dit que f est l original de F. On note f(t) = L [F(p)]. Exemple La fonction p 2 p 3 admet pour original la fonction t t2 U (t).

5 I. Généralités Définition Si F(p) = L [f(t)u (t)](p), alors on dit que f est l original de F. On note f(t) = L [F(p)]. Exemple La fonction p 2 p 3 admet pour original la fonction t t2 U (t). Remarque On admet que si l original existe alors il est unique.

6 I. Généralités Définition Si F(p) = L [f(t)u (t)](p), alors on dit que f est l original de F. On note f(t) = L [F(p)]. Exemple La fonction p 2 p 3 admet pour original la fonction t t2 U (t). Remarque On admet que si l original existe alors il est unique. L application L est appelée transformation de Laplace inverse.

7 I. Généralités Définition Si F(p) = L [f(t)u (t)](p), alors on dit que f est l original de F. On note f(t) = L [F(p)]. Exemple La fonction p 2 p 3 admet pour original la fonction t t2 U (t). Remarque On admet que si l original existe alors il est unique. L application L est appelée transformation de Laplace inverse. On admet que l application L est linéaire, ce qui sera très utile pour la recherche d originaux.

8 II. Recherche d originaux

9 II. Recherche d originaux D une manière générale, la recherche d originaux s apparente à celle de la recherche de primitives, on utilise principalement :

10 II. Recherche d originaux D une manière générale, la recherche d originaux s apparente à celle de la recherche de primitives, on utilise principalement : Le tableau des transformées de Laplace des fonctions usuelles.

11 II. Recherche d originaux D une manière générale, la recherche d originaux s apparente à celle de la recherche de primitives, on utilise principalement : Le tableau des transformées de Laplace des fonctions usuelles. Le théorème du retard.

12 II. Recherche d originaux D une manière générale, la recherche d originaux s apparente à celle de la recherche de primitives, on utilise principalement : Le tableau des transformées de Laplace des fonctions usuelles. Le théorème du retard. L effet de la multiplication par e at.

13 II. Recherche d originaux D une manière générale, la recherche d originaux s apparente à celle de la recherche de primitives, on utilise principalement : Le tableau des transformées de Laplace des fonctions usuelles. Le théorème du retard. L effet de la multiplication par e at. Des décompositions de fractions en éléments simples.

14 II. Recherche d originaux D une manière générale, la recherche d originaux s apparente à celle de la recherche de primitives, on utilise principalement : Le tableau des transformées de Laplace des fonctions usuelles. Le théorème du retard. L effet de la multiplication par e at. Des décompositions de fractions en éléments simples. La mise sous forme canonique de polynômes du second degré.

15 III. Exemples

16 III. Exemples Exemple Calculons l original de F(p) = 3 p 5 2p 2 + p p 2 +4

17 III. Exemples Exemple Calculons l original de F(p) = 3 p 5 2p 2 + p p 2 +4 On reconnait une somme de transformées de Laplace connues.

18 III. Exemples Exemple Calculons l original de F(p) = 3 p 5 2p 2 + p p 2 +4 On reconnait une somme de transformées de Laplace connues. L original de F est la fonction t ( 3+

19 III. Exemples Exemple Calculons l original de F(p) = 3 p 5 2p 2 + p p 2 +4 On reconnait une somme de transformées de Laplace connues. L original de F est la fonction t ( t+

20 III. Exemples Exemple Calculons l original de F(p) = 3 p 5 2p 2 + p p 2 +4 On reconnait une somme de transformées de Laplace connues. L original de F est la fonction t (3+ 52 t+ cos(2t) ) U (t)

21 III. Exemples Exemple Calculons l original de F(p) = 3 p 5 2p 2 + p p 2 +4 On reconnait une somme de transformées de Laplace connues. L original de F est la fonction t (3+ 52 t+ cos(2t) ) U (t)

22 Exemple 2 Calculons l original de F(p) = 3 p 3 p p 2 +9

23 Exemple 2 Calculons l original de F(p) = 3 p 3 p p 2 +9 On reconnaît une somme de transformées de Laplace connues.

24 Exemple 2 Calculons l original de F(p) = 3 p 3 p p 2 +9 On reconnaît une somme de transformées de Laplace connues. L original de F est la fonction t ( 3 2 t2 +

25 Exemple 2 Calculons l original de F(p) = 3 p 3 p p 2 +9 On reconnaît une somme de transformées de Laplace connues. L original de F est la fonction t ( 3 2 t t5 +

26 Exemple 2 Calculons l original de F(p) = 3 p 3 p p 2 +9 On reconnaît une somme de transformées de Laplace connues. L original de F est la fonction t ( 3 2 t2 + ) 20 t5 + sin(3t) U (t)

27 Exemple 2 Calculons l original de F(p) = 3 p 3 p p 2 +9 On reconnaît une somme de transformées de Laplace connues. L original de F est la fonction t ( 3 2 t2 + ) 20 t5 + sin(3t) U (t)

28 Exercice Calculer l original de F(p) = p + 2p 2 2(p 2 +2)

29 Exercice Calculer l original de Solution On sait que L [ p F(p) = p + 2p 2 2(p 2 +2) ] =

30 Exercice Calculer l original de Solution On sait que L [ p F(p) = p + 2p 2 2(p 2 +2) ] = U (t)

31 Exercice Calculer l original de Solution On sait que L [ p F(p) = p + 2p 2 2(p 2 +2) ] [ ] = U (t)et L 2p 2 =

32 Exercice Calculer l original de Solution On sait que L [ p F(p) = p + 2p 2 2(p 2 +2) ] [ ] = U (t)et L 2p 2 = tu (t). 2

33 Exercice Calculer l original de Solution On sait que L [ p F(p) = p + 2p 2 2(p 2 +2) Il reste à trouver l original de ] [ ] = U (t)et L 2p 2 = tu (t). 2 2(p 2 +2).

34 Solution (suite) On sait que l original de ω p 2 +ω 2 est

35 Solution (suite) On sait que l original de ω p 2 est sin(ωt)u (t), +ω2

36 Solution (suite) On sait que l original de 2(p 2 +2) ω p 2 est sin(ωt)u (t), or : +ω2 =

37 Solution (suite) On sait que l original de 2(p 2 +2) ω p 2 est sin(ωt)u (t), or : +ω2 = 2 p 2 +2

38 Solution (suite) On sait que l original de 2(p 2 +2) ω p 2 est sin(ωt)u (t), or : +ω2 = 2 p = 2 2 p

39 Solution (suite) On sait que l original de ω p 2 est sin(ωt)u (t), or : +ω2 2(p 2 = +2) 2 p = 2 2 p [ ] Et donc L 2(p 2 = +2)

40 Solution (suite) On sait que l original de ω p 2 est sin(ωt)u (t), or : +ω2 2(p 2 = +2) 2 p = 2 2 p [ ] Et donc L 2(p 2 = +2) 2 2 sin( 2t)U (t).

41 Solution (suite) On sait que l original de ω p 2 est sin(ωt)u (t), or : +ω2 2(p 2 = +2) 2 p = 2 2 p [ ] Et donc L 2(p 2 = +2) 2 2 sin( 2t)U (t). ( Ainsi f(t) = + 2 t ) 2 2 sin( 2t) U (t).

42 Exercice 2 Calculer l original de F(p) = +3e 2p p 2 +2p+2

43 Exercice 2 Calculer l original de F(p) = +3e 2p p 2 +2p+2 Solution On a : F(p) = +3e 2p p 2 +2p+2

44 Exercice 2 Calculer l original de F(p) = +3e 2p p 2 +2p+2 Solution On a : F(p) = +3e 2p p 2 +2p+2 +3e 2p = (p+) 2 +

45 Exercice 2 Calculer l original de F(p) = +3e 2p p 2 +2p+2 Solution On a : F(p) = +3e 2p p 2 +2p+2 +3e 2p = (p+) 2 + = e 2p (p+) (p+) 2 +

46 Exercice 2 Calculer l original de F(p) = +3e 2p p 2 +2p+2 Solution On a : F(p) = +3e 2p p 2 +2p+2 +3e 2p = (p+) 2 + = e 2p (p+) (p+) 2 + = G(p)+3G(p)e 2p

47 Exercice 2 Calculer l original de F(p) = +3e 2p p 2 +2p+2 Solution On a : avec G(p) = F(p) = +3e 2p p 2 +2p+2 +3e 2p = (p+) 2 + = (p+) 2 +. e 2p (p+) (p+) 2 + = G(p)+3G(p)e 2p

48 Solution (suite) On détermine alors l original g de G :

49 Solution (suite) On détermine alors l original g de G : On sait que l original de p 2 + est

50 Solution (suite) On détermine alors l original g de G : On sait que l original de p 2 est sin(t)u (t), et on sait que + le fait de remplacer p par p+ correspond à multiplier l original par e t.

51 Solution (suite) On détermine alors l original g de G : On sait que l original de p 2 est sin(t)u (t), et on sait que + le fait de remplacer p par p+ correspond à multiplier l original par e t. On obtient donc g(t) = sin(t)e t U (t).

52 Solution (suite) On détermine alors l original g de G : On sait que l original de p 2 est sin(t)u (t), et on sait que + le fait de remplacer p par p+ correspond à multiplier l original par e t. On obtient donc g(t) = sin(t)e t U (t). Et donc on obtient l original f de F en utilisant la linéarité et le théorème du retard :

53 Solution (suite) On détermine alors l original g de G : On sait que l original de p 2 est sin(t)u (t), et on sait que + le fait de remplacer p par p+ correspond à multiplier l original par e t. On obtient donc g(t) = sin(t)e t U (t). Et donc on obtient l original f de F en utilisant la linéarité et le théorème du retard : f(t) = g(t)+3g(t 2) et donc :

54 Solution (suite) On détermine alors l original g de G : On sait que l original de p 2 est sin(t)u (t), et on sait que + le fait de remplacer p par p+ correspond à multiplier l original par e t. On obtient donc g(t) = sin(t)e t U (t). Et donc on obtient l original f de F en utilisant la linéarité et le théorème du retard : f(t) = g(t)+3g(t 2) et donc : f(t) = sin(t)e t U (t)+3sin(t 2)e (t 2) U (t 2)

55 Solution (suite) On détermine alors l original g de G : On sait que l original de p 2 est sin(t)u (t), et on sait que + le fait de remplacer p par p+ correspond à multiplier l original par e t. On obtient donc g(t) = sin(t)e t U (t). Et donc on obtient l original f de F en utilisant la linéarité et le théorème du retard : f(t) = g(t)+3g(t 2) et donc : f(t) = sin(t)e t U (t)+3sin(t 2)e (t 2) U (t 2)

56 Exercice 3 Calculer l original de F(p) = 2p 2 +p

57 Exercice 3 Calculer l original de F(p) = 2p 2 +p Solution On décompose F en éléments simples et on obtient

58 Exercice 3 Calculer l original de F(p) = 2p 2 +p Solution On décompose F en éléments simples et on obtient F(p) = ( 3 p+ + ) p 2

59 Solution (suite) On sait que L[U (t)](p) =, et que p F(p+a) = L[f(t)e at U (t)](p).

60 Solution (suite) On sait que L[U (t)](p) =, et que p F(p+a) = L[f(t)e at U (t)](p). Ainsi L [ p+ ] = e t U (t) et L [ p 2 ] = e 2 t U (t).

61 Solution (suite) On sait que L[U (t)](p) =, et que p F(p+a) = L[f(t)e at U (t)](p). Ainsi L [ p+ ] = e t U (t) et L [ p 2 Pour conclure on utilise la linéarité : f(t) = 3 ( e t +e 2 t) U (t) ] = e 2 t U (t).

62 Solution (suite) On sait que L[U (t)](p) =, et que p F(p+a) = L[f(t)e at U (t)](p). Ainsi L [ p+ ] = e t U (t) et L [ p 2 Pour conclure on utilise la linéarité : f(t) = 3 ( e t +e 2 t) U (t) ] = e 2 t U (t).

63 Exercice 4 Calculer l original de F(p) = 4p 2 +6p+7

64 Exercice 4 Calculer l original de Solution F(p) = 4p 2 +6p+7 Le polynôme 4p 2 +6p+7 n admet pas de racine réelle, on ne peut donc pas le factoriser. On va donc utiliser la forme canonique.

65 Solution (suite) F(p) = 4p 2 +6p+7

66 Solution (suite) F(p) = = 4p 2 +6p+7 4 ( p 2 +4p+ 7 ) 4

67 Solution (suite) F(p) = 4p 2 +6p+7 = 4 ( p 2 +4p+ 7 ) 4 = 4 (p+2)

68 Solution (suite) F(p) = 4p 2 +6p+7 = 4 ( p 2 +4p+ 7 ) 4 = 4 (p+2) = 4 (p+2) 2 + 4

69 Solution (suite) F(p) = 4p 2 +6p+7 = 4 ( p 2 +4p+ 7 ) 4 = 4 (p+2) = 4 (p+2) = 2 2 (p+2) 2 + ( ) 2 2

70 Solution (suite) F(p) = 4p 2 +6p+7 = 4 ( p 2 +4p+ 7 ) 4 = 4 (p+2) = 4 (p+2) = 2 2 (p+2) 2 + ( ) 2 2 L original de F est donc la fonction :

71 Solution (suite) F(p) = 4p 2 +6p+7 = 4 ( p 2 +4p+ 7 ) 4 = 4 (p+2) = 4 (p+2) = 2 2 (p+2) 2 + ( ) 2 2 L original de F est donc la fonction : t 2 sin ( 2 t )e 2t U (t)

72 Solution (suite) F(p) = 4p 2 +6p+7 = 4 ( p 2 +4p+ 7 ) 4 = 4 (p+2) = 4 (p+2) = 2 2 (p+2) 2 + ( ) 2 2 L original de F est donc la fonction : t 2 sin ( 2 t )e 2t U (t)

Planche n o 22. Fonctions de plusieurs variables. Corrigé

Planche n o 22. Fonctions de plusieurs variables. Corrigé Planche n o Fonctions de plusieurs variables Corrigé n o : f est définie sur R \ {, } Pour, f, = Quand tend vers, le couple, tend vers le couple, et f, tend vers Donc, si f a une limite réelle en, cette

Plus en détail

Chapitre 1 : Évolution COURS

Chapitre 1 : Évolution COURS Chapitre 1 : Évolution COURS OBJECTIFS DU CHAPITRE Savoir déterminer le taux d évolution, le coefficient multiplicateur et l indice en base d une évolution. Connaître les liens entre ces notions et savoir

Plus en détail

Complément d information concernant la fiche de concordance

Complément d information concernant la fiche de concordance Sommaire SAMEDI 0 DÉCEMBRE 20 Vous trouverez dans ce dossier les documents correspondants à ce que nous allons travailler aujourd hui : La fiche de concordance pour le DAEU ; Page 2 Un rappel de cours

Plus en détail

I. Polynômes de Tchebychev

I. Polynômes de Tchebychev Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire

Plus en détail

Correction de l examen de la première session

Correction de l examen de la première session de l examen de la première session Julian Tugaut, Franck Licini, Didier Vincent Si vous trouvez des erreurs de Français ou de mathématiques ou bien si vous avez des questions et/ou des suggestions, envoyez-moi

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I

Plus en détail

Fonctions de plusieurs variables. Sébastien Tordeux

Fonctions de plusieurs variables. Sébastien Tordeux Fonctions de plusieurs variables Sébastien Tordeux 22 février 2009 Table des matières 1 Fonctions de plusieurs variables 3 1.1 Définition............................. 3 1.2 Limite et continuité.......................

Plus en détail

Théorème du point fixe - Théorème de l inversion locale

Théorème du point fixe - Théorème de l inversion locale Chapitre 7 Théorème du point fixe - Théorème de l inversion locale Dans ce chapitre et le suivant, on montre deux applications importantes de la notion de différentiabilité : le théorème de l inversion

Plus en détail

Continuité d une fonction de plusieurs variables

Continuité d une fonction de plusieurs variables Chapitre 2 Continuité d une fonction de plusieurs variables Maintenant qu on a défini la notion de limite pour des suites dans R n, la notion de continuité s étend sans problème à des fonctions de plusieurs

Plus en détail

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015 Énoncé Soit V un espace vectoriel réel. L espace vectoriel des endomorphismes de V est désigné par L(V ). Lorsque f L(V ) et k N, on désigne par f 0 = Id V, f k = f k f la composée de f avec lui même k

Plus en détail

Développements limités, équivalents et calculs de limites

Développements limités, équivalents et calculs de limites Développements ités, équivalents et calculs de ites Eercice. Déterminer le développement ité en 0 à l ordre n des fonctions suivantes :. f() e (+) 3 n. g() sin() +ln(+) n 3 3. h() e sh() n 4. i() sin(

Plus en détail

Exercices - Polynômes : corrigé. Opérations sur les polynômes

Exercices - Polynômes : corrigé. Opérations sur les polynômes Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)

Plus en détail

Introduction à l étude des Corps Finis

Introduction à l étude des Corps Finis Introduction à l étude des Corps Finis Robert Rolland (Résumé) 1 Introduction La structure de corps fini intervient dans divers domaines des mathématiques, en particulier dans la théorie de Galois sur

Plus en détail

Equations différentielles linéaires à coefficients constants

Equations différentielles linéaires à coefficients constants Equations différentielles linéaires à coefficients constants Cas des équations d ordre 1 et 2 Cours de : Martine Arrou-Vignod Médiatisation : Johan Millaud Département RT de l IUT de Vélizy Mai 2007 I

Plus en détail

Commun à tous les candidats

Commun à tous les candidats EXERCICE 3 (9 points ) Commun à tous les candidats On s intéresse à des courbes servant de modèle à la distribution de la masse salariale d une entreprise. Les fonctions f associées définies sur l intervalle

Plus en détail

Automatique Linéaire 1 Travaux Dirigés 1A ISMIN

Automatique Linéaire 1 Travaux Dirigés 1A ISMIN Automatique Linéaire 1 Travaux Dirigés Travaux dirigés, Automatique linéaire 1 J.M. Dutertre 2014 TD 1 Introduction, modélisation, outils. Exercice 1.1 : Calcul de la réponse d un 2 nd ordre à une rampe

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer Pour commencer Exercice 1 - Ensembles de définition - Première année - 1. Le logarithme est défini si x + y > 0. On trouve donc le demi-plan supérieur délimité par la droite d équation x + y = 0.. 1 xy

Plus en détail

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre IUFM du Limousin 2009-10 PLC1 Mathématiques S. Vinatier Rappels de cours Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre 1 Fonctions de plusieurs variables

Plus en détail

LE PRODUIT SCALAIRE ( En première S )

LE PRODUIT SCALAIRE ( En première S ) LE PRODUIT SCALAIRE ( En première S ) Dernière mise à jour : Jeudi 4 Janvier 007 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble ( Année 006-007 ) 1 Table des matières 1 Grille d autoévaluation

Plus en détail

Comparaison de fonctions Développements limités. Chapitre 10

Comparaison de fonctions Développements limités. Chapitre 10 PCSI - 4/5 www.ericreynaud.fr Chapitre Points importants 3 Questions de cours 6 Eercices corrigés Plan du cours 4 Eercices types 7 Devoir maison 5 Eercices Chap Et s il ne fallait retenir que si points?

Plus en détail

Exercices Corrigés Premières notions sur les espaces vectoriels

Exercices Corrigés Premières notions sur les espaces vectoriels Exercices Corrigés Premières notions sur les espaces vectoriels Exercice 1 On considére le sous-espace vectoriel F de R formé des solutions du système suivant : x1 x 2 x 3 + 2x = 0 E 1 x 1 + 2x 2 + x 3

Plus en détail

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R.

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R. Angles orientés Trigonométrie I. Préliminaires. Le radian Définition B R AB =R C O radian R A Soit C un cercle de centre O. Dire que l angle géométrique AOB a pour mesure radian signifie que la longueur

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Continuité (étude globale). Diverses fonctions Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile *****

Plus en détail

CCP PSI - 2010 Mathématiques 1 : un corrigé

CCP PSI - 2010 Mathématiques 1 : un corrigé CCP PSI - 00 Mathématiques : un corrigé Première partie. Définition d une structure euclidienne sur R n [X]... B est clairement symétrique et linéaire par rapport à sa seconde variable. De plus B(P, P

Plus en détail

Représentation géométrique d un nombre complexe

Représentation géométrique d un nombre complexe CHAPITRE 1 NOMBRES COMPLEXES 1 Représentation géométrique d un nombre complexe 1. Ensemble des nombres complexes Soit i le nombre tel que i = 1 L ensemble des nombres complexes est l ensemble des nombres

Plus en détail

aux différences est appelé équation aux différences d ordre n en forme normale.

aux différences est appelé équation aux différences d ordre n en forme normale. MODÉLISATION ET SIMULATION EQUATIONS AUX DIFFÉRENCES (I/II) 1. Rappels théoriques : résolution d équations aux différences 1.1. Équations aux différences. Définition. Soit x k = x(k) X l état scalaire

Plus en détail

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La licence Mathématiques et Economie-MASS de l Université des Sciences Sociales de Toulouse propose sur les trois

Plus en détail

Fonctions homographiques

Fonctions homographiques Seconde-Fonctions homographiques-cours Mai 0 Fonctions homographiques Introduction Voir le TP Géogébra. La fonction inverse. Définition Considérons la fonction f définie par f() =. Alors :. f est définie

Plus en détail

Automatique (AU3): Précision. Département GEII, IUT de Brest contact: vincent.choqueuse@univ-brest.fr

Automatique (AU3): Précision. Département GEII, IUT de Brest contact: vincent.choqueuse@univ-brest.fr Automatique (AU3): Précision des systèmes bouclés Département GEII, IUT de Brest contact: vincent.choqueuse@univ-brest.fr Plan de la présentation Introduction 2 Écart statique Définition Expression Entrée

Plus en détail

Calculer avec Sage. Revision : 417 du 1 er juillet 2010

Calculer avec Sage. Revision : 417 du 1 er juillet 2010 Calculer avec Sage Alexandre Casamayou Guillaume Connan Thierry Dumont Laurent Fousse François Maltey Matthias Meulien Marc Mezzarobba Clément Pernet Nicolas Thiéry Paul Zimmermann Revision : 417 du 1

Plus en détail

Cours 7 : Utilisation de modules sous python

Cours 7 : Utilisation de modules sous python Cours 7 : Utilisation de modules sous python 2013/2014 Utilisation d un module Importer un module Exemple : le module random Importer un module Exemple : le module random Importer un module Un module est

Plus en détail

Factorisation Factoriser en utilisant un facteur commun Fiche méthode

Factorisation Factoriser en utilisant un facteur commun Fiche méthode Factorisation Factoriser en utilisant un facteur commun Fiche méthode Rappel : Distributivité simple Soient les nombres, et. On a : Factoriser, c est transformer une somme ou une différence de termes en

Plus en détail

CHAPITRE V SYSTEMES DIFFERENTIELS LINEAIRES A COEFFICIENTS CONSTANTS DU PREMIER ORDRE. EQUATIONS DIFFERENTIELLES.

CHAPITRE V SYSTEMES DIFFERENTIELS LINEAIRES A COEFFICIENTS CONSTANTS DU PREMIER ORDRE. EQUATIONS DIFFERENTIELLES. CHAPITRE V SYSTEMES DIFFERENTIELS LINEAIRES A COEFFICIENTS CONSTANTS DU PREMIER ORDRE EQUATIONS DIFFERENTIELLES Le but de ce chapitre est la résolution des deux types de systèmes différentiels linéaires

Plus en détail

Simulation de variables aléatoires

Simulation de variables aléatoires Chapter 1 Simulation de variables aléatoires Références: [F] Fishman, A first course in Monte Carlo, chap 3. [B] Bouleau, Probabilités de l ingénieur, chap 4. [R] Rubinstein, Simulation and Monte Carlo

Plus en détail

Continuité et dérivabilité d une fonction

Continuité et dérivabilité d une fonction DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité

Plus en détail

Résolution de systèmes linéaires par des méthodes directes

Résolution de systèmes linéaires par des méthodes directes Résolution de systèmes linéaires par des méthodes directes J. Erhel Janvier 2014 1 Inverse d une matrice carrée et systèmes linéaires Ce paragraphe a pour objet les matrices carrées et les systèmes linéaires.

Plus en détail

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) Bernard Le Stum Université de Rennes 1 Version du 13 mars 2009 Table des matières 1 Fonctions partielles, courbes de niveau 1 2 Limites et continuité

Plus en détail

Les travaux doivent être remis sous forme papier.

Les travaux doivent être remis sous forme papier. Physique mathématique II Calendrier: Date Pondération/note nale Matériel couvert ExercicesSérie 1 : 25 septembre 2014 5% RH&B: Ch. 3 ExercicesSérie 2 : 23 octobre 2014 5% RH&B: Ch. 12-13 Examen 1 : 24

Plus en détail

Onveutetudierl'equationdierentiellesuivante

Onveutetudierl'equationdierentiellesuivante Quelques resultats sur l'equation des ondes Onveutetudierl'equationdierentiellesuivante (Ondes) @tu xu=f surr Rd: C'est dratique une equation +jj designature(;d).cettenoteestorganiseedela hyperbolique

Plus en détail

Taux d évolution moyen.

Taux d évolution moyen. Chapitre 1 Indice Taux d'évolution moyen Terminale STMG Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Indice simple en base 100. Passer de l indice au taux d évolution, et réciproquement.

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)

Plus en détail

Résolution d équations non linéaires

Résolution d équations non linéaires Analyse Numérique Résolution d équations non linéaires Said EL HAJJI et Touria GHEMIRES Université Mohammed V - Agdal. Faculté des Sciences Département de Mathématiques. Laboratoire de Mathématiques, Informatique

Plus en détail

avec des nombres entiers

avec des nombres entiers Calculer avec des nombres entiers Effectuez les calculs suivants.. + 9 + 9. Calculez. 9 9 Calculez le quotient et le rest. : : : : 0 :. : : 9 : : 9 0 : 0. 9 9 0 9. Calculez. 9 0 9. : : 0 : 9 : :. : : 0

Plus en détail

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé Baccalauréat ES Pondichéry 7 avril 204 Corrigé EXERCICE 4 points Commun à tous les candidats. Proposition fausse. La tangente T, passant par les points A et B d abscisses distinctes, a pour coefficient

Plus en détail

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin.

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin. Exo7 Matrice d une application linéaire Corrections d Arnaud odin. Exercice Soit R muni de la base canonique = ( i, j). Soit f : R R la projection sur l axe des abscisses R i parallèlement à R( i + j).

Plus en détail

Image d un intervalle par une fonction continue

Image d un intervalle par une fonction continue DOCUMENT 27 Image d un intervalle par une fonction continue La continuité d une fonction en un point est une propriété locale : une fonction est continue en un point x 0 si et seulement si sa restriction

Plus en détail

Calcul différentiel sur R n Première partie

Calcul différentiel sur R n Première partie Calcul différentiel sur R n Première partie Université De Metz 2006-2007 1 Définitions générales On note L(R n, R m ) l espace vectoriel des applications linéaires de R n dans R m. Définition 1.1 (différentiabilité

Plus en détail

Limites finies en un point

Limites finies en un point 8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,

Plus en détail

Un K-espace vectoriel est un ensemble non vide E muni : d une loi de composition interne, c est-à-dire d une application de E E dans E : E E E

Un K-espace vectoriel est un ensemble non vide E muni : d une loi de composition interne, c est-à-dire d une application de E E dans E : E E E Exo7 Espaces vectoriels Vidéo partie 1. Espace vectoriel (début Vidéo partie 2. Espace vectoriel (fin Vidéo partie 3. Sous-espace vectoriel (début Vidéo partie 4. Sous-espace vectoriel (milieu Vidéo partie

Plus en détail

I. Ensemble de définition d'une fonction

I. Ensemble de définition d'une fonction Chapitre 2 Généralités sur les fonctions Fonctions de références et fonctions associées Ce que dit le programme : Étude de fonctions Fonctions de référence x x et x x Connaître les variations de ces deux

Plus en détail

a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe le nombre ax + b

a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe le nombre ax + b I Définition d une fonction affine Faire l activité 1 «une nouvelle fonction» 1. définition générale a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe

Plus en détail

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES Théorème - Définition Soit un cercle (O,R) et un point. Une droite passant par coupe le cercle en deux points A et

Plus en détail

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme Chapitre 3 Quelques fonctions usuelles 1 Fonctions logarithme et eponentielle 1.1 La fonction logarithme Définition 1.1 La fonction 7! 1/ est continue sur ]0, +1[. Elle admet donc des primitives sur cet

Plus en détail

Exercices - Nombres complexes : corrigé. Formes algébriques et trigonométriques, module et argument

Exercices - Nombres complexes : corrigé. Formes algébriques et trigonométriques, module et argument Formes algébriques et trigonométriques, module et argument Exercice - - L/Math Sup - On multiplie le dénominateur par sa quantité conjuguée, et on obtient : Z = 4 i 3 + i 3 i 3 = 4 i 3 + 3 = + i 3. Pour

Plus en détail

NOMBRES COMPLEXES. Exercice 1 :

NOMBRES COMPLEXES. Exercice 1 : Exercice 1 : NOMBRES COMPLEXES On donne θ 0 un réel tel que : cos(θ 0 ) 5 et sin(θ 0 ) 1 5. Calculer le module et l'argument de chacun des nombres complexes suivants (en fonction de θ 0 ) : a i( )( )(1

Plus en détail

NOTICE DOUBLE DIPLÔME

NOTICE DOUBLE DIPLÔME NOTICE DOUBLE DIPLÔME MINES ParisTech / HEC MINES ParisTech/ AgroParisTech Diplômes obtenus : Diplôme d ingénieur de l Ecole des Mines de Paris Diplôme de HEC Paris Ou Diplôme d ingénieur de l Ecole des

Plus en détail

ÉVALUATION FORMATIVE. On considère le circuit électrique RC représenté ci-dessous où R et C sont des constantes strictement positives.

ÉVALUATION FORMATIVE. On considère le circuit électrique RC représenté ci-dessous où R et C sont des constantes strictement positives. L G L G Prof. Éric J.M.DELHEZ ANALYSE MATHÉMATIQUE ÉALUATION FORMATIE Novembre 211 Ce test vous est proposé pour vous permettre de faire le point sur votre compréhension du cours d Analyse Mathématique.

Plus en détail

Polynômes à plusieurs variables. Résultant

Polynômes à plusieurs variables. Résultant Polynômes à plusieurs variables. Résultant Christophe Ritzenthaler 1 Relations coefficients-racines. Polynômes symétriques Issu de [MS] et de [Goz]. Soit A un anneau intègre. Définition 1.1. Soit a A \

Plus en détail

Par combien de zéros se termine N!?

Par combien de zéros se termine N!? La recherche à l'école page 79 Par combien de zéros se termine N!? par d es co llèg es An dré Do ucet de Nanterre et Victor Hugo de Noisy le Grand en seignants : Danielle Buteau, Martine Brunstein, Marie-Christine

Plus en détail

Angles orientés et trigonométrie

Angles orientés et trigonométrie Chapitre Angles orientés et trigonométrie Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Trigonométrie Cercle trigonométrique. Radian. Mesure d un angle orienté, mesure principale.

Plus en détail

Table des matières. I Mise à niveau 11. Préface

Table des matières. I Mise à niveau 11. Préface Table des matières Préface v I Mise à niveau 11 1 Bases du calcul commercial 13 1.1 Alphabet grec...................................... 13 1.2 Symboles mathématiques............................... 14 1.3

Plus en détail

Dérivées d ordres supérieurs. Application à l étude d extrema.

Dérivées d ordres supérieurs. Application à l étude d extrema. Chapitre 5 Dérivées d ordres supérieurs. Application à l étude d extrema. On s intéresse dans ce chapitre aux dérivées d ordre ou plus d une fonction de plusieurs variables. Comme pour une fonction d une

Plus en détail

TOUT CE QU IL FAUT SAVOIR POUR LE BREVET

TOUT CE QU IL FAUT SAVOIR POUR LE BREVET TOUT E QU IL FUT SVOIR POUR LE REVET NUMERIQUE / FONTIONS eci n est qu un rappel de tout ce qu il faut savoir en maths pour le brevet. I- Opérations sur les nombres et les fractions : Les priorités par

Plus en détail

Programmes des classes préparatoires aux Grandes Ecoles

Programmes des classes préparatoires aux Grandes Ecoles Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voie : Biologie, chimie, physique et sciences de la Terre (BCPST) Discipline : Mathématiques Seconde année Préambule Programme

Plus en détail

Problème 1 : applications du plan affine

Problème 1 : applications du plan affine Problème 1 : applications du plan affine Notations On désigne par GL 2 (R) l ensemble des matrices 2 2 inversibles à coefficients réels. Soit un plan affine P muni d un repère (O, I, J). Les coordonnées

Plus en détail

Sites web éducatifs et ressources en mathématiques

Sites web éducatifs et ressources en mathématiques Sites web éducatifs et ressources en mathématiques Exercices en ligne pour le primaire Calcul mental élémentaire : http://www.csaffluents.qc.ca/wlamen/tables-sous.html Problèmes de soustraction/addition

Plus en détail

Groupe symétrique. Chapitre II. 1 Définitions et généralités

Groupe symétrique. Chapitre II. 1 Définitions et généralités Chapitre II Groupe symétrique 1 Définitions et généralités Définition. Soient n et X l ensemble 1,..., n. On appelle permutation de X toute application bijective f : X X. On note S n l ensemble des permutations

Plus en détail

Dérivation : cours. Dérivation dans R

Dérivation : cours. Dérivation dans R TS Dérivation dans R Dans tout le capitre, f désigne une fonction définie sur un intervalle I de R (non vide et non réduit à un élément) et à valeurs dans R. Petits rappels de première Téorème-définition

Plus en détail

Analyse des Systèmes Asservis

Analyse des Systèmes Asservis Analyse des Systèmes Asservis Après quelques rappels, nous verrons comment évaluer deux des caractéristiques principales d'un système asservi : Stabilité et Précision. Si ces caractéristiques ne sont pas

Plus en détail

n N = u N u N+1 1 u pour u 1. f ( uv 1) v N+1 v N v 1 1 2 t

n N = u N u N+1 1 u pour u 1. f ( uv 1) v N+1 v N v 1 1 2 t 3.La méthode de Dirichlet 99 11 Le théorème de Dirichlet 3.La méthode de Dirichlet Lorsque Dirichlet, au début des années 180, découvre les travaux de Fourier, il cherche à les justifier par des méthodes

Plus en détail

TD1 Signaux, énergie et puissance, signaux aléatoires

TD1 Signaux, énergie et puissance, signaux aléatoires TD1 Signaux, énergie et puissance, signaux aléatoires I ) Ecrire l'expression analytique des signaux représentés sur les figures suivantes à l'aide de signaux particuliers. Dans le cas du signal y(t) trouver

Plus en détail

Calcul fonctionnel holomorphe dans les algèbres de Banach

Calcul fonctionnel holomorphe dans les algèbres de Banach Chapitre 7 Calcul fonctionnel holomorphe dans les algèbres de Banach L objet de ce chapitre est de définir un calcul fonctionnel holomorphe qui prolonge le calcul fonctionnel polynômial et qui respecte

Plus en détail

MATHÉMATIQUES EN PREMIER CYCLE PRÉSENTATION DU PROGRAMME

MATHÉMATIQUES EN PREMIER CYCLE PRÉSENTATION DU PROGRAMME Notre cadre de réflexion MATHÉMATIQUES EN PREMIER CYCLE PRÉSENTATION DU PROGRAMME La proposition de programme qui suit est bien sûr issue d une demande du Premier Cycle : demande de rénovation des contenus

Plus en détail

Différentiabilité ; Fonctions de plusieurs variables réelles

Différentiabilité ; Fonctions de plusieurs variables réelles Différentiabilité ; Fonctions de plusieurs variables réelles Denis Vekemans R n est muni de l une des trois normes usuelles. 1,. 2 ou.. x 1 = i i n Toutes les normes de R n sont équivalentes. x i ; x 2

Plus en détail

Introduction. Mathématiques Quantiques Discrètes

Introduction. Mathématiques Quantiques Discrètes Mathématiques Quantiques Discrètes Didier Robert Facultés des Sciences et Techniques Laboratoire de Mathématiques Jean Leray, Université de Nantes email: v-nantes.fr Commençons par expliquer le titre.

Plus en détail

Programme de la classe de première année MPSI

Programme de la classe de première année MPSI Objectifs Programme de la classe de première année MPSI I - Introduction à l analyse L objectif de cette partie est d amener les étudiants vers des problèmes effectifs d analyse élémentaire, d introduire

Plus en détail

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48 Méthodes de Polytech Paris-UPMC - p. 1/48 Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes - p. 2/48 Polynôme d interpolation

Plus en détail

C f tracée ci- contre est la représentation graphique d une

C f tracée ci- contre est la représentation graphique d une TLES1 DEVOIR A LA MAISON N 7 La courbe C f tracée ci- contre est la représentation graphique d une fonction f définie et dérivable sur R. On note f ' la fonction dérivée de f. La tangente T à la courbe

Plus en détail

Fonctions de plusieurs variables et applications pour l ingénieur

Fonctions de plusieurs variables et applications pour l ingénieur Service Commun de Formation Continue Année Universitaire 2006-2007 Fonctions de plusieurs variables et applications pour l ingénieur Polycopié de cours Rédigé par Yannick Privat Bureau 321 - Institut Élie

Plus en détail

5.2 Théorème/Transformée de Fourier a) Théorème

5.2 Théorème/Transformée de Fourier a) Théorème . Théorème de Fourier et Transformée de Fourier Fourier, Joseph (788). Théorème/Transformée de Fourier a) Théorème Théorème «de Fourier»: N importe quelle courbe peut être décomposée en une superposition

Plus en détail

Développements limités usuels en 0

Développements limités usuels en 0 Développements limités usuels en 0 e x sh x ch x sin x cos x = + x! + x! + + xn n! + O ( x n+) = x + x3 3! + + xn+ (n + )! + O ( x n+3) = + x! + x4 4! + + xn (n)! + O ( x n+) = x x3 3! + + ( )n xn+ (n

Plus en détail

Formes quadratiques. 1 Formes quadratiques et formes polaires associées. Imen BHOURI. 1.1 Définitions

Formes quadratiques. 1 Formes quadratiques et formes polaires associées. Imen BHOURI. 1.1 Définitions Formes quadratiques Imen BHOURI 1 Ce cours s adresse aux étudiants de niveau deuxième année de Licence et à ceux qui préparent le capes. Il combine d une façon indissociable l étude des concepts bilinéaires

Plus en détail

Bien lire l énoncé 2 fois avant de continuer - Méthodes et/ou Explications Réponses. Antécédents d un nombre par une fonction

Bien lire l énoncé 2 fois avant de continuer - Méthodes et/ou Explications Réponses. Antécédents d un nombre par une fonction Antécédents d un nombre par une fonction 1) Par lecture graphique Méthode / Explications : Pour déterminer le ou les antécédents d un nombre a donné, on trace la droite (d) d équation. On lit les abscisses

Plus en détail

8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2

8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2 Chapitre 8 Fonctions de plusieurs variables 8.1 Généralités sur les fonctions de plusieurs variables réelles Définition. Une fonction réelle de n variables réelles est une application d une partie de R

Plus en détail

Développements limités. Notion de développement limité

Développements limités. Notion de développement limité MT12 - ch2 Page 1/8 Développements limités Dans tout ce chapitre, I désigne un intervalle de R non vide et non réduit à un point. I Notion de développement limité Dans tout ce paragraphe, a désigne un

Plus en détail

Compter à Babylone. L écriture des nombres

Compter à Babylone. L écriture des nombres Compter à Babylone d après l article de Christine Proust «Le calcul sexagésimal en Mésopotamie : enseignement dans les écoles de scribes» disponible sur http://www.dma.ens.fr/culturemath/ Les mathématiciens

Plus en détail

www.h-k.fr/publications/objectif-agregation

www.h-k.fr/publications/objectif-agregation «Sur C, tout est connexe!» www.h-k.fr/publications/objectif-agregation L idée de cette note est de montrer que, contrairement à ce qui se passe sur R, «sur C, tout est connexe». Cet abus de langage se

Plus en détail

Système binaire. Algèbre booléenne

Système binaire. Algèbre booléenne Algèbre booléenne Système binaire Système digital qui emploie des signaux à deux valeurs uniques En général, les digits employés sont 0 et 1, qu'on appelle bits (binary digits) Avantages: on peut utiliser

Plus en détail

Maple: premiers calculs et premières applications

Maple: premiers calculs et premières applications TP Maple: premiers calculs et premières applications Maple: un logiciel de calcul formel Le logiciel Maple est un système de calcul formel. Alors que la plupart des logiciels de mathématiques utilisent

Plus en détail

REMARQUES SUR LE PETIT FRAGMENT DE TABLETTE CHYPRO MINOENNE TROUVÉ A ENKOMI EN 1952. par EMILIA MAS SON

REMARQUES SUR LE PETIT FRAGMENT DE TABLETTE CHYPRO MINOENNE TROUVÉ A ENKOMI EN 1952. par EMILIA MAS SON REMARQUES SUR LE PETIT FRAGMENT DE TABLETTE CHYPRO MINOENNE TROUVÉ A ENKOMI EN 952 par EMILIA MAS SON. C'est pendant sa campagne de 952 à Enkomi que M. Porphyrios Dikaios a trouvé un petit fragment de

Plus en détail

Quelques tests de primalité

Quelques tests de primalité Quelques tests de primalité J.-M. Couveignes (merci à T. Ezome et R. Lercier) Institut de Mathématiques de Bordeaux & INRIA Bordeaux Sud-Ouest Jean-Marc.Couveignes@u-bordeaux.fr École de printemps C2 Mars

Plus en détail

F411 - Courbes Paramétrées, Polaires

F411 - Courbes Paramétrées, Polaires 1/43 Courbes Paramétrées Courbes polaires Longueur d un arc, Courbure F411 - Courbes Paramétrées, Polaires Michel Fournié michel.fournie@iut-tlse3.fr http://www.math.univ-toulouse.fr/ fournie/ Année 2012/2013

Plus en détail

1 Définition de la non stationnarité

1 Définition de la non stationnarité Chapitre 2: La non stationnarité -Testsdedétection Quelques notes de cours (non exhaustives) 1 Définition de la non stationnarité La plupart des séries économiques sont non stationnaires, c est-à-direqueleprocessusquiles

Plus en détail

Logique. Plan du chapitre

Logique. Plan du chapitre Logique Ce chapitre est assez abstrait en première lecture, mais est (avec le chapitre suivant «Ensembles») probablement le plus important de l année car il est à la base de tous les raisonnements usuels

Plus en détail

- Automatique - Modélisation par fonction de transfert et Analyse des systèmes linéaires continus invariants

- Automatique - Modélisation par fonction de transfert et Analyse des systèmes linéaires continus invariants - Automatique - Modélisation par fonction de transfert et Analyse des systèmes linéaires continus invariants M1/UE CSy - module P2 (1ère partie) 214-215 2 Avant-propos 3 Avant-propos Le cours d automatique

Plus en détail

Travaux pratiques. Compression en codage de Huffman. 1.3. Organisation d un projet de programmation

Travaux pratiques. Compression en codage de Huffman. 1.3. Organisation d un projet de programmation Université de Savoie Module ETRS711 Travaux pratiques Compression en codage de Huffman 1. Organisation du projet 1.1. Objectifs Le but de ce projet est d'écrire un programme permettant de compresser des

Plus en détail

Dualité dans les espaces de Lebesgue et mesures de Radon finies

Dualité dans les espaces de Lebesgue et mesures de Radon finies Chapitre 6 Dualité dans les espaces de Lebesgue et mesures de Radon finies Nous allons maintenant revenir sur les espaces L p du Chapitre 4, à la lumière de certains résultats du Chapitre 5. Sauf mention

Plus en détail

Une forme générale de la conjecture abc

Une forme générale de la conjecture abc Une forme générale de la conjecture abc Nicolas Billerey avec l aide de Manuel Pégourié-Gonnard 6 août 2009 Dans [Lan99a], M Langevin montre que la conjecture abc est équivalente à la conjecture suivante

Plus en détail

Le théorème de Thalès et sa réciproque

Le théorème de Thalès et sa réciproque Le théorème de Thalès et sa réciproque I) Agrandissement et Réduction d une figure 1) Définition : Lorsque toutes les longueurs d une figure F sont multipliées par un même nombre k on obtient une autre

Plus en détail